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SUMMARY

Circulating tumor cell clusters (CTC clusters) are
present in the blood of patients with cancer but
their contribution to metastasis is not well defined.
Using mouse models with tagged mammary tumors,
we demonstrate that CTC clusters arise from oligo-
clonal tumor cell groupings and not from intravas-
cular aggregation events. Although rare in the
circulation compared with single CTCs, CTC clusters
have 23- to 50-fold increased metastatic potential.
In patients with breast cancer, single-cell resolution
RNA sequencing of CTC clusters and single CTCs,
matched within individual blood samples, identifies
the cell junction component plakoglobin as highly
differentially expressed. In mouse models, knock-
down of plakoglobin abrogates CTC cluster forma-
tion and suppresses lung metastases. In breast can-
cer patients, both abundance of CTC clusters and
high tumor plakoglobin levels denote adverse out-
comes. Thus, CTC clusters are derived frommulticel-
lular groupings of primary tumor cells held together
through plakoglobin-dependent intercellular adhe-
sion, and though rare, they greatly contribute to the
metastatic spread of cancer.
INTRODUCTION

The metastatic spread of breast cancer, typically to bone, lung,

liver, and brain, accounts for the vast majority of cancer-related

deaths (Nguyen et al., 2009). Our understanding of epithelial can-
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cer metastasis is derived primarily from mouse models and it

is thought to involve a series of sequential steps: epithelial-to-

mesenchymal transition (EMT) of individual cells within the pri-

mary tumor leading to their intravasation into the bloodstream,

survival of such circulating tumor cells (CTCs) within the blood-

stream, and finally their extravasation at distant sites, where

mesenchymal-to-epithelial transition (MET) culminates in their

proliferation as epithelial metastatic deposits (Hanahan and

Weinberg, 2011). While EMT has indeed been demonstrated in

human breast cancer cells in the circulation (Yu et al., 2013),

the requirement for EMT to initiate metastasis has been debated

(Ledford, 2011; Tarin et al., 2005). Alternative models proposed

include tumor-derived microemboli that may break off from pri-

mary tumors, lodging into distal capillaries where they initiate

metastatic growth (Fidler, 1973; Liotta et al., 1976; Molnar

et al., 2001). Using diverse technological platforms, we and

others have indeed detected clusters of CTCs, ranging from

2–50 cancer cells, within the circulation of patients with metasta-

tic epithelial cancers (Cho et al., 2012; Fidler, 1973; Molnar et al.,

2001; Stott et al., 2010; Yu et al., 2013).

Studies of cancer metastasis have emphasized the concept of

‘‘seed versus soil’’ as a key determinant of metastatic propensity

(Fidler, 2003). This model matches the importance of mutated

genetic drivers within tumor cells conferring proliferative and

invasive properties, with that of the microenvironment of the

distant organ or ‘‘niche,’’ which may facilitate metastatic growth.

However, the physical characteristics of single CTCs and CTC

clusters may also contribute to metastatic propensity, especially

as they impact the ability of epithelial tumor cells to survive the

loss of cell adherence and shear forces in the blood stream,

i.e., different survival signals among the cancer cell ‘‘seeds’’

may be important. For instance, in amouse endogenous pancre-

atic cancer model, noncanonical Wnt signaling is elevated within

CTCs, where it appears to suppress anoikis (Yu et al., 2012),
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while in a subcutaneous tumor xenograft model, the admixture of

tumor and stromal cells within microemboli may contribute stro-

mal-derived survival signals (Duda et al., 2010). In a recent study

of human breast cancer, mesenchymal markers indicative of

EMT were expressed within the cancer cells comprising CTC

clusters (Yu et al., 2013). Taken together, both human andmouse

modeling studies point to the complexity of bloodborne metas-

tasis and the need to capture and characterize CTCs to better

understand this process.

CTCs have been detected in the majority of epithelial cancers,

where they represent cancer cells captured as they transit

through the bloodstream (Alix-Panabières and Pantel, 2013; Yu

et al., 2011). As such, they hold the key to understanding critical

pathways that mediate the bloodborne dissemination of cancer,

which may not be readily evident through analyses of bulk pri-

mary or metastatic tumor populations. Factors leading to the

generation of CTCs from a primary tumor are unknown, including

the fraction derived from cancer cells that have actively intrava-

sated into the bloodstream, versus those that are passively shed

as a result of compromised tumor vasculature. Although exceed-

ingly rare comparedwith normal blood cells, the number of CTCs

in the bloodstream far exceeds the number of metastatic lesions

in patients, indicating that the vast majority CTCs die in the

bloodstream, with only a minor fraction representing viable

metastatic precursors. Epithelial cells that have lost adhesion-

dependent survival signals rapidly undergo anoikis, a fate likely

to meet most CTCs in the bloodstream. It is in this context that

either mesenchymal transformation, stromal-derived factors, or

persistent interepithelial cell junctions may provide survival sig-

nals that attenuate this apoptotic outcome (Duda et al., 2010;

Mani et al., 2008; Robson et al., 2006; Yu et al., 2012). Dissecting

the contributions of these various mechanisms to human cancer

requires the ability to isolate individual CTCs from the blood-

stream and subject these to detailed molecular analyses.

Multiple technologies have been developed for CTC capture,

taking advantage of tumor-specific epitopes absent in normal

blood cells, variations in their physical properties such as size,

density, and electromechanical characteristics, or by applying

high throughput imaging to unpurified blood cell preparations

(for review, see Yu et al., 2011). The fact that CTCs are extremely

rare, even in patients with advanced metastatic cancers (esti-

mated at one CTC/billion normal blood cells), and that they

may be poised on the verge of apoptosis, has made their anal-

ysis contingent upon technological constraints. We have intro-

duced a series of microfluidic devices that have the advantage

of low-shear, yet high throughput, interrogation of unprocessed

whole blood, providing highly enriched and unfixed CTCs that

are suitable for detailed molecular analysis (Nagrath et al.,

2007; Ozkumur et al., 2013; Stott et al., 2010). Among these,

the herringbone (HBCTC-Chip) makes use of grooves within the

ceiling of the microfluidic chamber to generate turbulent micro-

fluidic flow, directing cells against antibody-coated walls of the

device, where CTCs are captured (Stott et al., 2010). This device,

whose highly efficient design enabled our initial detection of

large CTC clusters, requires on-chip cell lysis for nucleic acid

extraction and hence provides an enriched but heterogeneous

CTC population for analysis (Yu et al., 2012, 2013). In contrast,

our recently described negCTC-iChip achieves highly efficient
depletion of erythrocytes and leukocytes from blood specimens,

yielding untagged CTCs and small CTC clusters in solution,

where they can be micromanipulated for single-cell RNA

sequencing (Ozkumur et al., 2013). Here, we use both of these

devices, along with in vivo flow cytometry and next generation

RNA sequencing, to interrogate CTCs from both patients with

metastatic breast cancer and mouse tumor models. We find,

using mouse models, that CTC clusters are derived from oligo-

clonal clumps of primary tumor cells and constitute a rare but

very highly metastasis-competent subset of CTCs, compared

with single circulating breast cancer cells. RNA sequencing of

human breast CTC clusters identifies plakoglobin as a key

mediator of tumor cell clustering, which is expressed in a hetero-

geneous pattern within the primary tumor. Knockdown of plako-

globin expression in the mouse model suppresses CTC cluster

formation and reduces metastatic spread.

RESULTS

Endogenous CTC Clusters Have Increased Metastatic
Potential Compared to Single CTCs
To define the origin and functional properties of CTC clusters,

compared with single CTCs, we made use of mouse models,

where tumor cell composition, transit of CTCs through the blood-

stream, and metastatic deposits can be monitored and quanti-

fied. We first established a model to test the generation of

endogenous CTCs and metastases from a primary orthotopic

tumor xenograft. These experiments were designed both to

test the metastatic propensity of CTC clusters versus single

CTCs, as well as to determine whether CTC clusters originate

from an oligoclonal grouping of primary tumor cells or from the

clonal progeny of an individual tumor cell. MDA-MB-231-LM2

(LM2) cells, a lung-metastatic variant of MDA-MB-231 human

breast cancer cells (Minn et al., 2005), were engineered to ex-

press either green fluorescent protein (LM2-GFP) or mCherry

(LM2-mCherry), and a 1:1 mixture of these differentially tagged

cells was injected into the mammary fat pad of immunodeficient

(NSG) mice. As expected, overt primary breast tumors were

observed after 5 weeks and these retained an equal distribution

of LM2-GFP and LM2-mCherry tagged cells, as confirmed by

IHC staining (Figures S1A and S1B available online).We sampled

the blood of tumor-bearing animals for presence of single or

clustered CTCs using a terminal bleed and simultaneously har-

vested the lungs for analysis of metastatic deposits. In addition

to enumeration of CTCs, we reasoned that clonally-derived

CTC clusters would uniformly express either GFP or mCherry,

whereas aggregations of cells from the primary tumor would

be heterogeneous for the two markers (Figure 1A). We observed

a mean of 2,486 CTC events per mouse (n = 5 mice), of which a

mean of 65 (2.6%) were CTC clusters and 2,421 (97.4%) were

single CTCs (Figures 1B, 1C, and S2A). Virtually all (91%) CTC

clusters were dual positives for GFP and mCherry. A mean of

5.6 (9%) CTC clusters per mouse (with fewer than three cells

per cluster) were comprised of cells expressing only one of the

two markers, consistent with expected probabilities given a 1:1

mixture of GFP/mCherry expressing cells in the primary tumor

(Figures 1C and S2B). Thus, CTC clusters do not result from

the proliferation of a single tumor cell in the vasculature, instead
Cell 158, 1110–1122, August 28, 2014 ª2014 Elsevier Inc. 1111
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Figure 1. CTC Clusters Demonstrate Increased Metastatic Potential Compared to Single CTCs

(A) Schematic of the experiment. MDA-MB-231-LM2 (LM2) cells expressing GFP (LM2-GFP) or mCherry (LM2-mCherry) cells were mixed at 1:1 ratio and injected

in the right mammary gland of immunodeficient mice to generate one-color single CTCs and multicolor CTC clusters. Accordingly, one-color metastatic foci are

derived from a single CTC, while multicolor foci arise predominantly from a CTC cluster.

(B) Representative images of single CTCs (GFP- or mCherry-positive) and CTC clusters (GFP- and mCherry-positive) captured on the HBCTC-Chip (left). Lung

metastatic foci derived from a single CTC (GFP- ormCherry-positive) or a CTC cluster (GFP- andmCherry-positive) are shown (right). GFP (brown), mCherry (red).

Blood samples and lung specimens were isolated 5 weeks after primary tumor development. n = 5.

(C) Bar graphs showing the mean percentage of one-color versus multicolor CTC events captured by the HBCTC-Chip (left), the mean percentage of one-color

versus multicolor CTC clusters (middle), as well as the mean percentage of one-color versus multicolor lung foci (right). n = 5.

(D) Bar graph showing the normalized metastatic potential of single CTCs and CTC clusters. Error bars represent SEM. n = 5, *p = 0.031 by Student’s t test.

(E) Schematic of the experiment. LM2-GFP cells were injected in the right mammary gland while LM2-mCherry cells were injected in the left mammary gland of

immunodeficient mice to generate tumors that give rise to one-color single CTCs and CTC clusters, as well as rare multicolor CTC clusters (resulting from

aggregation events). Accordingly, one-color metastatic foci are derived from a single CTC or a CTC cluster, while multicolor foci derive from CTC aggregates.

(F) Representative images of single CTCs (GFP- or mCherry-positive) and CTC clusters (GFP- or mCherry-positive) captured on the HBCTC-Chip (left). Lung

metastatic foci derived from a single CTC (GFP- or mCherry-positive) or a CTC cluster (GFP- or mCherry-positive) are shown (right). GFP (brown), mCherry (red).

Blood samples and lung specimens were isolated 5 weeks after primary tumor development. n = 5.

(G) Bar graphs showing the mean percentage of one-color versus rare multicolor CTC events captured by the HBCTC-Chip (left), the mean percentage of

one-color versus multicolor CTC clusters (middle), as well as the mean percentage of one-color versus multicolor lung foci (right). n = 5.

See also Figures S1 and S2.
they appear to represent the aggregation of neighboring cells,

most likely within the primary tumor mass (see below).

Metastatic deposits in the lungs were analyzed for both num-

ber and composition using anti-GFP and anti-mCherry anti-

bodies, simultaneously with the CTC analyses (Figures 1B, 1C,

and S2A). Given the distribution of GFP and mCherry staining
1112 Cell 158, 1110–1122, August 28, 2014 ª2014 Elsevier Inc.
in CTC clusters, we reasoned that metastatic tumors derived

from a single CTC would be positive for a single marker, while

those derived from CTC clusters would stain for both GFP and

mCherry (Figures 1A and 1B). A mean of 323 lung foci were iden-

tified permouse (n = 5mice), of which 171 (53%)weremulticolor,

and therefore derived from CTC clusters, versus 152 (47%)



unicolor derivatives of single CTCs (Figures 1C and S2A).

Normalizing the number and distribution of lung metastases

with that of single CTCs and CTC clusters, we calculate that a

CTC cluster is �50 times more likely to give rise to a metastatic

deposit than a single CTC (Figure 1D). Thus, while CTC clusters

are much more rare than single CTCs in this orthotopic mouse

model of breast cancer, they contribute equally to themetastatic

burden in the lung.

To further validate (1) that oligoclonal CTC clusters arise from

the fragmenting of primary tumor cell clumps into the vasculature

and not from intravascular aggregation of single CTCs, and

(2) that oligoclonal lung metastases arise from CTC clusters

and not from the reseeding of a metastatic site by multiple

single CTCs, we undertook a second series of orthotopic mouse

xenograft experiments, injecting LM2-GFP cells into the right

mammary fat pad and LM2-mCherry cells in the left fat pad of

immunodeficient mice (Figure 1E). Five weeks after injection,

mice harbored two independent and differentially tagged tu-

mors, and we again simultaneously harvested the blood for

analysis of CTCs and the lungs for enumeration of metastatic de-

posits. As expected, single CTCs in the circulation demonstrated

equal contributions from the GFP and m-Cherry-tagged primary

tumors. However, unlike the previous multitagged single tumor

model, inmicewith two independent individually-tagged tumors,

the vast majority of CTC clusters (96%) were of a single color,

with equal contributions from GFP- or mCherry-positive primary

tumors (Figures 1F, 1G, and S2A). Thus, the vast majority of CTC

clusters are derived from individual primary tumors, excluding

intravascular aggregation of single CTCs as a significant source

of CTC clusters.

A very small fraction of CTC clusters observed in the dual

tumor-bearing mice were multicolor (4% of CTC clusters, corre-

sponding to 0.12% of total CTC events) (Figures 1G and S2A).

While extraordinarily rare, the presence of such CTC clusters

derived from two independent tumors may originate either

from the uncommon intravascular aggregation of single CTCs

or from a mixing of cancer cells within the two primary tumors,

due to the previously reported ‘‘tumor reseeding’’ phenomenon

(Kim et al., 2009) (Figure S1B). Consistent with the latter hypoth-

esis, we found that 3%–5% of cells within the GFP-tagged pri-

mary tumor were positive for mCherry and 3%–5%of cells within

themCherry-labeled tumorwere positive for GFP (Figure S1B). In

addition to rare multicolor CTC clusters, we observed a small

fraction (8%) of multicolor tumors in the lung (Figures 1G and

S2A). These metastatic lesions could result either from the rare

multicolor CTC clusters or from the reseeding of metastatic

lesions by multiple single CTCs.

We confirmed the findings derived from the two LM2 mouse

xenograft experiments with a second, mouse-derived breast

cancer cell line, 4T1 (Figures S2C and S2D). Consistent with

the LM2 results, a 1:1mixture of 4T1-GFP and 4T1-mCherry cells

within an orthotopic mammary tumor generated CTC clusters

that were overwhelmingly multicolored (90%), whereas two

separate primary 4T1 tumors labeled either with GFP or mCherry

produced CTC clusters that were of a single color (87%).

These observations further support that CTC clusters arise as

oligoclonal fragments derived from a single tumor (Figure S2C).

Normalizing the number and color distribution of 4T1-derived
lung metastases relative to the prevalence of single CTCs and

CTC clusters, we calculated a 23-fold increase in metastatic

competence for CTC clusters versus single CTCs (Figure S2D),

an estimate that is comparable to the 50-fold increase derived

from LM2 cell experiments. Taken together, these two mouse

tumor models indicate that CTC clusters constitute only 2%–

5% of all CTC events detected in the circulation, but their

dramatically elevated metastatic potential (23–50 times that of

single CTCs) contributes to approximately half of all metastatic

lesions in orthotopic breast cancer models.

Clustered Cancer Cells Are More Resistant than Single
Cells to Apoptosis following Dissemination to the Lung
We generated an in vitro assay that allowed us to obtain a sus-

pension of either single cells or clustered cells (2–30 cells) from

cultures of GFP-Luciferase-tagged LM2 cells (see Extended

Experimental Procedures). We injected 200,000 LM2 cells pre-

pared either as single cells (LM2-SC) or as clusters (LM2-CL)

into the tail vein of immunodeficient mice and subjected them

to serial luciferase-based imaging (Figures 2A and 2B). Both

LM2-SC and LM2-CL cells reached the lungs with equal effi-

ciency (day 0), as shown by both bioluminescence and GFP

immunohistochemical (IHC) staining (Figure 2B). However, over

the following days, the LM2-SC lung signal progressively dimin-

ished as the cells underwent massive apoptosis, demonstrated

by staining for cleaved caspase 3 (Figure 2C). In contrast, the

LM2-CL lung signal persisted following intravascular inoculation,

with cells showing resistance to apoptosis and tumors expanding

more rapidly (Figures 2B–2D). Lung tumors eventually grew in

mice subjected to tail vein injection with either of the two LM2

derivatives, but injection of clustered cells resulted in reduced

overall survival, with 12.7 weeks for LM2-CL versus 15.7 weeks

for LM2-SC (p < 0.016) (Figure 2E). We confirmed the differential

rate of apoptosis and metastatic growth in the lung for single

versus clustered cancer cells using tail vein injection of two addi-

tional breast cancer cell lines, BT474 and4T1 (Figures S3A–S3D).

Calculation of CTC Clusters and Single CTC Circulatory
Clearance Rate Using In Vivo Flow Cytometry
Clusters of tumor cellsmay exhibit considerable flexibility as they

navigate through narrow channels, and capillary beds them-

selves may have uneven vessel diameters or bypass tracts that

allow transit of large multicellular structures. However overall,

CTC clusters are more likely than single CTCs to be trapped in

small capillaries of the lung and distal organs. Thus, the low

steady-state level of CTC clusters in the circulation may reflect

a considerably higher generation rate if their clearance rate is

very high. To test if CTC clusters indeed have a faster clearance

rate from the bloodstream than single CTCs, we used in vivo flow

cytometry (IVFC) to monitor LM2-SC and LM2-CL cells labeled

with the lipophilic carbocyanine membrane dye DiD, following

tail vein injection in immunodeficient mice (Figure 3A). DiD was

selected to achieve optimal detection of CTCs with our IVFC set-

tings. Circulating DiD-labeled cells were detected in real time

within the ear blood vessels for a total of 55 min in each mouse.

Injected LM2-CL cells were cleared at least three times more

rapidly than LM2-SC (half-life: 6–10 min for LM2-CL versus 25–

30 min for LM2-SC) (Figure 3B). Together, these observations
Cell 158, 1110–1122, August 28, 2014 ª2014 Elsevier Inc. 1113



Figure 2. CTC Clusters Are More Resistant to Apoptosis at Distal Metastatic Sites

(A) Schematic showing MDA-MB-231-LM2-GFP-Luciferase (LM2) cells prepared as single cells (LM2-SC) or as clusters (LM2-CL) prior to injection into the tail

vein of immunodeficient mice. Cells (2 3 105) were injected as LM-SC or LM2-CL per mouse.

(B) Representative bioluminescence images of mice at 0, 6, and 12 days after tail vein injection with LM2-SC or LM2-CL cells (left). n = 4. Representative images of

GFP-stained sections ofmouse lungs after injectionwith LM2-SC or LM2-CL cells (right). The bar graph shows themean percentage of GFP-positive cells in lungs

from LM2-SC- or LM2-CL-injected mice. Error bars represent SEM. n = 4; NS, not significant, *p = 0.03 by Student’s t test.

(C) Representative images of cleaved caspase 3-stained sections of mouse lungs 24 hr after injection with LM2-SC or LM2-CL cells. The bar graph shows the

mean percentage of cleaved caspase 3-positive cells in lungs from LM2-SC- or LM2-CL-injected mice. Error bars represent SEM. n = 4; *p < 0.02 by Student’s

t test.

(D) Lung metastasis growth curve from mice injected with LM2-SC or LM-CL. Error bars represent SEM. n = 4; p < 0.03 by Student’s t test.

(E) Kaplan-Meier survival plot showing survival rates for mice injected with LM2-SC or LM2-CL. n = 4; p < 0.016 by log rank test.

See also Figure S3.
define a circulating time for CTCs in the bloodstream: the shorter

circulation half-life of CTC clusters is consistent with their more

rapid entrapment within capillaries of distal organs, where they

may initiate metastatic growth (Liotta et al., 1976).

The Presence of CTC Clusters in Patients with Breast
and Prostate Cancer Correlates with Poor Prognosis
Having characterized the origin and metastatic potential of CTC

clusters inmousemodels, we undertook to study their properties

in patients with cancer. To first test the clinical significance of

CTC clusters in the blood of patients with progressingmetastatic

breast cancer, we measured their presence in blood specimens

from a total of 79 patients, drawn at multiple time points over a

period of 19months. Patients were recruited to an IRB-approved

study at the Massachusetts General Hospital Cancer Center,

including women with estrogen receptor-positive (n = 49),
1114 Cell 158, 1110–1122, August 28, 2014 ª2014 Elsevier Inc.
HER2-positive (n = 13), triple negative (n = 17) subtypes of breast

cancer (total: 265 data points). For these experiments, we made

use of the HBCTC-Chip, which is highly efficient in capturing both

large and small CTC clusters (Stott et al., 2010). We coated the

microfluidic chamber with a combination of antibodies, targeting

the epithelial cell adhesionmolecule (EpCAM), aswell as the line-

agemarkers epithelial growth factor receptor (EGFR) and human

epithelial growth factor receptor 2 (HER2/ErbB2), which together

efficiently capture both epithelial andmesenchymal breast CTCs

(Yu et al., 2013). After processing 3 ml of whole blood from

patients with breast cancer, the CTCs captured on the chip

were stained with antibodies against wide spectrum cytokeratin

(CK) to identify CTCs and against the leukocyte marker CD45 to

assess white blood cell (WBC) contamination (Figure 4A). CTCs

were identified in 54 out of 79 patients (68%). Among patients

with CTCs, 3 (5.6%) had CTC clusters evident across more
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Figure 3. CTC Clusters Demonstrate a Faster Clearance Rate from the Bloodstream

(A) Schematic showing the experimental setup formeasuring the clearance time of single CTCs andCTC clusters. Briefly, DiD-stained LM2 cells were prepared as

LM2-SC or LM2-CL and injected into the tail vein of immunodeficient mice. In vivo flow cytometry was applied to the ear blood vessels to detect single CTCs and

CTC clusters over a 55 min period after injection. Graphs show representative fluorescence peaks corresponding to the transit of a single CTC or CTC cluster

through the ear blood vessel.

(B) Graph showing single CTCs and CTC clusters clearance curves. Error bars represent SEM. n = 5 for single CTCs and n = 4 for CTC clusters, *p < 0.01 by

two-way ANOVA.
than three time points, while 16 (29.6%) had CTC clusters during

one to three time points and 35 (64.8%) had no detectable clus-

ters (Figure 4B). We correlated the presence of CTC clusters with

progression-free survival (PFS) for all patients where such data

were available (n = 30) (Table S1). Of note, PFS was calculated

as time from initiation of therapy to discontinuation by the treat-

ing clinician (blinded to the CTC results), and PFS data analysis

was performed only when clinical measurements bracketed the

CTCs isolation time frame. Patients with CTC clusters across

more than three time points had a mean progression-free sur-

vival time of 32.6 days, compared with 134.8 days for patients

where CTC clusters were found during one to three time points

and 160.5 days for patients with single CTCs only (p = 0.0002)

(Figure 4C; Table S1). Thus, even among patients with advanced

metastatic breast cancer, the continuous presence of CTC clus-

ters is associated with an adverse clinical outcome.

Given the relatively short time to progression in patients with

advanced breast cancer, we sought to test the correlation be-

tween CTC clusters and adverse prognosis in patients with a

longer clinical course. We measured the number of CTCs in a

total of 64 patients with prostate cancer using blood specimens

drawn at multiple time points over a period of 53 months (total:

202 data points). CTCs in prostate cancer patients were visual-

ized by staining with a cocktail of antibodies against prostate-

specific antigen (PSA) and prostate-specific membrane antigen

(PSMA); anti-CD45 staining was used to exclude white blood

cells (Miyamoto et al., 2012). CTCs were detected in 48/64

patients (75%). CTC clusters were present in 6/48 samples

(12.5%) (Figures 4D and 4E). In this cohort, the presence of

CTC clusters during at least one time point strongly correlated

with a dramatically shorter overall survival time (mean survival

time was 115.8 days for patients with CTC clusters versus

930.1 days for patients with single CTCs; p = 0.00001) (Figure 4F;

Table S1). While further studies will be required to ascertain the

clinical utility of CTC clusters versus single CTCs as prognostic

determinants in either breast or prostate cancer, these initial
results point to the potential relevance of CTC clusters in the

progression of human cancer.

Single-Cell Resolution RNASequencing ofMatchedCTC
Clusters and Single CTCs Purified from Patients with
Breast Cancer
The ability to capture both single CTCs and CTC clusters from

the same blood specimen made it possible to undertake sin-

gle-cell resolution RNA sequencing, searching for differences

in expression profiles matched to individual patients. For these

experiments, we applied the negCTC-iChip, which enables isola-

tion and single-cell manipulation of untagged CTCs, together

with an optimized protocol for next generation RNA sequencing

from minute amounts of template (Ozkumur et al., 2013; Tang

et al., 2010). Blood specimens from ten patients with metastatic

breast cancer were subjected to microfluidic depletion of RBCs

and CD45- and CD66b-positive WBCs, leaving untagged single

CTCs and small CTC clusters in the final product (Ozkumur et al.,

2013). Unfixed tumor cells were stained for cell surface expres-

sion of EpCAM, HER2, and the mesenchymal marker CDH11

(Alexa488-conjugated), and counterstained with antibodies

against CD45, CD14, and CD16 to identify contaminating leuko-

cytes (TexasRed-conjugated) (Figure 5A). Individual CTC clus-

ters (median of three cells per cluster) were isolated using a

micromanipulator and compared with numerically matched

pools of single CTCs from the same specimen, followed by

next generation RNA sequencing (SOLiD 5500XL) (Figure 5A).

We derived normalized expression profiles for a total of 29 sam-

ples (15 pools of single CTCs and 14 CTC clusters) isolated from

ten breast cancer patients.

Unsupervised hierarchical clustering of RNA sequencing data

showed no obvious distinctions at the global gene expression

level between single CTCs and CTC clusters, with both of these

clustering closely by patient of origin (Figure 5B). Consistent with

the microscopic appearance of CTC clusters as primarily tumor

cell-derived, we did not identify RNA signatures of other cell
Cell 158, 1110–1122, August 28, 2014 ª2014 Elsevier Inc. 1115
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Figure 4. The Presence of CTC Clusters in

Patients with Cancer Correlates with Poor

Prognosis

(A) Representative images of a CTC cluster, a

single CTC, and a white blood cell (WBC) isolated

from a breast cancer patient using the HBCTC-

Chip and stained with wide-spectrum cytokeratin

(CK, red), CD45 (green), and DAPI (nuclei, blue).

(B) A total of 79 breast cancer patients (corre-

sponding to 265 time points) were analyzed for the

presence of CTCs, with 54 of the 79 patients

scoring positive for CTCs. The bar graph shows

the percentage of CTC-positive patients having

CTC clusters during more than three time points

(red), CTC clusters across one to three time points

(blue) or single CTCs only (black).

(C) Kaplan-Meier progression-free survival plot

showing progression rates for breast cancer pa-

tients having CTC clusters during more than three

time points (red), CTC clusters across one to three

time points (blue) or single CTCs only (black). The

meanprogression-free survival time for eachgroup

is given in parentheses. p = 0.0002 by log rank test.

(D) Representative images of a CTC cluster, a sin-

gle CTC and awhite blood cell (WBC) isolated from

a prostate cancer patient using the HBCTC-Chip

and stained with prostate-specific antigen (PSA,

red), prostate-specific membrane antigen (PSMA,

yellow), CD45 (green), and DAPI (nuclei, blue).

(E) A total of 64 prostate cancer patients (corre-

sponding to 202 time points) were analyzed for the

presence of CTCs, with 48 of the 64 patients

scoring positive for CTCs. The bar graph shows

the percentage of CTC-positive patients having

CTC clusters during at least one time point (red) or

single CTCs only (black).

(F) Kaplan-Meier overall survival plot showing progression rates for prostate cancer patients having CTC clusters during at least one time point (red) or single

CTCs only (black). The mean overall survival time for each group is given in parentheses. p = 0.0001 by log rank test.

See also Table S1.
types, including T cells, B cells, dendritic cells, natural killer cells,

hematopoietic stem cells, macrophages/monocytes, granulo-

cytes, endothelial cells, or fibroblasts (Figure S4). Markers for

platelets were present in both single CTCs and CTC clusters,

consistent with their known adherence to cancer cells in the cir-

culation. For each patient, we compared gene expression data

of CTC clusters versus single-CTCs, generating a list of 31

CTC-cluster-associated genes shared across different patients

(q < 0.01, log2FC > 1, in more than 70% of all intrapatient com-

parisons) (Figures 5C and 5D; Table S2). To identify potential

drivers of metastasis among CTC-cluster-enriched genes, we

tested for correlation between their overexpression in primary

tumor specimens and clinical outcomes in a cohort of 1,956

patients with ER-positive, HER2-positive, and triple-negative

breast cancers. Among the candidate CTC cluster genes, plako-

globin was unique in its high level of overexpression in CTC clus-

ters compared with single CTCs (219-fold) and the fact that its

expression in primary tumors associated with a significantly

reduced distant metastasis-free survival (p = 0.008) (Figures

5D, 6A, and S5). We therefore selected plakoglobin as a CTC-

cluster-enriched transcript for more detailed analysis.

Plakoglobin (JUP) is a member of the Armadillo family of

proteins and an important component of desmosomes and
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adherence junctions (Aktary and Pasdar, 2012), which has

been reported to have both positive and negative roles in diverse

malignancies (Hakimelahi et al., 2000; Kolligs et al., 2000; Shiina

et al., 2005). Along with upregulation of plakoglobin RNA, multi-

ple components of both desmosomes and adherence junctions

were significantly enriched in CTC clusters (Figures S6A–S6E).

Consistent with the RNA sequencing results, we confirmed pla-

koglobin protein expression in multiple CTC clusters, but not in

matched single CTCs from a breast cancer patient (Figure 5E).

While CTC clusters express epithelial cell junction components,

including plakoglobin and E-cadherin, we have previously shown

that some mesenchymal markers may also be upregulated in

such clusters, an effect that may be associated with adherence

in the bloodstream with TGFb-rich platelets (Labelle et al., 2011;

Yu et al., 2013). Matched primary and metastatic tumors bi-

opsies were available from this patient: plakoglobin expression

was remarkably heterogeneous in both the primary andmetasta-

tic breast tumors, with foci of high expression interspersed with

regions without detectable protein (Figure 6B). Thus, while pla-

koglobin is a key component of intercellular junctions, its variable

expression levels within primary tumors raises the possibility that

it might demarcate tightly adherent groups of cells that may

constitute precursors to CTC clusters.



A B

C

D E

Figure 5. RNA Sequencing of CTC Clusters and Single CTCs Reveals a CTC-Clusters-Associated Gene Set

(A) Illustration of the experimental setup (top). Representative images of a labeled white blood cell (WBC, red), a single CTC and aCTC cluster (green) (bottom) are

shown.

(B) Heatmap showing unsupervised hierarchical clustering of 15 single CTCs pools and matched 14 CTC clusters isolated from ten breast cancer patients

(SC, single CTCs; CL, CTC cluster).

(C) Heatmap showing the top 31 transcripts upregulated in CTC clusters. n = 15 for single CTCs and n = 14 for CTC clusters; q < 0.01, log2 fold change (FC) >1 in

more than 70% intrapatient comparisons (SC, single CTCs; CL, CTC cluster).

(D) Graph showing log2 fold increase in plakoglobin (JUP) for each comparison betweenmatched CTC clusters versus single CTCs. The threshold line represents

a q < 0.01 and log2 fold increase >1.

(E) Representative images of a single CTC and a CTC cluster captured on the HBCTC-Chip from a breast cancer patient and stained with wide-spectrum

cytokeratin (CK, red), plakoglobin (green), and DAPI (nuclei, blue).

See also Figure S4 and Table S2.
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Figure 6. Plakoglobin Expression Correlates with Decreased Distant Metastasis-Free Survival

(A) Kaplan-Meier distant metastasis-free survival plot showing progression rates for patients whose primary tumor expressed either ‘‘low plakoglobin’’ or ‘‘high

plakoglobin’’ transcript. n = 1,956; p = 0.008 by log rank test.

(B) Representative images of plakoglobin (red) and CD31 (blood vessels, brown)-stained tissue sections of matched primary tumor (left) and bone metastasis

(right) from a hormone receptor-positive breast cancer patient with high CTC cluster counts. Arrows indicate blood vessels in ‘‘high plakoglobin’’ regions. Nuclei

are stained with hematoxylin. The bar graph (middle) shows plakoglobin reads per million in matched single CTCs and CTC clusters isolated from the same

patient. Error bars represent SEM. n = 3; *p = 0.031.

See also Figures S5 and S6.
Plakoglobin Is Required for CTC Cluster Formation and
Contributes to Breast Cancer Metastasis
To define the functional consequences of plakoglobin expres-

sion in the context of CTC clusters, we first applied an in vitro

assay (Vybrant), which utilizes a fluorogenic dye to measure

cell-to-cell adhesion under a variety of culture conditions (El

Khoury et al., 1996). We compared seven breast cancer cell lines

(MDA-MB-231-LM2, BT474, MCF7, T47D, BT549, BT20, and

ZR-75-1) with two nontransformed human mammary epithelial

cells (HMEC and MCF10A), following stable lentiviral-mediated

plakoglobin knockdown. shRNA-mediated plakoglobin sup-

pression triggered disruption of cell-cell contacts in 6/7 breast

cancer lines grown as a monolayer, while it had no detectable

effect in either of the two nontransformed breast epithelial cells

(p < 0.04) (Figures 7A, S7A, and S7B). Thus, breast cancer cells

may be more dependent on plakoglobin-mediated cell junctions

than normal epithelial cells, which may benefit from additional or

alternative pathways in forming intercellular connections (Alford

and Taylor-Papadimitriou, 1996; Cavallaro and Christofori,

2004).

To extend these observations in vivo, we introduced either

plakoglobin shRNAs or nontarget controls into GFP-Lucif-

erase-tagged LM2 and BT474 cells and prepared these as single

cells (SC) or clusters (CL) for tail vein injection into immunosup-

pressed mice (Figure S7C). Consistent with our previous results,

both LM2 and BT474 cells expressing control shRNAs showed

dramatically increased persistence in the lung when prepared

under CL versus SC conditions. In contrast, despite CL condi-

tions, plakoglobin knockdown in both LM2 and BT474 cells

dissociated clusters into single cells, consistent with the require-

ment for plakoglobin for intercellular adhesion in these cells.

Following plakoglobin knockdown, tail vein inoculation of CL

and SC preparations of both LM2 and BT474 were comparable

in producing a reduced number of lung metastases (Figures 7B
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and S7C). Thus, plakoglobin knockdown abrogates intercellular

interactions required to generate clustered cancer cells, thereby

reducing their potential to produce lung foci after direct intravas-

cular injection.

Finally, we generated orthotopic xenografts, injecting LM2-

GFP-Luciferase cells expressing either control or plakoglobin

shRNAs into the mammary fat pad of immunodeficient mice

and measuring tumor growth as well as tumor-derived CTCs.

Plakoglobin knockdown did not alter the primary tumor growth

rate, measured for up to 30 days (Figures 7C and S7D), nor did

it affect the total number of single CTCs derived from the primary

tumor (Figure 7D). Remarkably, the number of tumor-derived

CTC clusters was significantly reduced in mice bearing LM2 pla-

koglobin shRNA-expressing tumors compared to control mice

(Figure 7D). In parallel, bioluminescence imaging of mouse lungs

demonstrated a striking 80% reduction in lung nodules for mice

bearing plakoglobin-suppressed primary tumors (Figure 7E).

Together, our data suggest a model whereby plakoglobin-ex-

pressing regions within a primary tumor produce aggregated

tumor cells, i.e., CTC clusters, that are shed into the blood-

stream, where they demonstrate rapid clearing at distant sites

and enhanced metastatic potential (Figure 7F). This mechanism

of metastatic spread and the possibility that CTC clusters may

be targeted therapeutically through disruption of cell-cell junc-

tions provide an opportunity for strategies to reduce the meta-

static spread of breast cancer.

DISCUSSION

By applying microfluidic CTC isolation technologies to both

patients with breast cancer andmousemodels, we have charac-

terized CTC clusters, a striking but poorly understood feature

of bloodborne metastasis. CTC clusters have been observed

in patients with cancers of different origin and using multiple
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Figure 7. Plakoglobin Is Required for CTC Cluster Formation and Lung Metastasis

(A) Bar graph showing the relative cell-to-cell adhesion in a panel of mammary epithelial cells and breast cancer cell lines grown in the presence or absence of

plakoglobin. Error bars represent SEM. n = 5; *p < 0.04.

(B) Lung metastasis growth curves from mice injected with LM2-GFP-Luciferase (left) or BT474-GFP-Luciferase (right) cells expressing control or plakoglobin

shRNAs and prepared as single cells (SC) or clusters (CL). Error bars represent SEM. n = 4; *p < 0.05, **p < 0.04 by Student’s t test.

(C) LM2-GFP-Luciferase tumor growth curves in the presence or absence of plakoglobin. n = 4; NS, not significant.

(D) Bar graphs showing the normalized number of CTC clusters (left) and single CTCs (right) per ml of blood. Blood samples were isolated 4 weeks after primary

tumor development and processed with the HBCTC-Chip. Error bars represent SEM. n = 4; *p < 0.05 by Student’s t test.

(E) Bar graph showing normalized lung photon counts from mice bearing a LM2-GFP-Luciferase control or plakoglobin knockdown primary tumor for 4 weeks.

Error bars represent SEM. n = 4; *p < 0.045 by Student’s t test.

(F) Schematic showing that ‘‘high plakoglobin’’ regions in the primary tumor are likely to generate CTC clusters with increased metastatic potential.

See also Figure S7.
technologies (Cho et al., 2012; Fidler, 1973; Liotta et al., 1976;

Molnar et al., 2001; Stott et al., 2010; Yu et al., 2013). While

most clusters are relatively small, some comprise dozens of tu-

mor cells, raising the question of how they navigate through
normal capillaries. Our in vivo flow cytometry studies indicate

that clusters are more rapidly cleared from the circulation than

single CTCs. Nonetheless, both the structural deformability of

the aggregated cells within these clusters and the presence of
Cell 158, 1110–1122, August 28, 2014 ª2014 Elsevier Inc. 1119



vascular shunts within the circulationmay allow a subset of these

to circulate. The rapid clearance of clusters within distal tissues,

together with their potentially increased cellular viability may un-

derlie their dramatically enhanced metastatic potential. The

increased metastatic propensity of CTC clusters in reconstituted

mouse models, together with the adverse prognosis of breast

and prostate cancer patients with abundant CTC clusters, sup-

port an important role for these cellular aggregates in the blood-

borne spread of cancer.

Based on cellular tagging and mixing studies in the mouse,

almost all CTC clusters appear to be of oligoclonal origin, rather

than being derived from the progeny of a single migratory cell.

Our studies exclude intravascular aggregation of CTCs as a sig-

nificant cause for CTC clusters, demonstrating instead that they

originate from a single tumor.We cannot determine whether their

entry into the vascular space results from ‘‘grouped migration,’’

an active invasive process that has been described for epithelial

cell masses (Friedl and Gilmour, 2009), or passive shedding into

compromised tumor vasculature. Interestingly, the high expres-

sion of plakoglobin within foci of cells within the primary tumor

raises the possibility that these demarcate the origin of clusters

that ultimately enter the circulation. In mouse reconstitution

models, plakoglobin knockdown in cells that constitute the pri-

mary tumor does not suppress tumorigenesis itself, but it abro-

gates the generation of CTC clusters in the circulation and

greatly reduces the number of metastatic deposits in the lung.

The identification of specific transcripts that enhance the met-

astatic potential of tumor cells may enable therapeutic strategies

to suppress the bloodborne spread of cancer, a critical although

challenging goal. To date, candidate metastasis genes have

been derived primarily frommouse tumor models. Some, like in-

ducers of EMT, alter the migratory properties of breast cancer

epithelial cells and confer stem-like properties (Mani et al.,

2008). In human breast cancer CTCs, we recently documented

marked enrichment for mesenchymal transcripts in CTCs, using

quantitative RNA-in situ hybridization (Yu et al., 2013). In addition

to generalizedmigratory properties associated with EMT, tissue-

specific tropism studies in the mouse have identified subsets of

genes involved in breast cancer metastases to lung (e.g., Epire-

gulin, CXCL1, SPARC, andMMP2) (Minn et al., 2005), brain (e.g.,

COX2, HBEGF, and ST6GALNAC5) (Bos et al., 2009), and bone

(mainly driven by Src activation) (Zhang et al., 2009). A recent

study interrogating candidate genes in breast CTCs derived

from a patient with breast cancer has suggested that coexpres-

sion of EpCAM, CD44, CD47, and MET identifies a subset with

increased metastatic capacity (Baccelli et al., 2013). While these

candidate metastasis genes were not upregulated in CTC clus-

ters compared with single CTCs, our study was not designed

to compare CTCs with their matched primary tumors. Finally,

we note that our RNA expression studies focused on clusters

comprised of tumor cells, because the negCTC-iChip favors

isolation of small CTC clusters. We therefore cannot exclude

additional contributions from nonmalignant cells within larger mi-

croemboli (Duda et al., 2010; Labelle et al., 2011; Stott et al.,

2010), including potential stromal-derived tropism signals

(Zhang et al., 2013).

Our study identifiesmediators ofmetastasis by comparing two

distinct populations of circulating tumor cells, one with very high
1120 Cell 158, 1110–1122, August 28, 2014 ª2014 Elsevier Inc.
metastatic potential (CTC clusters) compared with the other (sin-

gle CTCs). The development of advancedmicrofluidic CTC isola-

tion technology (Ozkumur et al., 2013) enabled us to undertake

such a detailed study of human breast cancer cells as they tran-

siently circulate in the bloodstream of patients with metastatic

disease. Single-cell resolution RNA sequencing demonstrated

a very high level of concordance in expression patterns between

matched CTC clusters and single CTCs from individual breast

cancer patients. We identified only a small number of candidate

genes with significantly divergent expression (Table S2),

including transcriptional regulators (XBP1), signaling molecules

(AGR2 and HER3), and plakoglobin. While we focused this study

on the functional characterization of plakoglobin due to the clin-

ical association between high plakoglobin expression and

adverse outcome in patients with breast cancer, additional

CTC-cluster-associated genes may be involved in their genera-

tion and their metastatic potential. The striking consequences of

plakoglobin knockdown, suppressing both CTC cluster genera-

tion and metastatic tumor formation in mouse models, point to

this gene product being amajor determinant of tumor dissemina-

tion. Plakoglobin contributes to both adherens junctions and

desmosomes: in adherens junctions, the C-terminal intracellular

domain of E-cadherin interacts in a mutually exclusive manner

with either b-catenin or plakoglobin, which in turn associates

with the actin-binding protein a-catenin (Harris and Tepass,

2010). At desmosomes, the intracellular domains of desmocolin

and desmoglein interact with plakophilin and plakoglobin, which

in turn binds the intermediate filament binding protein desmopla-

kin (Garrod and Chidgey, 2008). Thus, plakoglobin is a critical

constituent of both adherens junctions and desmosomes, a

role that may underlie its unique contribution to cell-to-cell adhe-

sion in tumor cells. While plakoglobin has been implicated as

both oncogene and tumor suppressor in different contexts (Ha-

kimelahi et al., 2000; Kolligs et al., 2000; Shiina et al., 2005), it is

neither in the model proposed here, functioning instead as an

intercellular tether that confers added metastatic potential to

tumor cells as they break off into the circulation. Interestingly,

plakoglobin knockdown has far less impact on intercellular con-

nections of nontransformed breast epithelial cells, which may

benefit from additional adhesion mechanisms. This differential

effect may offer an opportunity for therapeutic intervention.

In summary, our studies of CTCs in both breast and prostate

cancer patients and mouse models point to CTC clusters as crit-

ical mediators of cancer metastasis. These coexist with single

migratory CTCs, making a contribution to the metastatic burden

that far exceeds their comparatively small numbers in the

circulation. The ability of tumor cell aggregates to detach from

a primary tumor and maintain their cohesion as they survive in

the bloodstream may identify a novel and potentially targetable

step in the bloodborne dissemination of cancer.

EXPERIMENTAL PROCEDURES

CTC Capture and Identification

Blood specimens for CTC analysis were obtained after informed patient con-

sent, per institutional review board (IRB) protocol (05-300), at the Massachu-

setts General Hospital. A maximum of 20 ml of blood was drawn in EDTA va-

cutainers. Within 4 hr from blood draw,�3 ml of blood was processed through

the HBCTC-Chip or 6–12ml of blood was processed through the negCTC-iChip.



For mouse studies, blood was retrieved via cardiac puncture and �1 ml of

blood was processed through the HBCTC-Chip.
HBCTC-Chips were manufactured on site at the Massachusetts General

Hospital Cancer Center/BioMEMS Resource Facility. For patient samples

and mouse xenografts, chips were functionalized as previously described

(Yu et al., 2013) with a cocktail of 10 mg/ml each of biotinylated antibodies

against EpCAM (R&D Systems), EGFR (Cetuximab, Lilly), and HER2 (R&D Sys-

tems). For 4T1 mouse mammary tumor cells, chips were functionalized with a

cocktail of antibodies against mouse EpCAM (BioLegend) and EGFR (Cetuxi-

mab, Lilly). Samples from patients with prostate cancer were processed as

described (Miyamoto et al., 2012). negCTC-iChips were designed and fabri-

cated as previously described (Ozkumur et al., 2013) (see Extended Experi-

mental Procedures).

Tumorigenesis Assays

All mouse experiments were carried out in compliance with institutional guide-

lines. For tail vein experiments, NOD SCID Gamma (NSG) mice (Jackson Labs)

were injected with 23 105 LM2 cells, 43 105 BT474 cells, or 23 105 4T1 cells

and monitored with IVIS Lumina II (Caliper LifeSciences). For CTC clusters

metastatic potential assessment, 2 3 106 LM2-GFP (or 4T1-GFP) and 2 3

106 LM2-mCherry (or 4T1-mCherry) cells were prepared separately or mixed

1:1, suspended in 100 ml of 50% Basement Membrane Matix Phenol Red-

free (BD Biosciences) in PBS and injected orthotopically in NSG mice. Blood

draw for CTCs enumeration was performed 5weeks after tumor onset. For pla-

koglobin knockdown experiments, 1 3 106 LM2-CTRL or LM2-Plakoglobin

shRNA cells were suspended in 100 ml of 50% Basement Membrane Matrix

Phenol Red-free in PBS and injected orthotopically in NSG mice. Blood

draw for CTCs enumeration and lung metastasis analysis were performed

4 weeks after tumor onset.

Analysis of RNA Sequencing Data

Determination of reads-per-million (rpm): color space readswere aligned using

tophat and bowtie1 with the no-novel-juncs argument set with human genome

version hg19 and transcriptome defined by the hg19 knownGene table from

http://genome.ucsc.edu. Reads that did not align or aligned to multiple loca-

tions in the genome were discarded. The hg19 table knownToLocusLink

from http://genome.ucsc.edu was used to map, if possible, each aligned

read to the gene whose exons the read had aligned to. The reads count

for each gene was the number of reads that were so mapped to that gene.

This count was divided by the total number of reads that were mapped to

any gene and multiplied by one million to form the reads-per-million (rpm)

count. We used rpm rather than rpkm because we noted a 30 bias in the align-

ments. Clustering algorithms are described in the Extended Experimental

Procedures.

ACCESSION NUMBERS

The Gene Expression Omnibus accession number for the sequencing data

reported in this paper is GSE51827.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, and two tables and can be foundwith this article online at http://dx.doi.

org/10.1016/j.cell.2014.07.013.
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Molnar, B., Ladanyi, A., Tanko, L., Sréter, L., and Tulassay, Z. (2001). Circu-

lating tumor cell clusters in the peripheral blood of colorectal cancer patients.

Clin. Cancer Res. 7, 4080–4085.

Nagrath, S., Sequist, L.V., Maheswaran, S., Bell, D.W., Irimia, D., Ulkus, L.,

Smith, M.R., Kwak, E.L., Digumarthy, S., Muzikansky, A., et al. (2007). Isolation

of rare circulating tumour cells in cancer patients by microchip technology.

Nature 450, 1235–1239.
1122 Cell 158, 1110–1122, August 28, 2014 ª2014 Elsevier Inc.
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