Downregulated mRNA expression of ASPP and the hypermethylation of the 5'-untranslated region in cancer cell lines retaining wild-type p53

Ze-Jun Liu a,*,1, Xin Lu b,1, Yun Zhang a,1, Shan Zhong b, Shou-Zhi Gu c, Xiao-Bing Zhang a, Xin Yang a, Hai-Ming Xin a

a Laboratory of International Cooperation, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
b Ludwig Institute for Cancer Research, University College London, 91 Riding House Street, London W1W 7BS, UK
c Seirei Christopher University, Hamamatsu 433-8558, Japan

Received 3 December 2004; revised 11 January 2005; accepted 13 January 2005
Available online 11 February 2005
Edited by Varda Rotter

Abstract The p53 protein is one of the best-known tumour suppressors. Recently discovered ASPP1 and ASPP2 are specific activators of p53. To understand, if apoptosis-stimulating protein of p53 (ASPP) inactivation offers a selective advantage to tumours that have wild-type p53, we measured the mRNA expression of ASPP1 and ASPP2 in tumour cell lines retaining wide-type p53. In addition, the CpG island methylation status of ASPP1 gene and ASPP2 gene in the 5'-untranslated region was also investigated in order to understand the possible cause of abnormal expression of ASPP1 and ASPP2 in the tumour cell lines retaining wide-type p53. The data showed that mRNA expression of ASPP1 and ASPP2 is downregulated and CpG island tested is hypermethylated. These results indicated that ASPP CpG island aberrant methylation could be one molecular and genetic alteration in wild-type p53 tumours.

© 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Keywords: ASPP1; ASPP2; DNA methylation; Methylation-specific PCR; Reverse transcription PCR; p53

1. Introduction
The p53 protein is one of the best-known tumour suppressors. The p53 gene is also one of the most frequently mutated genes [1]. Mutations in p53 gene have been found in about 50% of human cancers [2,3]. The other 50% of human tumours retain wild-type p53. Why wild-type p53 is unable to perform its duty as a tumour suppressor in these tumours? This question remains unclear. Recently, a new family of protein, apoptosis-stimulating protein of p53 (ASPP) was discovered [4,5]. This discovery may suggest some new answers to this question. The ASPP family consists of three members: ASPP1, ASPP2, and inhibitory member of the ASPP family (iASPP). ASPP1 and ASPP2 act as potent activators of p53. iASPP acts as an inhibitor of p53. The apoptotic function of p53 is stimulated by ASPP1 and ASPP2 and inhibited by iASPP [6–8].

To understand, if ASPP inactivation offers a selective advantage to tumours that have wild-type p53, we measured the mRNA expression of three p53 wild-type cancer cell lines, HEPG-2, MCF-7, and A549. We also detected the CpG island methylation status of ASPP1 gene and ASPP2 gene in the 5'-untranslated region in order to understand the possible cause of abnormal expression of ASPP1 and ASPP2 in three cancer cell lines.

2. Materials and methods

2.1. Cell lines
The human cancer cell lines used in this study were HEPG-2, MCF-7, and A549, obtained from the Southwest Hospital (Chongqing, PRC). The normal control used was fibroblast cell. All cell lines were grown in Dulbecco modified Eagle medium supplement with 10% fetal calf serum, 100 U/ml benzylpenicillin, and 100 U/ml streptomycin sulfate in a humidified atmosphere containing 5% of CO2 at 37°C.

2.2. DNA and RNA preparation
Total DNA and RNA were extracted from various cancer cell lines and fibroblast cell using Tirpure-Isolation-Reagent (Roche, USA).

2.3. RNA expression level determination by RT-PCR
Reverse transcription PCR (RT-PCR) kits (TaKaRa, Japan) were used to synthesize cDNA from 2 μg of total RNA using random hexamer primers. cDNA synthesis was carried out, as suggested by the kit protocol, using AMV reverse transcriptase. The reverse transcription was carried out for 45 min at 48°C. An incubation at 99°C for 5 min was carried out to inactivate the reverse transcriptase. 5 μl of cDNA was used to amplify the target regions of ASPP1 or ASPP2. β-Actin cDNA fragments were also amplified as a positive control. The RT-PCR primers of ASPP1 and ASPP2 are designed using Primer Premier 5.0 software. The nucleotide sequences of these primers and their PCR conditions are summarized in Table 1. After PCR, 8 μl of product was mixed with 1 μl of 10x loading dye and then run on 1.5% agarose gel. Electrophoresis was carried out at 100 V at ambient temperature. The bands on the gels were visualized by ethidium bromide staining. Electrophoresis profiles were analyzed by the software, Gel-Pro3.1 (Media Cybernetics Inc., USA). The ratio of the integrated optical density (IOD) of ASPP and β-actin represented the mRNA level. The PCR products of ASPP1 and ASPP2 were 498 and 391 bp, respectively.

0014-5793/30.00 © 2005 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.febslet.2005.01.069
Fig. 1. Design of MSP primers for ASPP1 and ASPP2. (A) Original sequence before bisulfite treatment. CpG dinucleotides are underlined. (B) Unmethylated sequence after bisulfite treatment. All cytosines were deaminated and converted to thymine. Unmethylated primers are double underlined. (C) Methylated sequence after bisulfite treatment. All cytosine residues at CpG sites remained unchanged although other cytosines were converted to thymine. Methylation primers are double underlined. The GenBank Accession Numbers for the ASPP1 and ASPP2 nucleotide sequences in this figure are AJ318887 and AJ318888, respectively. Shading indicates the ATG transitional initiation codon.

Table 1
Summary of the primer sets and PCR conditions for ASPP1 and ASPP2

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Pre-PCR incubation</th>
<th>Denature</th>
<th>Annealing</th>
<th>Extension</th>
<th>Cycle</th>
<th>Final incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT-PCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASPP1-f</td>
<td>5'-GCAGGCAACAGCGCTTAAAATTAAG-3'</td>
<td>95 °C, 3 min</td>
<td>94 °C, 30 s</td>
<td>56 °C, 30 s</td>
<td>72 °C, 45 s</td>
<td>30</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP1-r</td>
<td>5'-TGGATTATCTTACCGAAGGT-3'</td>
<td>0</td>
<td>94 °C, 30 s</td>
<td>55 °C, 30 s</td>
<td>72 °C, 45 s</td>
<td>30</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP2-f</td>
<td>5'-TATCTAAATCCATACCGAAGG-3'</td>
<td>95 °C, 3 min</td>
<td>94 °C, 30 s</td>
<td>51 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP2-r</td>
<td>5'-CCCTCAGGCTCATAATCAA-3'</td>
<td>0</td>
<td>94 °C, 30 s</td>
<td>51 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
</tbody>
</table>

Methylation

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
<th>Pre-PCR incubation</th>
<th>Denature</th>
<th>Annealing</th>
<th>Extension</th>
<th>Cycle</th>
<th>Final incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPP1-Uf</td>
<td>5'-TTTTTGGATTTTTGATTTTTGTT-3'</td>
<td>94 °C, 5 min</td>
<td>94 °C, 30 s</td>
<td>51 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP1-Ur</td>
<td>5'-CAGAAAAAAATCCCAACACCC-3'</td>
<td>0</td>
<td>94 °C, 30 s</td>
<td>51 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP1-Mf</td>
<td>5'-GGGATTTTGGATTTTTGTTG-3'</td>
<td>94 °C, 5 min</td>
<td>94 °C, 30 s</td>
<td>51 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP1-Mr</td>
<td>5'-CCCTCAGGCTCATAATCAA-3'</td>
<td>0</td>
<td>94 °C, 30 s</td>
<td>50.5 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP2-Uf</td>
<td>5'-GAGGTTTTATC GGAGG-3'</td>
<td>94 °C, 5 min</td>
<td>94 °C, 30 s</td>
<td>50.5 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP2-Ur</td>
<td>5'-ACGAAAAATCAGGCGG-3'</td>
<td>0</td>
<td>94 °C, 30 s</td>
<td>50.5 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP2-Mf</td>
<td>5'-GAGGTTTTATC GGAGG-3'</td>
<td>94 °C, 5 min</td>
<td>94 °C, 30 s</td>
<td>50.5 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
<tr>
<td>ASPP2-Mr</td>
<td>5'-ACGAAAAATCAGGCGG-3'</td>
<td>0</td>
<td>94 °C, 30 s</td>
<td>50.5 °C, 30 s</td>
<td>72 °C, 30 s</td>
<td>40</td>
<td>72 °C, 8 min</td>
</tr>
</tbody>
</table>

1588
2.4. Sodium bisulfite treatment

DNA bisulfite treatment was carried out using the reagents provided in the CpGenome DNA Modification Kit (Intergen, Purchase, NY, USA). Briefly, 1 μg of DNA was denatured using NaOH and treated with sodium bisulfite for 18 h. Modified DNA was resuspended in 30 μl of TE (10 mM Tris/0.1 mM EDTA, pH 7.5) and stored immediately at −20 °C [9,10].

2.5. Methylation-specific PCR analysis conditions

PCR was performed using Taq polymerase (Promega) and the hot start procedure. The ASPP-specific primer sets are designed to locate on the 5'-untranslated region of ASPP gene using MethPrimer software ([11,12], Fig. 1). Primer set U will anneal to unmethylated DNA that has undergone a chemical modification. Primer set M will anneal to methylated DNA that has undergone a chemical modification. The unmethylated sequence of the ASPP gene was detected with ASPP-Uf and ASPP-Ur. The methylated sequence of ASPP gene was detected with ASPP-Mf and ASPP-Mr (Table 1). The PCR mixture (50 μl) contained 2.0 mM MgCl₂, 0.2 mM each of 4 dNTPs, 1.0 mM each of oligonucleotide primers, and 5 units of Taq DNA polymerase. PCR conditions are listed in Table 1. After PCR, 9 μl PCR product was mixed with 1.5 μl of 10× loading dye and then run on 2% agarose gel. Electrophoresis was carried out at 100 V at ambient temperature. The bands on the gels were visualized by ethidium bromide staining.

3. Results and discussion

Recently, the ASPP family was identified as potent activators of p53 [4]. The apoptotic function of p53 is stimulated by two members of the ASPP family, ASPP1 and ASPP2. Binding to the DNA binding domains of p53, ASPP1 and ASPP2 specifically stimulates the transactivation function of p53 on promoters of proapoptotic genes [4]. Therefore, the ASPP proteins appeared to be acting to specifically enhance the ability of p53 to cause apoptosis.

Human tumours can be divided into two kinds. One is tumours with wide-type p53. The other is tumours with mutated p53. In tumours, where p53 has been mutated, p53 is no longer able to interact with the ASPP proteins, then a cell which would otherwise have died is now able to survive, allowing the mutation to persist [13]. In addition, in tumours where p53 has not been mutated, a selective advantage may have occurred as a consequence of the downregulation of ASPP1 and ASPP2, which would then prevent p53 from causing cell death [13]. Our study in three tumour cell lines with wide-type p53 shows that the mRNA expression of ASPP1 and ASPP2 is lower than that of ASPP in the normal control (Figs. 2 and 3). These results, together with the research of Lu and coworkers [4] in breast cancer, suggest that the downregulation ASPP may be one of characters in tumours with wild-type p53. Lu and coworkers used semiquantitative RT-PCR technique to study the expression levels of both ASPP1 and ASPP2 in a panel of paired normal and tumor RNA samples derived from 58 breast cancer patients. Forty of these breast carcinomas express wild-type p53 while the other 18 express mutant p53. The results showed that among the 40 carcinoma samples with wild-type p53, reduced expression levels of ASPP1 and ASPP2 were detected in 24 (60%) and 9 (22.5%) samples, respectively. Among the 18 mutant p53-expressing tumor samples, only three and two tumors, respectively, showed reduced levels of expression of ASPP1 and ASPP2 (16% and 11%, respectively) [4]. The number of tumors having reduced expression of ASPP that are wild-type for p53 is much higher than that with mutant p53. As the expression levels of ASPP1 and ASPP2 were compared between normal cells and carcinomas derived from the same individuals, they conclude that there is a selective
advantage for tumor cells to lose the expression of ASPP1 and ASPP2 [4].

What is the cause of ASPP downregulation in tumors retaining wild-type p53? Some of the possible reasons may be gene mutation or epigenetic modification. But, up to now, ASPP gene mutation has not been found [13]. Whether the ASPP gene themselves are subject to mutation during tumorigenesis remains to be seen. However, our study here shows that epigenetic modification may happen to ASPP gene in tumours that possess wild-type p53. Because upstream regulators of ASPP have not yet been identified, more work is needed to clear the precise mechanism of altered ASPP1 and ASPP2 expression in tumors. The identification of ASPPs promoter region and study of its methylation status are currently under investigation.

DNA methylation is the main epigenetic modification in humans [14], and changes in methylation patterns play an important role in tumorigenesis. Hypermethylation of normally unmethylated CpG islands in the promoter regions often occurs in important tumor suppressor genes such as VHL, hMLH1 and p16 [15–17]. Our study here shows that hypermethylation is also happened in the 5'-untranslated region of ASPP1 and ASPP2 gene. This observation suggested that ASPP downregulated expression in tumour cells retaining wild-type p53 might be relative to the abnormal methylation status of ASPP gene. Therefore, the ASPP aberrant methylation could be one molecular and genetic alteration in tumours retaining wild-type p53.

Acknowledgements: This work was supported by the National Natural Science Foundation of China (30313268) and the Foundation for Sino-Japanese Cooperation by Seirei Christopher University (2003050).

References