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Let k be the reproducing kernel for a Hilbert spaceHðkÞ of analytic functions on
Bd , the open unit ball in C

d , d51. k is called a complete NP kernel if k0 � 1 and if
1� 1=klðzÞ is positive definite on Bd � Bd . Let D be a separable Hilbert space, and

consider HðkÞ �D ffi Hðk;DÞ, and think of it as a space of D-valued HðkÞ-
functions. A theorem of McCullough and Trent (J. Funct. Anal. 178 (2000), 226–249)

partially extends the Beurling–Lax–Halmos theorem for the invariant subspaces of

the Hardy space H2ðDÞ. They show that if k is a complete NP kernel and if D is a

separable Hilbert space, then for any scalar multiplier invariant subspace M of

Hðk;DÞ there exists an auxiliary Hilbert space E and a multiplication operator

F :Hðk;EÞ ! Hðk;DÞ such that F is a partial isometry and M ¼ FHðk;EÞ. Such
multiplication operators are called inner multiplication operators and they satisfy

FF* ¼ the orthogonal projection ontoM. In this paper, we shall show that for many
interesting complete NP kernels the analogy with the Beurling–Lax–Halmos theorem

can be strengthened. We show that for almost every z 2 @Bd the nontangential limit

fðzÞ of the multiplier f:Bd ! BðE;DÞ associated with an inner multiplication
operator F is a partial isometry and that rankfðzÞ is equal to a constant almost
everywhere. The result applies to certain weighted Dirichlet spaces and to the space

H2
d , which is determined by the kernel klðzÞ ¼ 1

1�hz;lid
; l; z 2 Bd . In particular, our

result implies that the curvature invariant of Arveson (Proc. Natl. Acad. Sci. USA 96

(1999), 11,096–11,099) of a pure contractive Hilbert module of finite rank is an

integer. This answers a question of W. Arveson (Proc. Natl Acad. Sci. USA 96 (1999),

11096–11099). # 2002 Elsevier Science (USA)
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1. INTRODUCTION

For a positive integer d we denote the unit ball in C
d by

Bd ¼ fl 2 C
d : jlj51g. If H is a Hilbert space of analytic functions on Bd

such that for each l 2 Bd the point evaluation l/ f ðlÞ is a continuous
linear functional onH, thenH has a reproducing kernel k; that is, for each
l 2 Bd there is a kl 2 H such that f ðlÞ ¼ h f ; kli for each f 2 H. As a
function of l and z in Bd , klðzÞ is a positive definite function which is
analytic in z and anti-analytic in l. It is well known that k determines the
spaceH. Thus, we shall writeHðkÞ for the space of analytic functions with
reproducing kernel k.
An analytic function j on Bd is a multiplier of HðkÞ if jf 2 HðkÞ for

every f 2 HðkÞ. We shall write MðkÞ for the collection of all multipliers. A
standard argument with the closed graph theorem shows that each j 2 MðkÞ
defines a bounded linear operatorMj : f /jf onHðkÞ. Thus we define the
multiplier norm by jjjjjM ¼ jjMjjj. A subspace M of HðkÞ is called a
multiplier invariant subspace if jM � M, and we shall denote the collection
of all multiplier invariant subspaces by LatMðkÞ.
A reproducing kernel k on Bd is called a complete Nevanlinna–Pick kernel

(complete NP kernel), if k0ðzÞ ¼ 1 for all z 2 Bd and if there exists a sequence
of analytic functions fbngn51 on Bd such that

1�
1

klðzÞ
¼

X
n51

bnðzÞbnðlÞ for all l; z 2 Bd : ð1:1Þ

We note that the sequence may be finite, and that this condition is
actually equivalent to the assumption that 1� 1=k is positive definite.
Complete NP kernels have been investigated in connection with Nevanlin-
na–Pick and Caratheodory interpolation and commutant lifting properties
(see [Agla, Aglb, BTV,McC92,Qui93]). Examples of spaces with complete
NP kernels on the unit disk D ¼ B1 are the Hardy space H2ðDÞ of the unit
disk D, the Dirichlet space of all analytic functions on D whose derivative is
square area integrable, or, more generally, the weighted Dirichlet spaces
Da; a50 on the unit disk (see Example 4.4 for definitions and details). For
d51 we mention the space H2

d on Bd , which is defined by the kernel
klðzÞ ¼ 1

1�hz;lid
, hz; lid ¼

Pd
i¼1 zili. The space H2

d was investigated in

[Arv98, Arv99,Arv00] because of its connection to the dilation theory of
certain commuting operator tuples, the so-called d-contractions, or row
contractions. In Proposition 2.3 we shall see that for all complete NP kernels
k one has HðkÞ � H2ð@BdÞ, the ordinary Hardy space of the unit ball. But
we note that for d > 1, the reproducing kernel for H2ð@BdÞ is not a complete
NP kernel.
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We shall now fix a complete NP kernel k and a sequence fbng as in (1.1).
One shows that each bn 2 MðkÞ and that P0 ¼

P
n51 Mbn

M *
bn

ðSOTÞ, where
P0 is the projection onto the multiplier invariant subspace H0 ¼ f f 2
HðkÞ : f ð0Þ ¼ 0g (see Lemma 1.4 of [MT00]). We have used the term (SOT)
to denote that the sum converges in the strong operator topology. It is
remarkable that it follows that the projection onto every multiplier invariant
subspace can be written in a similar manner. The general case of the
following theorem is due to McCullough and Trent [MT00], and for the
special case of HðkÞ ¼ H2

d it was found by Arveson in [Arv00].

Theorem 1.1. Let k be a complete NP kernel and let M be a multiplier

invariant subspace. Then there exists a sequence fjng � MðkÞ \M such that

PM ¼
X
n51

Mjn
M *

jn
ðSOTÞ; ð1:2Þ

where PM is the projection onto M.

We make several remarks. First, McCullough and Trent prove this
theorem in a somewhat more general setting; it is not even necessary
that the kernel k is reproducing for a space of analytic functions. Secondly,
by applying expression (1.2) to the reproducing kernel kl; l 2 Bd , one
obtains

X
n51

jjnðlÞj
2 ¼

jjPMkljj2

jjkljj
2

41: ð1:3Þ

Thus, each function jn is in the unit ball of H1ðBdÞ and therefore for a.e.
z 2 @Bd the nontangential limit jnðzÞ of j exists. Here, and in what follows
a.e. stands for a.e. ½s� where s is the rotationally invariant probability
measure on @Bd .
Of course, Beurling’s theorem implies that for H2ðDÞ the sequence fjng

can be chosen to be a single inner function j, which satisfies jjðzÞj ¼ 1 for
a.e. z 2 @D. Our first main result is the following.

Theorem 1.2. Let k be a complete NP kernel on Bd and assume that there

is a set P � HðkÞ \ CðBd Þ which is dense in HðkÞ and such that for all p 2 P
and z 2 @Bd , liml!z

jj pkl jj
jjkl jj

¼ j pðzÞj. Then any sequence fjng which is associated

with a nonzero multiplier invariant subspace M as in Theorem (1.1) is an inner

sequence, i.e.

X
n51

jjnðzÞj
2 ¼ 1 for ½s� a:e: z 2 @Bd :
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We shall show in Section 4 that the hypothesis of the theorem is satisfied
for many complete NP kernels that are invariant under the unitary groupU.
We shall call k unitary invariant, or U-invariant, if klðzÞ ¼ f ðhz; lidÞ for
some function f on the unit disk. One can show that the U-invariant kernels
are precisely the kernels that satisfy kUlðUzÞ ¼ klðzÞ for each unitary map
U :Cd ! C

d . More precisely, we shall see that whenever a complete NP
kernel k is of the form

klðzÞ ¼
X1
n¼0

anðhz; lidÞ
n;

where an > 0,
P1

n¼0 an ¼ 1, and limn!1 an=anþ1 ¼ 1, then the hypothesis of
Theorem 1.2 is satisfied. In particular, the theorem applies to the weighted
Dirichlet spaces Da, 04a41, and to the space H2

d , and we shall see that if k

is U-invariant then the multiplier invariant subspaces are exactly the
subspaces which are invariant under the multiplication by all the coordinate
functions z/ zi, i ¼ 1; . . . ; d.
However, we shall see that the conclusion of Theorem 1.2 does not hold

for the weighted Dirichlet spaces Da, a > 1.
For the space H2

d this theorem was conjectured by Arveson
[Arv99, Arv00]. He proved the theorem for invariant subspaces M of H2

d

which contain a polynomial. In [MT00] the theorem is proved for certainM
of finite codimension in spaces with complete NP kernels k such that
klðlÞ ! 1 as l ! @Bd .
It turns out that vector-valued analogs of Theorems 1.1 and 1.2 are true.

Before we can explain this, we need a few more definitions.
If D is a separable complex Hilbert space, thenHðk;DÞ is the space of D-

valuedHðkÞ-functions. It is the set of all analytic functions f : Bd ! D such
that for each x 2 D the function fxðlÞ ¼ h f ðlÞ; xiD defines a function in
HðkÞ and such that

jj f jj2 ¼
X1
n¼1

jj fen
jj251

for some orthonormal basis fengn51 of D. One shows that the above
expression is independent of the choice of orthonormal basis. In parti-
cular, one has for f 2 HðkÞ; x 2 D the function fx : l ! f ðlÞx is inHðk;DÞ
and jj fxjj ¼ jj f jjjjxjjD. If f 2 Hðk;DÞ; x 2 D, and l 2 Bd we have
h f ðlÞ;xiD ¼ h f ; klxi. There is an obvious identification of the tensor
product HðkÞ �D with Hðk;DÞ, where one identifies the elementary
tensors f � x with the functions fx. Considering the definition of the norm
inHðk;DÞ, one may also think ofHðk;DÞ as a direct sum of dimD copies
of the scalar valued space HðkÞ.
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Each (scalar valued) multiplier j 2 MðkÞ defines an operator onHðk;DÞ
of the same norm, and we shall also denote this operator by Mj. Again, we
shall say that a subspaceM ofHðk;DÞ is multiplier invariant ifMjM � M
for each j 2 MðkÞ.
Let D and E be two separable Hilbert spaces, and let f : Bd ! BðE;DÞ be

an operator valued analytic function. For l 2 Bd and f 2 Hðk;EÞ we define
ðFf ÞðlÞ ¼ fðlÞf ðlÞ, then Ff is aD-valued analytic function. If Ff 2 Hðk;DÞ
for every f 2 Hðk;EÞ, then f is called an operator-valued multiplier,
and one shows that the associated multiplication operator F :Hðk;EÞ !
Hðk;DÞ is bounded. It is clear that such multiplication operators F 2
BðHðk;EÞ;Hðk;DÞÞ intertwine the (scalar) multiplication operators
Mj; j 2 MðkÞ. It will follow from Lemma 2.2 that for spaces with
complete NP kernels the multipliersMðkÞ are dense inHðkÞ. It then follows
from standard arguments that a bounded linear operator A :Hðk;EÞ !
Hðk;DÞ intertwines every Mj; j 2 MðkÞ (i.e. AMj ¼ MjA) if and only if
A ¼ F for some multiplication operator.
A short calculation shows that for any multiplication operator F 2

BðHðk;EÞ;Hðk;DÞÞ one has F* ðklxÞ ¼ klfðlÞ*x for all x 2 D; l 2 Bd .
Thus, we have jjfðlÞjjD4jjFjj for all l 2 Bd and it follows from standard
arguments that for a.e. z 2 @Bd , fðlÞ converges in the strong operator
topology to an operator fðzÞ as l approaches z nontangentially (for the
scalar case see [Rud80], then see [RR97, pp. 81–84], on how to get the
operator-valued version). Similarly, by applying this reasoning to fð%llÞ* one
sees that also fðlÞ* ! fðzÞ * (SOT) for a.e. z 2 @Bd as l approaches z

nontangentially. Actually, the limits exist a.e. if the approach is from within
certain nonisotropic approach regions which for d > 1 are larger than the
standard nontangential approach regions (see Section 2 for definitions).
A multiplication operator F is called inner, if it is a partial isometry as an

operatorHðk;EÞ ! Hðk;DÞ. Since partial isometries have closed range it is
clear that every inner multiplier defines a multiplier invariant subspace
M ¼ FHðk;EÞ � Hðk;DÞ. Again, it is a remarkable fact that the converse
to this theorem is true, if k is a complete NP kernel.

Theorem 1.3. Let k be a complete NP kernel, let D be a separable

Hilbert space, and let M � Hðk;DÞ be a multiplier invariant subspace.
Then there is an auxiliary Hilbert space E and an inner multiplication

operator F 2 BðHðk;EÞ;Hðk;DÞÞ such that M ¼ FHðk;EÞ and PM ¼ FF * .
Furthermore, if F is another Hilbert space and C 2 BðHðk;FÞ; Hðk;DÞÞ is

another inner multiplication operator such that FHðk;EÞ ¼ CHðk;FÞ, then

there is a partial isometry V 2 BðE;FÞ such that fðlÞ ¼ cðlÞV for all l 2 Bd .

This theorem is from [MT00], see [Arv00] for the case of H2
d . Theorem 1.3

implies Theorem 1.1. To see this we take D ¼ C, fix an orthonormal
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basis feng of E and set jnðlÞ ¼ fðlÞen for n51 and l 2 Bd . With this
notation it is easy to verify that each jn 2 MðkÞ \M and PM ¼ FF* ¼P

n51 Mjn
M *

jn
ðSOTÞ.

We note that in the classical Beurling–Lax–Halmos theorem for H2ðDÞ
one may take E ¼ D, but for general complete NP kernels other than the
Szegö kernel that may not be possible if dimD51. In fact, one may have
to take E to be infinite dimensional even if dimD51. This happens for
example for the classical Dirichlet space.
Since the existence of these inner multiplication operators is important for

our paper, we give a brief outline of the proof of Theorem 1.3. The proof
will explain where the space E comes from.
We already mentioned that the functions bn; n51 in (1.1) are multipliers

and P0 ¼
P

n51 Mbn
M *

bn
ðSOTÞ is the projection onto f f 2 HðkÞ :

f ð0Þ ¼ 0g. Similarly, if one thinks of the operators Mbn
as multipliers on

Hðk;DÞ, then E0 ¼
P

n51 Mbn
M *

bn
ðSOTÞ is the projection onto

f f 2 Hðk;DÞ : f ð0Þ ¼ 0g, and it is easy to see that QðAÞ ¼
P

n51 Mbn
A

M *
bn
defines a bounded operator BðHðk;DÞÞ ! BðHðk;DÞÞ. Now if M �

Hðk;DÞ is a multiplier invariant subspace, then one computes

PM � QðPMÞ ¼ PMðI � E0ÞPM þ PMQðI � PMÞPM50:

We set S ¼ ðPM � QðPMÞÞ1=2; E ¼ ðker SÞ? � Hðk;DÞ, and for l 2
Bd ; x 2 D,

fðlÞ*x ¼ SðklxÞ:

With these definitions one verifies that f is an operator valued multiplier
and that the associated multiplication operator F satisfies FF* ¼ PM.
The vector analogue of Theorem 1.2 is that under certain circumstances

the analytic functions associated with inner multiplication operators deserve
to be called inner functions. In fact, we shall prove the following theorem.

Theorem 1.4. Let k be a complete NP kernel on Bd and assume that there

is a set P � HðkÞ \ CðBd Þ which is dense in HðkÞ and such that for all p 2 P
and z 2 @Bd ; liml!z

jj pkl jj
jjkl jj

¼ j pðzÞj. Let E and D be separable Hilbert spaces,
and let F 2 BðHðk;EÞ; Hðk;DÞÞ be an inner multiplication operator with

associated operator-valued multiplier f : Bd ! BðE;DÞ. Then for a.e. z 2 Bd ,
fðzÞ is a partial isometry with

m ¼ rank fðzÞ ¼ supfrank fðlÞ : l 2 Bdg ¼ supfdimElM : l 2 Bdg;

where M ¼ FHðk;EÞ and El denotes the point evaluation map

El :Hðk;DÞ ! D, El f ¼ f ðlÞ, f 2 Hðk;DÞ. In particular, m4dimD.
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This will be an immediate consequence of Lemma 2.1 and Theorem 3.2.
Of course, as was the case with Theorem 1.2, this theorem applies to the
spaces Da; 04a41, and H2

d . In the classical Beurling–Lax–Halmos
theorem for H2ðDÞ it is also true that the initial space of fðzÞ is a.e. equal
to one fixed space K � E ¼ D. In the general situation of invariant
subspaces M of H2

d ðDÞ; d > 1, the initial space of fðzÞ may vary with
z 2 @Bd .
Section 5 contains our results on the curvature invariant of contractive

Hilbert modules.

2. SOME PRELIMINARIES

Let k be an analytic reproducing kernel on Bd with associated Hilbert
space HðkÞ. We will also assume that k0ðlÞ ¼ 1 for all l 2 Bd , but we will
not necessarily assume that k is a complete NP kernel.
LetM be multiplier invariant subspace ofHðkÞ. IfM contains a function

that does not vanish at 0, then the function jM ¼ PM1ffiffiffiffiffiffiffiffiffiffiffi
PM1ð0Þ

p has norm 1 and
solves the extremal problem

supfRe f ð0Þ : f 2 M; jj f jj ¼ 1g: ð2:1Þ

In fact, if f 2 M, then one calculates that hf ;jMi ¼ f ð0Þ
jMð0Þ, and so

jj f jj5j f ð0Þ
jMð0Þj, which implies the extremal property of jM.

Lemma 2.1. Let k be a complete NP kernel, let M � HðkÞ be a multiplier

invariant subspace. Then PM1 2 MðkÞ and jjðPM1Þf jj24jðPM1Þð0Þjjj f jj2 for all

f 2 HðkÞ.

This is proved in [MT00], and it follows immediately from Theorem 1.1 or
Theorem 1.3. In fact, let F be the inner multiplication operator associated
with M as in Theorem 1.3, let f be the associated operator-valued
multiplier, take D ¼ C, and set jnðlÞ ¼ fðlÞen, where feng is some
orthonormal basis for the auxiliary space E.
Then for all l 2 Bd we have ðPM1ÞðlÞ ¼

P
n51 jnðlÞjnð0Þ. It follows that

for f 2 HðkÞ,

jjðPM1Þ f jj2 ¼
X
n51

jnjnð0Þf

�����
�����

�����
�����
2

4jjFjj2
X
n51

jjjnð0Þf jj
2

4
X
n51

jjnð0Þj
2jj f jj2 ¼ jPM1Þð0Þjjj f jj2:
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For l 2 Bd we define Ml ¼ f f 2 HðkÞ : f ðlÞ ¼ 0g. Then each Ml is a
multiplier invariant subspace of HðkÞ with Ml ¼ fklg

?. Thus, for l=0,
one obtains

jlðzÞ ¼ jMl
ðzÞ ¼

1� klðzÞ=klðlÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1=klðlÞ

p : ð2:2Þ

We shall refer to jl as the one point extremal function. Note that Lemma
2.1 implies that if k is a complete NP kernel, then all one point extremal
functions jl; l=0, are contractive multipliers.

Lemma 2.2. Let k be such that for each l 2 Bd =f0g the one point extremal

function jl is a contractive multiplier on HðkÞ, let D be a separable Hilbert

space, and let f 2 Hðk;DÞ.
Then

(a) for each l 2 Bd , kl 2 MðkÞ and jjkljjM42klðlÞ,

(b) for each l 2 Bd , jj f ðlÞjj2D4
jjkl f jj2

jjkljj
2
42Reh f ; kl f i � jj f jj2,

(c) the function F : Bd ! C; F ðlÞ ¼ h f ; kl f i is analytic on Bd .

Proof. For l ¼ 0, (a) and (b) are clear since k0 � 1. For l=0, (a) follows
from (2.2) since jl 2 MðkÞ and jjjljjM41. Furthermore, the hypothesis
also implies that jj f jj2 � jjjl f jj250. After a short calculation this leads
to the right inequality of (b). To see the left inequality in (b), note that
kl f ðlÞ : z/ klðzÞf ðlÞ defines a function in Hðk;DÞ which is orthogonal
to ðkl f Þ � kl f ðlÞ. Hence jjkl f jj2 ¼ jjkl f � kl f ðlÞjj2 þ jjkl f ðlÞjj25
jjkljj

2jj f ðlÞjj2D.
We now prove (c). If f 2 Hðk;DÞ, j 2 MðkÞ, and x 2 D, then h f ; kljxi

¼ hðM *
j f ÞðlÞ; xiD is an analytic function in l 2 Bd . Hence ifL � Hðk;DÞ is

the set of finite linear combinations of elements of the form jx, j 2 MðkÞ,
x 2 D, then for each f 2 Hðk;DÞ and g 2 L the function l/ h f ; klgi is
analytic in Bd . Finite linear combinations of the functions kl are dense in
HðkÞ, hence it follows from (a) that MðkÞ is dense in HðkÞ, and so L is
dense inHðk;DÞ. The unit ball inHðkÞ is a normal family, thus the uniform
boundedness principle implies that for each compact subset K � Bd there is
CK such that klðlÞ ¼ jjkljj

24CK . This implies that for each compact set
K � Bd , l 2 K , f 2 Hðk;DÞ, and g 2 L, we have by (a)

jh f ; kl f i � h f ; klgij4jj f jjjjkljjM jj f � gjj42CK jj f jjjj f � gjj;

i.e. for each f 2 Hðk;DÞ; F ðlÞ ¼ hf ; kl f i is analytic as it is a local uniform
limit of analytic functions. This concludes the proof of the lemma. ]
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This lemma has a number of implications for the regularity of the
functions in HðkÞ.

Proposition 2.3. Let k be such that for each l 2 Bd =f0g the one

point extremal function jl is a contractive multiplier on HðkÞ. Then

HðkÞ is contractively contained in H2ð@Bd Þ. In fact, for every z 2 @Bd ,
the slice function fz; fzðzÞ ¼ f ðzzÞ; z 2 D, is in H2ðDÞ, and satisfies

jj fzjjH24jj f jj.

Proof. We use the scalar version of Lemma 2.2(b). Hence for each f 2
HðkÞ and l 2 Bd we have j f ðlÞj24uðlÞ ¼ 2Rehf ; kl f i � jj f jj2. As before,
let s denote the rotationally invariant probability measure on @Bd . We fix
05r51 and integrate over @Bd and obtain

Z
@Bd

j f ðrzÞj2 dsðzÞ4
Z
@Bd

uðrzÞ dsðzÞ ¼ uð0Þ ¼ jj f jj2;

since the integrand on the right is the real part of an analytic function. We
now take the supremum over 05r51 and obtain jj f jjH2ð@Bd Þ4jj f jj for all
f 2 HðkÞ.
Furthermore, if z 2 @Bd , then uzðzÞ ¼ uðzzÞ; z 2 D, defines a positive

harmonic function in the unit disk D � C. Thus j fzðzÞj2 ¼ j f ðzzÞj24uzðzÞ,
hence jj fzjj

2
H24uzð0Þ ¼ jj f jj2. ]

Functions in H2ð@Bd Þ have a.e. limits from within certain approach
regions that contain the standard nontangential approach regions (see
[Rud80]). For a > 1 and z 2 @Bd , define OaðzÞ to be the set of all l 2 Bd

such that j1� hl; zid j5
a
2
ð1� jlj2Þ. We say that a function f : Bd ! C

has a K-limit A at z 2 @Bd , ðK � limf ÞðzÞ ¼ A, if for every a > 1 and
for every sequence flng � OaðzÞ that converges to z, we have f ðlnÞ ! A

as n ! 1.
Let k be a reproducing kernel as in Proposition 2.3. It is well known that

every function in H2ð@BdÞ has finite K-limits at a.e. every point z 2 @Bd

[Rud80], hence the same is true for every f 2 HðkÞ. Furthermore, if D is a
separable Hilbert space, and f 2 Hðk;DÞ, then the arguments given in
[RR97, p. 84] show that for a.e. z 2 @Bd there is an f ðzÞ 2 D such that f ðzÞ is
the K-norm-limit of f ðlÞ at z.

Proposition 2.4. Let k be such that for each l 2 Bd =f0g the one point

extremal function jl is a contractive multiplier on HðkÞ, and assume that

there is a set P � HðkÞ \ CðBdÞ which is dense in HðkÞ and such that for all

p 2 P and z 2 @Bd ; liml!z

jj pkljj
jjkljj

¼ j pðzÞj. Let D be a separable Hilbert
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space. Then for every f 2 Hðk;DÞ we have

K � lim
jj fkljj
jjkljj

¼ jj f ðzÞjjD for a:e: z 2 @Bd :

Proof. Because of the hypothesis and Lemma 2.2, we can use standard
techniques. We briefly outline the details of the proof.
If f 2 Hðk;DÞ; a > 1, we define the maximal function

Maf ðzÞ ¼ sup
jj fkljj
jjkljj

: l 2 OaðzÞ
� �

:

The right-hand side in Lemma 2.2(b) is positive and the real part of
an analytic function (i.e. it is pluriharmonic), hence it can be repres-
ented as the invariant Poisson integral of a positive measure m on @Bd ;
PmðlÞ ¼ 2Reh f ; kl f i � jj f jj2 (see [Rud80]). Furthermore, we note that
jjmjj ¼ Pmð0Þ ¼ jj f jj2, and that for all a > 1, the Oa-maximal function of Pm
satisfies a weak-type estimate with constant Ca (see [Rud80]). Hence by
Lemma 2.2(b) we obtain for all a > 1; e > 0, and f 2 Hðk;DÞ the weak-type
estimate

sðfz 2 @Bd :Maf ðzÞ > egÞ4Ca
jj f jj2

e2
:

Next, let P0 � Hðk;DÞ be the set of all finite linear combinations of the
form px, where p 2 P � HðkÞ and x 2 D. Then P0 is dense inHðk;DÞ. We

shall first show that liml!z

jjðp � pðlÞÞkljj
jjkljj

¼ 0 for all p 2 P0 and z 2 @Bd .

Let z 2 @Bd , and note that if q 2 P, then

jjðq � qðlÞÞkljj
2

jjkljj
2

¼
jjqkljj

2

jjkljj
2
� jqðlÞj2 ! 0 as l ! z;

because q 2 P and q is continuous at z. Now let p ¼
Pn

i¼1 pixi, where pi 2 P
and xi 2 D, then

jjðp � pðlÞÞkljj
jjkljj

4
Xn

i¼1

jjxi jjD
jjðpi � piðlÞÞkljj

jjkljj
! 0 as l ! z:

Finally, let f 2 Hðk;DÞ. Then f has K-limit f ðzÞ at a.e. z 2 @Bd and

jjð f � f ðlÞÞkljj
2

jjkljj
2

¼
jjfkljj

2

jjkljj
2
� jj f ðlÞjj2, thus we must show that the K-limsup of

jjðf � f ðlÞÞkljj
2

jjkljj
2

equals 0 at s a.e. z 2 @Bd . Using Lemma 2.2(b), we see that
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for every p 2 P0 we have for all l 2 Bd ,

jjð f � f ðlÞÞkljj
jjkljj

4
jjð f � pÞkljj

jjkljj
þ

jjðp � pðlÞÞkljj
jjkljj

þ jj pðlÞ � f ðlÞjjD

4 2
jjð f � pÞkljj

jjkljj
þ

jjðp � pðlÞÞkljj
jjkljj

:

Hence for z 2 @Bd , we obtain for every a > 1,

lim sup
l!z
l2Oa

jjð f � f ðlÞÞkljj
jjkljj

42Mað f � pÞðzÞ;

and so the weak-type estimate implies that for every e > 0, we have for every
p 2 P0,

s z 2 @Bd : lim sup
l!z
l2Oa

jjð f � f ðlÞÞkljj
jjkljj

> e

8<
:

9=
;

0
@

1
A44Ca

jj f � pjj2

e2
:

Since P0 is dense in Hðk;DÞ the result follows. ]

3. INNER MULTIPLICATION OPERATORS AND INNER
MULTIPLIERS

As in Section 2, in this section k will denote an analytic reproducing
kernel on Bd with k0 � 1.

Lemma 3.1. Let D, E be separable Hilbert spaces, and let F 2 B
ðHðk;EÞ; Hðk;DÞÞ be a multiplication operator with associated operator-

valued multiplier f; fðlÞ 2 BðE;DÞ; l 2 Bd . For l 2 Bd let rank fðlÞ ¼
dim rank fðlÞ, and set

m ¼ supfrank fðlÞ : l 2 Bdg:

Then rankfðlÞ ¼ m on Bd =E, where E is at most a countable union of zero

varieties of nonzero bounded analytic functions in Bd and rankfðzÞ ¼ m for s
a.e. z 2 @Bd .

Proof. First note that if Tn; T 2 BðE;DÞ such that Tn ! T ðSOTÞ, then
rank T4lim inf rank Tn. In fact, for the proof we may assume that rank
Tn ¼ r51 for all n. Suppose rankT > r. Then let fTfjg

rþ1
j¼1 be an



GREENE, RICHTER, AND SUNDBERG322
orthonormal set in the range of T ; fj 2 E. Then dn ¼ det½ðhTnfj ;
TfkiDÞ14j;k4rþ1� ¼ 0 for each n since rankTn ¼ r5r þ 1. But this leads to
a contradiction since dn ! detðhTfj ;TfkiDÞ ¼ 1. Thus, at each point z 2 @Bd

where the K-limit of fðlÞ exists in the strong operator topology, we have
rank fðzÞ4m.
Now assume that 14m51. Then there is a l0 2 Bd such that

rank fðl0Þ ¼ m. Let feng
m
n51 be an orthonormal basis for ker fðl0Þ

? � E,
and let fdkg

m
k51 be an orthonormal basis for rank fðl0Þ � D.

We define DðlÞ ¼ det½ðhfðlÞen; dkiDÞ14n;k4m�. Then D is a bounded
analytic function in Bd with Dðl0Þ=0. It is clear that
m4rank fðlÞ whenever DðlÞ=0; l 2 Bd . But since m was the supremum
of rank fðlÞ for l 2 Bd we actually get m ¼ rank fðlÞ whenever
DðlÞ=0; l 2 Bd .
Furthermore, since the determinant is a polynomial in its entries it is clear

that the K-limit of DðlÞ exists, is nonzero at a.e. z 2 @Bd , and equals
DðzÞ ¼ det½ðhfðzÞen; dkiDÞ14n;k4m�, (see [Rud80]). Hence rank fðzÞ5m for s
a.e. z 2 @Bd . We already explained the other inequality, thus this proves the
lemma when m51.
If m ¼ 1, then for any integer s > 0 we can find ls such that

rank fðlsÞ5s. Thus, as above, we obtain a bounded analytic function
DsðlÞ with DsðlsÞ=0. The boundary value function of Ds is not
identically zero, hence rank fðzÞ5s for a.e. z 2 @Bd . This implies that
rank fðzÞ ¼ 1 for a.e. z 2 @Bd . It also follows that rank fðlÞ ¼ 1 for all
l 2 Bd ; l =2

T1
k¼1

S1
s¼k ZðDsÞ. ]

For l 2 Bd , let El :Hðk;DÞ ! D; El f ¼ f ðlÞ, let F 2 BðHðk;EÞ; Hðk;
DÞÞ be an inner multiplication operator with associated operator-
valued multiplier f, and let M ¼ FHðk;EÞ. Then for all l 2 Bd , rankfðlÞ
¼ ffðlÞy : y 2 Eg ¼ ffðlÞf ðlÞ : f 2 Hðk;EÞg ¼ fElðFf Þ : f 2 Hðk;EÞg
¼ElM.

Theorem 3.2. Let k be such that for each l 2 Bd =f0g the one

point extremal function jl is a contractive multiplier on HðkÞ and assume

that there is a set P � HðkÞ \ CðBdÞ which is dense in HðkÞ and such that

for all p 2 P and z 2 Bd , liml!z
jj pkl jj
jjkl jj

¼ j pðzÞj. Let E and D be separable

Hilbert spaces, and let F 2 BðHðk;EÞ; Hðk;DÞÞ be an inner multiplication

operator with associated operator-valued multiplier f, and let m ¼
supfrank fðlÞ : l 2 Bdg ¼ supfdim ElM : l 2 Bdg. Then for s a.e. z 2 @Bd ,
fðzÞ is a partial isometry with rank fðzÞ ¼ m.

Proof. The statement about the rank follows from Lemma 3.1. Let z 2
@Bd be such that the K-limits of fðlÞ and fðlÞ* exist at z in the strong
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operator topology. We have to show that for a.e. z 2 @Bd fðzÞ* is an
isometry on ran fðzÞ. Since jjfðzÞ* jj41 it suffices to show that jjfðzÞ*fðzÞy
jjE5jjfðzÞyjjD for all y 2 E with fðzÞy=0.
Let M ¼ ranF � Hðk;DÞ, then PM ¼ FF* and M is a multiplier

invariant subspace. Note that for l 2 Bd and x 2 D we have

jjPMklxjj ¼ supfjh f ðlÞ;xiDj : f 2 M; jj f jj41g; ð3:1Þ

because for f 2 M; jh f ðlÞ;xiDj ¼ jh f ; klxij ¼ jh f ;PMklxij4jj f jjjjPMklxjj
with equality if f ¼ PMklx.
Hence if f 2 M is nonzero, if l 2 Bd , then kl f 2 M and for x 2 D

jjfðlÞ*xjjE ¼
jjklfðlÞ*xjj

jjkljj
¼

jjF* ðklxÞjj
jjkljj

¼
jjPMðklxÞjj

jjkljj

5
jhðkl f ÞðlÞ;xiDj

jjkljjjjkl f jj
¼

jh f ðlÞ;xiDj
jjklf jj=jjkljj

:

Now let y 2 E with fðzÞy=0. Then f ¼ Fy, f ðlÞ ¼ fðlÞy, is a nonzero
function in M with K-limit f ðzÞ ¼ fðzÞy as l ! z. Hence Proposition 2.4

and the above imply jjfðzÞ *xjjD5
jhfðzÞy;xiDj

jjfðzÞyjj
for a.e. such z 2 @Bd .

This concludes the proof since we may take x ¼ fðzÞy. ]

4. U-INVARIANT COMPLETE NP KERNELS

In this section, we shall verify that the hypothesis of Theorem 3.2 is
satisfied for many complete NP kernels that are invariant under unitary
maps. If k is an analytic reproducing kernel on Bd that is invariant under
every unitary map U :Cd ! C

d , i.e. kUlðUzÞ ¼ klðzÞ for all l; z 2 Bd , then
one can show that klðzÞ ¼ f ðhl; zidÞ for some function f of type
f ðxÞ ¼

P1
n¼0 anxn; an50. Such a kernel will be a complete NP kernel

if and only if there exists a sequence fbngn; bn50 such that

f ðxÞ ¼
1

1�
P1

n¼1 bnxn
. Note that a1 ¼ b1. Finite linear combinations of the

kernels kl; l 2 Bd , are dense in HðkÞ and the evaluations of partial
derivatives at 0 are continuous linear functionals, hence if a1 ¼ 0, it would
follow that the coordinate functions ziðlÞ ¼ li; i ¼ 1; . . . ; d are not inHðkÞ.
On the other hand, if a1 ¼ b1=0, then each zi 2 MðkÞ. This follows because

we have 1�
1

klðwÞ
¼ b1

Pd
i¼1 wi

%lliþ higher order terms. Thus
Pd

i¼1 Mzi
M *

zi

4ð1=b1ÞI because, as we already mentioned, each of the functions bn in the
representation (1.1) is a multiplier with

P
n51 Mbn

M *
bn
¼ P04I . It follows
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from this, or it is easy to see anyway, that the hypothesis b1=0 implies that
an > 0 for all n.
Thus in this section we will assume that

klðzÞ ¼
X1

n¼0
anðhz; lidÞ

n ¼
1

1�
P1

n¼1 bnðhz; lid Þ
n; ð4:1Þ

where an; bn50, a0 ¼ 1, and a1 ¼ b1 > 0. In particular, k is a complete NP
kernel, and the space HðkÞ contains the polynomials.
At this point, we should mention that if only the sequence fang is

given, then it may be difficult to determine whether k is a complete
NP kernel, i.e. for which fang it follows that a sequence fbng can be found
such that bn50 for each n and such that (4.1) holds. However, it was
pointed out in [SS62] that if anþ1=an increases to 1, then the existence of
nonnegative fbng follows by a theorem that can be found in [Har92]. On the
other hand, if the sequence fbng is given, bn50, one always obtains a
complete NP kernel.
In order to compute the norm of polynomials we need to recall multiindex

notation. Let j ¼ ð j1; j2; . . . ; jd Þ be a multiindex of nonnegative integers, then
j jj ¼ j1 þ j2 þ � � � þ jd , j! ¼ j1!j2! � � � jd !, and for l ¼ ðl1; l2; . . . ; ldÞ 2 Cd ,
lj ¼ lj1

1 l
j2
2 � � � l

jd
d , and the multinomial formula implies that for z; l 2 Bd

and n50

hz; lin
d ¼

X
j jj¼n

j jj!
j!

zj %ll
j
:

Thus klðzÞ ¼
P

j aj jj
j jj!
j!

zj %ll
j
, where the sum is taken over all multiindices j

with entries in the nonnegative integers. Since klðzÞ ¼ hkl; kzi it follows that
monomials in HðkÞ are mutually orthogonal and

jjz j jj2 ¼
j!

aj jjj jj!
:

If fnðzÞ ¼
P

j jj¼n cjz
j is a homogeneous polynomial of degree n, then

jj fnjj2 ¼ 1
an

P
j jj¼n

j!

j jj!
jcj j2, and it follows that an analytic function f on Bd

with homogeneous expansion f ðzÞ ¼
P1

n¼0 fnðzÞ is in HðkÞ if and only if
jj f jj2 ¼

P1
n¼0 jj fnjj251, and that the polynomials are dense in HðkÞ.

We need a few technical lemmas.

Lemma 4.1. Let D be a separable Hilbert space, and for n 2 N let

FnðeitÞ ¼
1

n þ 1
sin2ððn þ 1Þt=2Þ

sin2ðt=2Þ
be the Fejér kernel.
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If j 2 MðkÞ; n 2 N, and pnðzÞ ¼
R 2p
0 jðeitzÞFnðeitÞ dt, then pn is a poly-

nomial and Mpn
! Mj ðWOTÞ as n ! 1 in HðkÞ or Hðk;DÞ.

In particular, if a subspace M is Mzi
invariant for each i ¼ 1; . . . ; d, then it

is multiplier invariant.

Proof. It follows from the well-known properties of the Fejér kernel that
each pn is a polynomial and that pnðlÞ ! jðlÞ for each l 2 Bd . Thus, it will
suffice to show that for each f 2 Hðk;DÞ the sequence fjj pn f jjgn2N is norm
bounded.
For t 2 R, f 2 Hðk;DÞ let ftðzÞ ¼ f ðeitzÞ. One checks that ft 2 Hðk;DÞ,

jj ftjj ¼ jj f jj, and ft ! ft0 in norm as t ! t0. Hence if j 2 MðkÞ, then
jtf ¼ ðjf�tÞt, hence jt 2 MðkÞ with jjjtjjM ¼ jjjjjM , and jt f ! jt0

f in
norm as t ! t0. Hence for each n 2 N the integral pn f ¼

R 2p
0 jt fFnðeitÞ dt

converges in the norm of Hðk;DÞ, and we have jj pnf jj4jjjjjM jj f jj. ]

Lemma 4.2. Suppose k satisfies (4.1). Let p be a homogeneous polynomial

of degree n. Then

Xd

i¼1
jjzipjj

2 � jj pjj2 ¼
an

anþ1

n þ d

n þ 1
� 1

� �
jj pjj2: ð4:2Þ

Hence, if an=anþ1 ! 1 as n ! 1, then
Pd

i¼1 M *
zi Mzi

� I is a compact

operator on HðkÞ.

Proof. For 14i4d and any multiindex j ¼ ð j1; . . . ; jdÞ, we obtain

jjziz
j jj2 ¼

aj jj

aj jjþ1

ji þ 1
j jj þ 1

jjz j jj2. Thus, if p is a homogeneous polynomial of

degree n50, then
Pd

i¼1 jjzipjj
2 ¼

an

anþ1

n þ d

n þ 1
jj pjj2. ]

Theorem 4.3. Let E and D be separable Hilbert spaces, and let k be a

complete NP kernel that satisfies the hypothesis (4.1), klðlÞ ! 1 as jlj ! 1,
and limn!1 an=anþ1 ¼ 1.

If F 2 BðHðk;EÞ;Hðk;DÞÞ is an inner multiplication operator with

associated operator-valued multiplier f, and m ¼ supfrank fðlÞ : l 2 Bdg,
then for s a.e. z 2 Bd , fðzÞ is a partial isometry with rankfðzÞ ¼ m.

Furthermore, Theorem 1.3 applies to every subspace M � Hðk;DÞ
that is invariant for every Mzi

; i ¼ 1; . . . ; d. In this case,
m ¼ supfdim ElM : l 2 Bdg.

Proof. The statement of the last paragraph follows from Theorem 1.3,
Lemma 4.1, and the remarks made in the paragraph before Lemma 2.2.
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We shall show that liml!w

jj pkljj
jjkljj

¼ j pðwÞj for every w 2 @Bd and every
polynomial p.
If p is a polynomial and w 2 @Bd , then there are polynomials qi; i ¼

1; . . . ; d such that pðzÞ � pðwÞ ¼
Pd

i¼1 ðzi � wiÞqiðzÞ. Then for l 2 Bd ,

jjðp � pðwÞÞkljj
jjkljj

4
Xd

i¼1
jjqi jjM

jjðzi � wiÞkljj
jjkljj

4C
Xd

i¼1

jjðzi � wiÞkljj
2

jjkljj2

� �1=2

¼C
Xd

i¼1

jjzikljj
2

jjkljj
2
� 2Re li %wwi þ jwij2

� �1=2

¼C
Xd

i¼1
jjzi

kl

jjkljj
jj2 � 2Rehl;wi þ 1

� �1=2
:

Now the hypothesis klðlÞ ! 1 and the density of the polynomials implies

that kl=jjkljj ! 0 weakly as jlj ! 1, and by Lemma 4.2 we have that
Pd

i¼1

M *
zi Mzi

� I is compact, so
Pd

i¼1 jjziðkl=jjkljjÞjj2 ! 1 as jlj ! 1. Hence
jjðp � pðwÞÞkljj

jjkljj
! 0 as l ! w. ]

Example 4.4. Let an ¼ ðn þ 1Þ�a; a50. Then the corresponding kernel
k is a complete NP kernel. This follows from the theorem of [Har92] that we
already mentioned after (4.1). For d ¼ 1 the spacesHðkÞ ¼ Da are weighted
Dirichlet spaces with D ¼ D1 being the classical Dirichlet space. We note
that for 04a41 the coefficients an satisfy the hypothesis of the theorem.
However, if a > 1, then klðlÞ stays bounded as jlj ! 1.
We shall show now that the conclusion of Theorem 4.3 does not hold in

these cases.
Assume that klðzÞ is a reproducing kernel of the type considered in (4.1)

and klðlÞ stays bounded as jlj ! 1. The
P1

n¼0 an51. Thus, the power series
for klðzÞ ¼

P1
n¼0 anhz; lin converges absolutely and uniformly on %BBd � %BBd ,

and for l 2 %BBd , kl 2 HðkÞ. It follows that all functions inHðkÞ extend to be
continuous on %BBd , where f ðlÞ ¼ h f ; kli for all f 2 HðkÞ, l 2 %BBd . Let z 2 @Bd

and M ¼ f f 2 HðkÞ : f ðzÞ ¼ 0g ¼ fkzg
?. Clearly, this is an invariant

subspace.
Let fjng be the sequence that is associated withM according to Theorem

1.1. Then for l 2 Bd ,
P

n51 jjnðlÞj
2 ¼

jjPMkljj
2

jjkljj
2

¼ 1�
jklðzÞj

2

klðlÞkzðzÞ
. This is a
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continuous function on Bd , which is zero at l ¼ z. Thus its boundary values
cannot be zero a.e. ½s�.

Note that for kernels considered in (4.1) the condition klðlÞ ! 1 as
jlj ! 1 is equivalent to

P1
n¼1 bn ¼ 1. Sometimes the hypothesis limn!1 an=

anþ1 ¼ 1 in Theorem 4.3 is implied by another condition. We prove the
following proposition.

Proposition 4.5. Suppose
P1

n¼1 bn ¼ 1, and either
P1

n¼1 nbn51 or fang
is eventually nonincreasing.

Then an=anþ1 ! 1 as n ! 1.

Proof. Suppose first that
P1

n¼1 bn ¼ 1 and c ¼
P1

n¼1 nbn51. For

z 2 D let gðzÞ ¼
1�

P1
n¼1 bnzn

1� z
¼

P1
n¼1 bn

1� zn

1� z
¼

P1
n¼1 bn

Pn�1
j¼0 zj. Then

jgðzÞj4c, and, in fact, g has a Taylor series that converges absolutely
and uniformly in %DD. Note that gð1Þ ¼ c > 0 and Re ð1� zÞgðzÞ ¼
1�

P1
n¼1 bnRe zn5b1ð1�Re zÞ, so gðzÞ=0 in %DD. It follows from Wiener’s

Lemma (see [Rud91, Theorem 11.6]), that the function hðzÞ ¼
1

gðzÞ
�
1

c
has a

Taylor series hðzÞ ¼
P1

k¼0 ĥðkÞzk with
P1

k¼0 jĥðkÞj51, and
P1

k¼0 ĥðkÞ ¼
hð1Þ ¼ 0.
We have hðzÞ þ 1=c ¼

1

gðzÞ
¼ ð1� zÞ

P1
n¼0 anzn ¼ 1þ

P1
n¼1 ðan�an�1Þzn.

We compare coefficients and evaluate at z ¼ 1 to obtain

1=c ¼ 1þ
P1

n¼1 ðan � an�1Þ ¼ limn!1 an, hence an=anþ1 ! 1 as n ! 1.
Now suppose that

P1
n¼1 bn ¼ 1 and that an5anþ1 for all n5N. Then

since
P1

n¼0 anzn ¼
1

1�
P1

n¼1 bnzn
we may multiply through and compare

coefficients. We obtain anþ1 ¼
Pnþ1

k¼1 bkanþ1�k. Thus for n5N we have 15
anþ1=an ¼

Pnþ1
k¼1 bkanþ1�k=an5

Pn�N
k¼1 bk ! 1 as n ! 1. ]

5. AN APPLICATION TO CONTRACTIVE HILBERT MODULES

In [Arv00] Arveson defines a contractive Hilbert module to be a Hilbert
space H which is also a module over A ¼ C½z1; . . . ; zd �, the algebra of
complex polynomials in d variables, and has the property that

jjz1x1 þ � � � þ zdxd jj
24jjx1jj

2 þ � � � þ jjxd jj
2 for all x1; . . . ; xd 2 H: ð5:1Þ

Hence, the actions of z1; . . . ; zd define bounded linear operators on H
which we denote by T1; . . . ;Td , respectively. From the definition of a
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contractive Hilbert module and (5.1) the d-tuple of operators ðT1; . . . ;TdÞ
satisfies the properties

X1

i¼1
TiT

*
i 41H and TiTj ¼ TjTi for all 14i; j4d:

Such d-tuples have been called d-contractions or row contractions.
Associated with any Hilbert module H there is a completely positive
map C :BðHÞ ! BðHÞ defined by CðX Þ ¼

Pd
i¼1 TiXT *

i ; X 2 BðHÞ.
A Hilbert module is said to be pure if limn!1 Cnð1HÞ ¼ 0 ðSOTÞ.
The rank of H is defined as the rank of the defect operator
D ¼ ð1H �Cð1HÞÞ1=2.
Of course, the spaces of the formH ¼ H2

d ðDÞ come with a natural Hilbert
module structure: If x ¼ f 2 H2

d ðDÞ, then zix ¼ Mzi
f ; i ¼ 1; . . . ; d. One

verifies that H2
d ðDÞ is contractive, pure, and rank H2

d ðDÞ ¼ dimD. These
modules serve a universal role in the category of pure contractive Hilbert
modules. The following theorem makes this precise.

Theorem 5.1. Let H be a pure contractive Hilbert module and let D be a

Hilbert space with dimD ¼ rankH. Then there exists a coisometric module

homomorphism U :H2
d ðDÞ ! H that is minimal in the sense that U *H

generates H2
d ðDÞ as a Hilbert module. Furthermore, if U 0 :H2

d ðD
0Þ ! H is

another such map, then there exists a unitary operator V :D ! D0 such that

U ¼ U 0Ṽ, where Ṽð fxÞ ¼ fVx for all f 2 H2
d ; x 2 D.

Theorem 5.1 is a well-known result in dilation theory. For example, it can
easily be derived from the results in [Agl82], or, for a precise statement in the
language of Hilbert modules, see [Arv98]. In fact, if k is a complete NP
kernel, then one can define a category of Hilbert modules where the spaces
of the typeHðk;DÞ play the role of the universal object. In this case one uses
the functions fbng of (1.1) to define the completely positive map C, and an
analogue of the above theorem holds (see [Agl82]).
Thus, any pure contractive Hilbert module H can be associated with

a submodule M ¼ kerU of H2
d ðDÞ. It follows from Lemma 4.1 that M

is a multiplier invariant subspace of H2
d ðDÞ, so by Theorem 1.3 there

exists an auxiliary Hilbert space E and an inner multiplication operator
F 2 BðH2

d ðEÞ; H2
d ðDÞÞ with associated operator valued multiplier

f 2 BðE;DÞ such that M ¼ FH2
d ðEÞ.

The curvature invariant of a finite rank Hilbert moduleH was introduced
in [Arv00]. To review the definition we need to fix some more notation. If
T1; . . . ;Td are the operators associated with H, then for l 2 Bd we set
TðlÞ ¼ %ll1T1 þ � � � þ %lldTd . Since H has finite rank the space DH is finite



THE STRUCTURE OF INNER MULTIPLIERS 329
dimensional. We define a BðDHÞ-valued function on Bd by

F ðlÞ ¼ ð1� jlj2ÞDð1H � TðlÞ* Þ�1ð1H � TðlÞÞ�1D:

It can be shown that F ðlÞ is unitarily equivalent to 1D � fðlÞfðlÞ * , where
f is the operator valued multiplier as in the previous paragraph (see [Arv00]).
Thus, the radial limit (or even K-limit) of F exists in the strong operator
topology for a.e. z 2 @Bd . The curvature invariant ofH is defined as

KðHÞ ¼
Z
@Bd

trace F ðzÞ dsðzÞ:

It is clear that 04KðHÞ4rankH, and it follows that
KðHÞ ¼

R
@Bd
trace ð1D � fðzÞfðzÞ* Þ dsðzÞ. The following theorem resolves

Problem 1 of [Arv99].

Theorem 5.2. If H is a contractive, pure Hilbert module of finite rank,
then KðHÞ is an integer. In particular, if M is the multiplier invariant

subspace associated with H as above, then

KðHÞ ¼ rankH� supfdim ElM : l 2 Bdg

¼ inffdimDl \M? : l 2 Bdg;

where Dl ¼ klD.

Proof. This follows immediately from Theorem 4.3. Recall that for l 2
Bd ; El :H

2
d ðDÞ ! D denotes the point evaluation, El f ¼ f ðlÞ.

For a.e. z 2 @Bd ; F ðzÞ ¼ 1D � fðzÞfðzÞ* is a projection equal to rank
H� supfdim ElM:l 2 Bdg¼ inffdimðElMÞ?: l 2 Bdg¼ inffdimDl \M?:
l 2 Bdg, since one easily sees that klðElMÞ? ¼ Dl \M?. Hence
KðHÞ ¼

R
@Bd
trace F ðzÞ dsðzÞ ¼ inffdimDl \M? : l 2 Bdg. ]

Example 5.3. Let H be a pure contractive Hilbert module of finite
rank, let U be as in Theorem 5.1, and, as above, set M ¼ kerU .

(a) If j is a nonzero scalar multiplier of H2
d such that jH ¼ 0, then

KðHÞ ¼ 0.
(b) IfM is generated by a family of functions f fngn51 such that there

is a nonempty open set O � Bd such that the dimension of the linear span of
f fnðlÞgn51 in D equals m for each l 2 O, then KðHÞ ¼ rankH� m.

Proof. (a) Let l 2 Bd such that jðlÞ=0. According to Theorem 5.2 it
suffices to show that Dl \M? ¼ ð0Þ. Thus, let x 2 D be such that
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klx 2 M?. Then for any y 2 D; jy is a function inM since jH ¼ 0. Hence
0 ¼ hjy; klxi ¼ jðlÞhy;xiD and it follows that x ¼ 0.

(b) It follows from the hypothesis that dimElM ¼ m for each l 2 O.
Thus, it follows from Lemma 3.1 that supfdim ElM : l 2 Bdg ¼ m, and the
result follows from Theorem 5.2. ]

It is sometimes possible for KðHÞ to be defined and finite when
dimD ¼ 1. Thus, a more general resolution of Problem 1 in [Arv99] would
follow from an answer to the following question.

Question 5.4. Is dimðran fðzÞÞ? almost everywhere equal to a constant
even if dimD ¼ 1?

Note that Theorem 4.3 implies that dim ran fðzÞ is a.e. equal to a
constant.
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