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Abstract

We investigate the holographic entanglement entropy in the metal/superconductor phase transition for the 
Born–Infeld electrodynamics with full backreaction and note that the entropy is a good probe to study the 
properties of the phase transition. For the operator 〈O−〉, we find that the entanglement entropy decreases 
(or increases) with the increase of the Born–Infeld parameter b in the metal (or superconducting) phase. 
For the operator 〈O+〉, we observe that, with the increase of the Born–Infeld parameter, the entanglement 
entropy in the metal phase decreases monotonously but the entropy in the superconducting phase first 
increases and forms a peak at some threshold bT , then decreases continuously. Moreover, the value of 
bT becomes smaller as the width of the subsystem A decreases.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

As the holographic principle provides a new insight into the investigation of strongly interact-
ing condensed matter systems [1,2], there are a lot of works applying the anti-de Sitter/conformal 

* Corresponding author.
E-mail address: jljing@hunnu.edu.cn (J. Jing).
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.007
0550-3213/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

http://www.sciencedirect.com
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.007
http://www.elsevier.com/locate/nuclphysb
http://creativecommons.org/licenses/by/3.0/
mailto:jljing@hunnu.edu.cn
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.007
http://creativecommons.org/licenses/by/3.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nuclphysb.2014.10.007&domain=pdf


110 W. Yao, J. Jing / Nuclear Physics B 889 (2014) 109–119
field theory (AdS/CFT) duality [3–5] to condensed matter physics and in particular to super-
conductivity [6–22]. It states that the bulk AdS black hole becomes unstable and scalar hair 
condenses as one tunes the temperature for black hole. As a matter of fact, in order to understand 
the influences of the 1/N or 1/λ (λ is the ’t Hooft coupling) corrections on the holographic 
superconductors, the higher derivative corrections to the gauge field should be taken into consid-
eration. For the high order correction related to the gauge field, one of the important nonlinear 
electromagnetic theories is Born–Infeld electrodynamics [23–28]. As is well known, the Born–
Infeld electrodynamics, which was proposed in 1934 by Born and Infeld to avoid the infinite 
self-energies for charged point particles arising in Maxwell theory [23], displays good physi-
cal properties including the absence of shock waves and birefringence. It was also found that 
the Born–Infeld electrodynamics is the only possible nonlinear version of electrodynamics that 
is invariant under electromagnetic duality transformation [24]. Jing and Chen observed that the 
Born–Infeld coupling parameter makes it harder for the scalar condensation to form [29]. Then, 
the analytic study of properties of holographic superconductors in Born–Infeld electrodynamics 
was presented in Ref. [30]. In this paper, we would like to investigate the phase transition in the 
Born–Infeld electrodynamics with full backreaction of the matter fields electrodynamics on the 
AdS black hole geometry.

Recently, according to the AdS/CFT duality, Ryu and Takayanagi [31,32] have presented 
a proposal to compute the entanglement entropy of conformal field theories (CFTs) from the 
minimal area surface in gravity side. Since this proposal provides a simple and elegant way 
to calculate the entanglement entropy of a strongly coupled system which has a gravity dual, 
the holographic entanglement entropy is widely used to study various properties of holographic 
superconductors at low temperatures [33–41]. The entanglement entropy in the metal/super-
conductor system was studied in Ref. [42]. It was shown that the entanglement entropy in 
superconducting phase is always less than the one in the metal case and the entropy as a function 
of temperature is found to have a discontinuous slop at the transition temperature Tc in the case 
of the second order phase transition. Ref. [43] considered the case with higher derivative cor-
rections and studied the holographic entanglement entropy in Gauss–Bonnet gravity. Ref. [44]
studied the holographic entanglement entropy for general higher derivative gravity and proposed 
a general formula for calculating the entanglement entropy in theories dual to higher derivative 
gravity. Then, the holographic entanglement entropy in the insulator/superconductor model was 
studied in Refs. [45–48] and it turned out that the entanglement entropy is a good probe to in-
vestigate the holographic phase transition. Furthermore, Kuang et al. examined the properties of 
the entanglement entropy in the four-dimensional AdS black hole and found that the entangle-
ment entropy can be considered as a probe of the proximity effect of a superconducting system 
by using the gauge/gravity duality in a fully backreacted gravity system [49]. More recently, the 
entanglement entropy of general Stückelberg models both in AdS soliton and AdS black hole 
backgrounds with full backreaction was studied in Ref. [50]. However, the models mentioned 
above are all in the frame of Maxwell electromagnetic theory. It is of interest to investigate holo-
graphic entanglement entropy in the nonlinear electromagnetic generalization. We have studied 
in Ref. [51] the holographic entanglement entropy in the insulator/superconductor phase tran-
sition for the Born–Infeld electrodynamics, and found that the entanglement entropy increases 
with the increase of the Born–Infeld factor in the superconductor phase and the critical width �
of confinement/deconfinement phase transition is dependent of the Born–Infeld parameter. As a 
further study along this line, in this paper we will extend the previous works to investigate the en-
tanglement entropy in metal/superconductor phase transition with Born–Infeld electrodynamics. 
We find that the entanglement entropy decreases with the increase of the Born–Infeld parameter 
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b for both operators in the metal phase. However, In the superconducting phase, the entangle-
ment entropy of operator 〈O−〉 increases with the increase of Born–Infeld factor. Interestingly, 
for the operator 〈O+〉, the effect of the Born–Infeld parameter on the entanglement entropy is 
non-monotonic and the value of the threshold bT is related to the belt width of subsystem A.

The framework of this paper is as follows. In Section 2, we will derive the equations of mo-
tions and introduce the boundary conditions of the holographic model. In Section 3, we study the 
phase transition with Born–Infeld electrodynamics in AdS black hole spacetime. In Section 4, 
we calculate the holographic entanglement entropy in AdS black hole gravity with Born–Infeld 
electrodynamics. In Section 5, we conclude our main results of this paper.

2. Equations of motion and boundary conditions

The action for the gravity and Born–Infeld electromagnetic field coupling with a charged 
scalar field is described by

S =
∫

ddx
√−g

[
1

16πG
(R − 2Λ)

]
+

∫
ddx

√−g

[
1

b2

(
1 −

√
1 + b2FμνFμν

2

)

− |∇Ψ − iqAΨ |2 − m2|Ψ |2
]
, (1)

where g is the determinant of the metric, ψ represents a scalar field with charge q and mass m, 
Λ = −(d − 1)(d − 2)/2L2 is the cosmological constant, A is the gauge field, Fμν is the strength 
of the Born–Infeld electrodynamic field F = dA, and b is the Born–Infeld coupling parameter. 
In the limit b → 0, the Born–Infeld field will reduce to the Maxwell field.

To study the holographic entanglement entropy in Born–Infeld electrodynamics, we will take 
the full backreaction into account. The metric for the planar black hole can be taken as

ds2 = −f (r)e−χ(r)dt2 + dr2

f (r)
+ r2hij dxidxj . (2)

The Hawking temperature of this black hole is

TH = f ′(r+)e−χ(r+)/2

4π
, (3)

where r+ is the black hole horizon.
We consider the electromagnetic field and the scalar field in the forms

A = φ(r)dt, ψ = ψ(r). (4)

Then, the equations of motion from the variation of the action with respect to the matter and 
metric can be obtained as

ψ ′′ +
(

d − 2

r
− χ ′

2
+ f ′

f

)
ψ ′ + 1

f

(
q2eχφ2

f
− m2

)
ψ = 0, (5)

φ′′ +
(

d − 2

r
+ χ ′

2

)
φ′ − (d − 2)b2eχ

r
φ′ 3 − 2q2ψ2(1 − b2eχφ′ 2)

3
2

f
φ = 0, (6)

χ ′ + 2r
(

ψ ′ 2 + q2eχφ2ψ2

2

)
= 0, (7)
d − 2 f
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f ′ −
(

(d − 1)r

L
− (d − 3)f

r

)
+ r

d − 2

[
m2ψ2 + f

(
ψ ′ 2 + q2eχφ2ψ2

f 2

)

+ 1 − √
1 − b2eχφ′ 2

b2
√

1 − b2eχφ′ 2

]
= 0, (8)

where a prime denotes the derivative with respect to r , and 16πG = 1 was used. For this system, 
the useful scaling symmetries are

r → αr, (x, y, t) → (x, y, t)/α, φ → αφ, f → α2f, (9)

L → αL, r → αr, t → αt, q → α−1q, (10)

eχ → α2eχ , φ → α−1φ, t → tα. (11)

Using the scaling symmetries (9), we can take r+ = 1. Further employing the symmetries (10), 
we can let L = 1.

At the horizon r+, the regularity condition gives the boundary conditions

φ(r+) = 0, f (r+) = 0. (12)

And at the asymptotic AdS boundary (r → ∞), the asymptotic behaviors of the solutions are

χ → 0, f ∼ r2, φ ∼ μ − ρ

rd−3
, ψ ∼ ψ−

r− + ψ+
r+ , (13)

where μ and ρ are interpreted as the chemical potential and charge density in the dual field 
theory, and the exponent ± is defined by ((d − 1) ± √

(d − 1)2 + 4m2 )/2 for d-dimensional 
spacetime. Notice that, provided − is larger than the unitarity bound, both ψ− and ψ+ can 
be normalizable. According to the AdS/CFT correspondence, they correspond to the vacuum 
expectation values ψ− = 〈O−〉, ψ+ = 〈O+〉 of an operator O dual to the scalar field [52,53]. In 
the following calculation, we impose boundary condition that either ψ− or ψ+ vanishes.

3. Phase transition with Born–Infeld electrodynamics

In this section, we will concretely study the phase transition for Born–Infeld electrodynamics 
with full backreaction in the 4-dimensional AdS black hole spacetime. For the normal phase, the 
metric becomes the Reissner–Nordström AdS black hole as the Born–Infeld factor approaches 
to zero. Thus, we have

χ = ψ = 0, φ = ρ

(
1 − 1

r

)
, f = r2 − 1

r

(
1 + ρ2

4

)
+ ρ2

4r2
. (14)

However, if the Born–Infeld factor is not equal to zero, the solution is the Born–Infeld AdS black 
hole.

For purpose of getting the solutions in superconducting phase where ψ(r) �= 0, we can intro-
duce a new variable z = r+/r . Then, the equations of motion can be rewritten as

ψ ′′ −
(

χ ′

2
− f ′

f

)
ψ ′ − 1

z4f

(
m2 − eχq2φ2

f

)
ψ = 0, (15)

φ′′ + 1
χ ′φ′ + 2z3b2eχφ′ 3 − 2q2ψ2(1 − b2eχz4φ′ 2)

3
2

4
φ = 0, (16)
2 z f
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Fig. 1. (Color online.) The operators O− (left plot) and O+ (right plot) versus temperature after condensation with 
different values of Born–Infeld parameter. The four lines from top to bottom correspond to b = 0 (black), b = 0.2 (blue), 
b = 0.4 (red), and b = 0.6 (green), respectively.

χ ′ − zψ ′ 2 − eχq2φ2ψ2

z3f 2
= 0, (17)

f ′ − f

z
+ 3r2+

z3
− 1

2z3

[
m2ψ2 + f

(
z4ψ ′ 2 + 1

f 2
eχq2φ2ψ2

)

+1 − √
1 − b2z4eχφ′ 2

b2
√

1 − b2z4eχφ′ 2

]
= 0, (18)

where the prime now denotes the derivative with respect to z. Using the shooting method, we 
can solve the equations of motion numerically and then discuss the effects of the Born–Infeld 
parameter b on the condensation of the scalar operators. In this paper, we set m2 = −2 and 
q = 1. Since there are scaling symmetries described by Eq. (9) for the equations of motion, the 
following quantities can be rescaled as

μ → αμ, ρ → α2ρ, 〈O−〉 → α〈O−〉, 〈O+〉 → α2〈O+〉. (19)

In Fig. 1, we plot the behaviors of condensate with the changes of the temperature and the 
Born–Infeld parameter in the dimensionless quantities 〈O−〉/√ρ, 

√〈O+〉/ρ and T/
√

ρ. From 
the left plot of Fig. 1, we can see that if the temperature T > Tc, there is no condensation and 
this can be thought of as the metal phase. However, when the temperature decreases to be lower 
than the critical value Tc, the condensation of the operator 〈O−〉 emerges and this corresponds to 
a superconducting phase. It should be noted that the value of the critical temperature Tc becomes 
smaller as the Born–Infeld factor b increases, which means that the Born–Infeld correction to 
the usual Maxwell field makes the scalar hair harder to form in the full-backreaction model. 
For the operator 〈O+〉 (right plot), we also find that the critical temperature Tc decreases with 
the increase of the parameter b. Our result is the same as the result in Ref. [53] as the factor b
approaches to zero.

4. Holographic entanglement entropy of the holographic model

After obtaining the solutions to the metal phase and superconducting phase for the Born–
Infeld electrodynamics in the AdS black hole geometry with full backreaction, we are now ready 
to study the behavior of holographic entanglement entropy in the Born–Infeld electrodynamics. 
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The entanglement entropy in conformal field theories can be calculated from the area of minimal 
surface in AdS spaces [31,32], and its formula is given by the “area law”

SA = Area(γA)

4GN

, (20)

where GN is the Newton constant in the Einstein gravity on the AdS space, SA is the entangle-
ment entropy for the subsystem A which can be chosen arbitrarily, γA is the minimal area surface 
in the bulk which ends on the boundary of A.

We consider the entanglement entropy for a straight geometry which is described by − l
2 ≤

x ≤ l
2 and −R

2 < y < R
2 (R → ∞), where � is defined as the size of region A. The holographic 

surface γA starts from r = 1
ε

at x = �
2 , extends into the bulk until it reaches r = r∗, then returns 

back to the AdS boundary r = 1
ε

at x = − �
2 . Thus, the induced metric on γA can be obtained as 

follows

ds2 =
[

1

f (r)
+ r2

(
dx

dr

)2]
dr2 + r2dy2. (21)

By using the proposal given by Eq. (20), the entanglement entropy in the strip geometry is

SA = R

2G4

z∗∫
ε

dz
z2∗
z2

1√
(z4∗ − z4)z2f (z)

= R

2G4

(
1

ε
+ s

)
, (22)

with

l

2
=

z∗∫
ε

dz
z2√

(z4∗ − z4)z2f (z)
, (23)

where z∗ satisfies the condition dz
dx

|z∗ = 0 with z = 1
r
. The term 1/ε in Eq. (22) is divergent, 

while the term s is a finite term which is physically important. Under the scaling symmetries of 
Eq. (9), we can rescale the � and s as

� → α−1�, s → αs. (24)

Therefore, in the following calculation we can use these dimensionless quantities

�
√

ρ, s/
√

ρ. (25)

We now show the behavior of the holographic entanglement entropy of the operator 〈O−〉 or 
〈O+〉 with respect to the temperature T , the Born–Infeld factor b and the belt width �, respec-
tively.

4.1. Holographic entanglement entropy of the operator 〈O−〉

The behavior of the entanglement entropy of the operator 〈O−〉 is shown in Fig. 2 in which the 
dot-dashed lines describe the normal phases and the solid ones show the superconducting phases. 
It can be seen from the figure that the entanglement entropy presents a discontinuous change at a 
critical temperatures Tc denoted by vertical dashed lines for different strengths of the Born–Infeld 
parameter b. The discontinuous change of the entanglement entropy indicates the phase transition 
point from the normal state to the superconducting state and the value of the Tc becomes smaller 
with the increase of the Born–Infeld factor b. Which indicates that the holographic entanglement 
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Fig. 2. (Color online.) The entanglement entropy of the operator 〈O−〉 as a function of the temperature T and the 
Born–Infeld factor b for �√ρ = 1. The four dot-dashed lines from top to bottom correspond to b = 0 (black), b = 0.2
(blue), b = 0.4 (red), b = 0.6 (green), but the four solid lines from bottom to top are for b = 0 (black), b = 0.2 (blue), 
b = 0.4 (red), and b = 0.6 (green), respectively.

entropy is a good probe to study the properties of the phase transition. The figure also shows that 
the entanglement entropy decreases as the Born–Infeld parameter increases for the normal phase, 
but increases as the Born–Infeld parameter increases for the superconducting state. Moreover, the 
entanglement entropy in superconducting phase is less than the one in the normal case and drops 
as the temperature decreases, and this property holds for different values of the parameter b. 
This behavior of the entanglement entropy is due to the fact that the metal phase can be thought 
of as the one filled with free charge carriers, such as electrons. The condensate turns on at the 
critical temperature and the free charge carriers are continuously condensed to Cooper pairs as 
temperature decreases. Therefore, the formation of Cooper pairs make the degrees of freedom 
decrease in the superconducting phase.

The entanglement entropy as a function of the parameter b for different � in the superconduct-
ing phase is shown in Fig. 3. For fixed belt width �, the entanglement entropy becomes smaller 
as the Born–Infeld factor b decreases. This is because that the condensation becomes stronger 
with higher condensation gap for smaller parameter b at low temperature so that the number of 
Cooper pairs is increased, which results in less degree of freedom. On the other hand, for a given 
Born–Infeld factor b, with the decrease of belt width � the entanglement entropy also decreases.

4.2. Holographic entanglement entropy of the operator 〈O+〉

The behavior of the entanglement entropy of the operator 〈O+〉 as a function of temperature 
T and the Born–Infeld factor b is described by Fig. 4. It is shown that the critical temperature 
Tc of the phase transition decreases as the Born–Infeld factor b increases. That is to say, the 
stronger Born–Infeld electrodynamics correction makes the scalar condensation harder to form. 
We also find that the change of the entanglement entropy is discontinuous at Tc and the entan-
glement entropy in the hair phase is less than the one in the normal phase. Interestingly, in the 
superconducting phase, the dependence of the entanglement entropy on the Born–Infeld factor b
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Fig. 3. (Color online.) The entanglement entropy of the operator 〈O−〉 as a function of the Born–Infeld factor b for 
different widths � as T/

√
ρ = 0.10. The top left plot (red) is for �√ρ = 1.2, the top right one (blue) for �√ρ = 1.0, and 

the bottom one (black) for �√ρ = 0.8.

Fig. 4. (Color online.) The entanglement entropy of the operator 〈O+〉 as a function of the temperature T and the 
Born–Infeld factor b with �√ρ = 1. The vertical dashed lines represent the critical temperature of the phase transition 
for the different values of the Born–Infeld factor. The dot-dashed lines are from the normal phase and the solid ones are 
from the superconducting cases. In the left plot, the three lines from bottom to top correspond to b = 0 (black), b = 0.2
(blue) and b = 0.4 (red), but in the right one are for b = 0.7 (orange), b = 0.6 (green), b = 0.5 (magenta), respectively.

is non-monotonic. In the left plot of Fig. 4, we find that the entanglement entropy increases with 
the increase of the factor b when b < bT . However, in the right plot of Fig. 4, we can see that the 
entanglement entropy decreases with the increase of the factor b when b > bT .

To further illustrate the effect of the Born–Infeld factor b on the entanglement entropy of the 
operator 〈O+〉 in the superconducting phase, we plot the entanglement entropy of the operator 
〈O+〉 as a function of Born–Infeld factor b for different widths � with T/

√
ρ = 0.010 in Fig. 5. 

Obviously, with the increase of the factor b, the entanglement entropy first rises and arrives at its 
maximum as b = bT , then decreases monotonously. This process implies that there is some kind 
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Fig. 5. (Color online.) The entanglement entropy of the operator 〈O+〉 as a function of the Born–Infeld factor b for 
different widths � with T/

√
ρ = 0.010. The top left plot (red) is for �√ρ = 1.2, the top right one (blue) for �√ρ = 1.0, 

and the bottom one (black) for �√ρ = 0.8.

of the significant reorganization of the degrees of freedom. And the threshold bT becomes smaller 
as the width of the subsystem � decreases. For the fixed Born–Infeld factor b, the entanglement 
entropy decreases with the decrease of belt width �.

5. Summary

We studied the behaviors of the holographic entanglement entropy in the metal/superconduc-
tor phase transition for the Born–Infeld electrodynamics with full backreaction. By calculating 
the entanglement entropy of the system, we noted that the critical temperature of the condensation 
for the operators 〈O−〉 and 〈O+〉 becomes smaller with the increase of the Born–Infeld param-
eter b, which implies that the Born–Infeld factor makes the scalar condensation harder to form. 
Both for the operators 〈O−〉 and 〈O+〉, we found that the entanglement entropy in the supercon-
ducting phase is less than the one in the normal phase, and drops as the temperature decreases for 
the fixed parameter b and belt width �. This is due to the fact that the formation of Cooper pairs 
makes the degrees of freedom decrease in the hair phase. For a given temperature, we observed 
that the entanglement entropy of the operator 〈O−〉 in the metal (or superconducting) phase de-
creases (or increases) with the increase of the Born–Infeld factor b for the fixed �. Interestingly, 
the influence of the Born–Infeld factor b on the entanglement entropy of the operator 〈O+〉 is 
nontrivial. The entanglement entropy of the operator 〈O+〉 in the metal phase decreases with the 
increase of the Born–Infeld parameter. However, with the increase of the Born–Infeld parameter 
b for the fixed belt width � of subsystem A, the entanglement entropy of the operator 〈O+〉 in 
the superconducting phase first increases and reaches the maximum at some threshold bT , then 
decreases monotonously. The threshold bT becomes smaller as the width of the subsystem A
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decreases. This process implies that there is some kind of the significant reorganization of the 
degrees of freedom which should be further studied in the future.
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