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Abstract 

The application of entropy in finance can be regarded as the extension of information entropy and probability theory. In this 
article we apply the concept of entropy for underlying financial markets to make a comparison between volatile markets. We 
consider in the first step Shannon entropy with different estimators, Tsallis entropy for different values of its parameter, Rényi 
entropy and finally the approximate entropy. We provide computational results for these entropies for weekly and monthly data 
in the case of four different stock indices. 
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1. Introduction 

The concept of entropy plays a crucial role in extracting the universal features of a system from its microscopic 
details. In statistical mechanics the entropy is defined as the logarithm of the total number of microstates multiplied 
by a constant coefficient or alternatively it is written in terms of the probability to occupy the microstates. The 
Shannon entropy can be used in particular manners to evaluate the entropy corresponding to a probability density 
distribution around some points, but specific events can be also considered, for example the deviation from the mean 
or any sudden news in the case of stock market. At this point one needs additional information and the classical 
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concept of entropy can be generalized. Tsallis, (1988) proposed an extension of the concept of entropy, which 
successfully describes the statistical features of complex systems. Some other examples of entropy measures, which 
depend on power of the probability, were introduced as generalization of the Shannon entropy, include (Kaniadakis, 
2001), Rényi, (1961), Ubriaco, (2009) and Shafee, (2007) entropy measures. 

    The application of entropy in finance can be regarded as the extension of both information entropy and 
probability theory. Since the last two decades, it has become a very important tool for designing portfolio selection 
and asset pricing techniques. In mathematical finance, a risk-neutral measure, also called an equivalent martingale 
measure, is heavily used in the pricing of financial derivatives. In the theory of option pricing the risk-neutral 
densities play a very important role and stochastic calculus helps us to obtain this framework. The Entropy Pricing 
Theory was introduced by (Gulko, 1995), as an alternative method for the construction of risk-neutral probabilities 
without relying on stochastic calculus. The famous Black-Scholes model, 1973 assumes the condition of no 
arbitrage, which implies the universal risk-neutral probabilities.  

Various cantitative techniques are used in solving decision problems which arise in economy, social sciences, 
engineering and many other domains. We can mention the contributions of (Istudor and Filip, 2014), (Ştefănoiu et 
al., 2014), (Moinescu and Costea, 2014), (Barik et al., 2012), Filip, (2012), (Costea and Bleotu, 2012), (Nastac et al., 
2009) and (Costea et al., 2009). Modeling the trend of financial indices and portfolio selection topics have caught the 
interest of the researchers, see, for example, Georgescu, (2014), Toma and Dedu, (2014), Tudor, (2012), (Tudor and 
Popescu-Duţă, 2012), (Şerban et al., 2011) and (Lupu and Tudor, 2008). Recently, (Toma, 2014), Toma, (2012), 
(Toma and Leoni-Aubin, 2013) investigate different methods for financial data modeling using entropy measures. 

    The Principle of Maximum Entropy was used by Guo, 2001, in order to estimate the distribution of an asset 
from a set of option prices. Beside this work, the maximum entropy principle was used to retrieve the risk-neutral 
density of future stock risks or other asset risks by Rompolis, (2010). (Preda and Sheraz, 2014) have used recently 
the Shafee entropy measure to obtain risk-neutral densities. Recently (Preda et al., 2014), used Tsallis and 
Kaniadakis entropy measures for the case of semi-Markov regime switching interest rate models. 

    This paper is organized as follows. In Section 2 we discuss underlying types of entropy measures. In Section 3 
we present our computational results for analyzing stock market volatility by considering, the Shannon, Tsallis, 
Rényi entropy measures and approximate entropy. Section 4 concludes our results. 
 

2. Preliminaries 

In this section we present the introductory framework, some important definitions and mathematical tools. The 
mathematical definitions of underlying entropy measures are discussed.  

The Shannon entropy corresponding to a discrete random variable of probability measure },,,{P 21 np...pp   is 
given by: 
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The Tsallis entropy is a generalization of the standard Boltzmann--Gibbs entropy. It was introduced as a basis for 
generalizing the standard statistical mechanics. Let Rq . If },,,{P 21 np...pp  is the discrete set of probabilities, 
then the Tsallis entropy of order q  is given by: 
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In the field of information theory, the Rényi entropy, named after Alfréd Rényi, generalizes the Shannon entropy. 
The relative entropy minimization has been used extensively for the calibration of the financial models. Let 

10 r,r . The Rényi entropy of order r  is given by: 
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Note that for 0r  the Rényi entropy is just the logarithm of the size of the support of the random variable and for 
1r  we obtain Shannon entropy. 

3. Entropy measures and stock market volatility 

We will apply the concept of entropy for underlying financial markets to calculate Shannon, Tsallis, Rényi and 
approximate entropies. We consider the weekly and monthly closing prices of CAC 40 (Paris Index), Hang-Seng 
(Hong Kong Index), FTSCST China (Singapore Index) and FTSE.MI (Milan Index) for the period 2000-2012. In the 
first step we have used different estimators for the Shannon entropy measure in order to asses the consistency of the 
resulted values. In tables 1-4 we consider maximum likelihood (ML), Biased corrected maximum likelihood (MM), 
Jeffreys (entropy.Dirichlet with 21 /a ), Laplace (entropy.Dirichlet with 1a ), SG (entropy.Dirichlet with 

1a /length underlying financial time series), CS (Chao Shen entropy) and Shrink entropy estimators, to calculate 
the Shannon entropy. In the next step we have considered the Tsallis entropy measure for different values of Tsallis 
parameter q . In the third step we switch our self to consider the Rényi entropy measure for the same stock indices 
and we calculate the entropy value for different values of Rényi parameter r . Finally we calculate the approximate 
entropy. The main purpose of using diffrent entropy measures is to compare their performance and variation 
between resulted values. The results obtained are presented in tables 1-8. 

    Table 1. Entropy results weekly for selected indices: Paris Index 

Shannon Tsallis Rényi Approximate entropy 

Method Value q Value r Value Value 

ML 6.42749 0 635.000 0 6.45519 0.3027921 

MM 6.42760 0.2 216.398 0.25 6.44828  

Jeffreys 6.42749 0.4 77.9564 0.5 6.49135  

Laplace 6.42740 0.6 30.3425 1 6.42749  

SG 6.42749 0.8 13.1024 2 6.40009  

Minimax 6.45260 1 6.42749 4 6.34914  

CS 6.42749 1.2 3. 61590 8 6.27154  

Shrink 6.42771 1.4 2.30800 16 6.18923  

  1.6 1.63100 32 6.12355  

  1.8 1.24250 64 6.07705  

  2 0.99830 Infinite 5.99893  
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Table 2. Entropy results weekly for selected indices: Hong Kong Index 

Shannon Tsallis Rényi Approximate entropy 

Method Value q Value r Value Value 

ML 6.41303 0 635.0000 0 6.45519 0.2855268 

MM 6.41064 0.2 215.8622 0.25 6.44444  

Jeffreys 6.41303 0.4 77.66670 0.5 6.43382  

Laplace 6.41304 0.6 30.22485 1 6.41303  

SG 6.41304 0.8 13.05985 2 6.37385  

Minimax 6.41306 1 6.413030 4 6.30703  

CS 6.41303 1.2 3. 611180 8 6.21319  

Shrink 6.41309 1.4 2.306500 16 6.10259  

  1.6 1.630600 32 5.99881  

  1.8 1.242410 64 5.92947  

  2 0.998290 Infinite 5.84849  

Table 3. Entropy results weekly for selected indices: Milan Index 

Shannon Tsallis Rényi Approximate entropy 

Method Value q Value r Value Value 

ML 6.41080 0 648.0000 0 6.45517 0.2174744 

MM 6.41082 0.2 215.7645 0.25 6.44375  

Jeffreys 6.41081 0.4 77.61600 0.5 6.43252  

Laplace 6.41081 0.6 30.20510 1 6.41080  

SG 6.41080 0.8 13.05300 2 6.37075  

Minimax 6.41083 1 6.410800 4 6.30520  

CS 6.41080 1.2 3. 610480 8 6.22076  

Shrink 6.41084 1.4 2.306290 16 6.13919  

  1.6 1.630540 32 6.07488  

  1.8 1.243990 64 6.03039  

  2 0.998280 Infinite 5.95829  

 

Table 4. Entropy results weekly for selected indices: Singapore Index 

Shannon Tsallis Rényi Approximate entropy 

Method Value q Value r Value Value 

ML 5.47276 0 248.0000 0 5.51745 0.2315494 

MM 5.47450 0.2 101.2816 0.25 5.50659  

Jeffreys 5.47292 0.4 43.52079 0.5 5.59534  

Laplace 5.47307 0.6 19.98199 1 5.47276  

SG 5.47276 0.8 9.986681 2 5.42428  

Minimax 5.47309 1 5.472760 4 5.31731  

CS 5.47276 1.2 3. 323410 8 5.12064  

Shrink 5.47584 1.4 2.217830 16 4.91832  
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  1.6 1.603100 32 4.77948  

  1.8 1.233820 64 4.40446  

  2 0.995590 Infinite 4.63092  

 

Table 5. Entropy results monthly for selected indices: Paris Index 

Shannon Tsallis Rényi Approximate entropy 

Method Value q Value r Value Value 

ML 4.96272 0 146.0000 0 4.99043 0.5229593 

MM 4.96283 0.2 66.17848 0.25 4.98352  

Jeffreys 4.96273 0.4 31.39729 0.5 4.97659  

Laplace 4.96273 0.6 15.78017 1 4.96272  

SG 4.96272 0.8 8.505422 2 4.93533  

Minimax 4.96279 1 4.962724 4 4.88446  

CS 4.96272 1.2 3. 144788 8 4.80753  

Shrink 4.96294 1.4 2.155059 16 4.72727  

  1.6 1.580966 32 4.66493  

  1.8 1.225994 64 4.62299  

  2 0.992811 Infinite 4.56228  

 

Table 6. Entropy results monthly for selected indices: Milan Index 

Shannon Tsallis Rényi Approximate entropy 

Method Value q Value r Value Value 

ML 4.94603 0 146.0000 0 4.99043 0.4656637 

MM 4.94605 0.2 65.98193 0.25 4.97898  

Jeffreys 4.94603 0.4 31.25580 0.5 4.96775  

Laplace 4.94603 0.6 15.70362 1 4.94603  

SG 4.94603 0.8 8.468545 2 4.90604  

Minimax 4.94607 1 4.946035 4 4.84086  

CS 4.94603 1.2 3. 137523 8 4.75743  

Shrink 4.94606 1.4 2.151979 16 4.67681  

  1.6 1.579684 32 4.61285  

  1.8 1.225468 64 4.56947  

  2 0.992598 Infinite 4.51116  

 

Table 7. Entropy results monthly for selected indices: Singapore Index 

Shannon Tsallis Rényi Approximate entropy 

Method Value q Value r Value Value 

ML 4.01730 0 57.00000 0 4.06044 0.5148562 

MM 4.01904 0.2 30.71663 0.25 4.04980  
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Jeffreys 4.01746 0.4 17.18966 0.5 4.03906  

Laplace 4.01760 0.6 10.05588 1 4.01730  

SG 4.01731 0.8 6.185851 2 3.97268  

Minimax 4.01796 1 4.017309 4 3.88185  

CS 4.01730 1.2 2.757170 8 3.73275  

Shrink 4.02047 1.4 1.995183 16 3.59674  

  1.6 1.514623 32 3.51340  

  1.8 1.198296 64 3.46680  

  2 0.981177 Infinite 3.41492  

 

Table 8. Entropy results monthly for selected indices: Hong Kong Index 

Shannon Tsallis Rényi Approximate entropy 

Method Value q Value r Value Value 

ML 4.94744 0 146.0000 0 4.99043 0.5076282 

MM 4.94747 0.2 66.00368 0.25 4.97947  

Jeffreys 4.94744 0.4 31.27056 0.5 4.96864  

Laplace 4.94745 0.6 15.71112 1 4.94744  

SG 4.94744 0.8 8.471911 2 4.90739  

Minimax 4.94750 1 4.947445 4 4.83853  

CS 4.94744 1.2 3. 138080 8 4.73841  

Shrink 4.94750 1.4 2.152190 16 4.61130  

  1.6 1.579760 32 4.49542  

  1.8 1.225490 64 4.42676  

  2 0.992600 Infinite 4.35765  

 
The term entropy can be viewed as the measure of disorder, uncertainity or ignorance of a system which also 

resembles with the features of stock market volatility. The entropy attains the maximum value when all likely events 
have same probability of occurrences. As it is quite evident from our empirical results, volatility shows different 
patterns for selected indices. These patterens exhibit linear and nonlinear dynamics. The entropy captures the overall 
linear and nonlinear dispersion (volatility) observed in the data series. We can see form the computational results 
that all entropies are positive, which conclude that data series are nonlinear. Using the values from tables 1-4 now 
we analyze this behaviour. As we have discussed regarding the concept of entropy and some of its properties, it 
results that it can be used to capture the linear and nonlinear trends of volatility for the underlying data sets. We 
remark that all the values of the entropies for the selected indices are positive, which concludes the nonlinear 
character of the financial series. In the weekly and monthly data series we can see that Paris Index has larger value 
of approximate entropy, but on other hand for Milan Index the value is smaller for weekly  and monthly data, as 
compared to other indices. It results in this case that Paris Index is more volatile and Milan Index is less volatile. In 
the case of Shannon entropy estimators it is obious again the Paris Index has larger value but there is a little 
difference between Paris, Hong Kong and Milan indices. In the case of Tsallis and Rényi entropy measures, we 
remark that as q  and r  approaches to 1 we obtain the Shannon entropy. The behavior of stock indices volatility 
depends on values of q  and r . 
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4. Conclusions 

In this article we have used the entropic approach in order to asses the volatile stock index. The term entropy can 
be viewed as the measure of disorder, uncertainty or ignorance of a system which also resembles with the features of 
the stock market volatilty. We have used the Tsallis, Shannon and Rényi entropy measures and the approximate 
entropy as well as an alternative way to feature the stock market volatility. Our computational results show that 
Paris Index for the period 2000 to 2012 is more volatile then other underlying indices in both weekly and monthly 
data series. Some numerical results have been discussed. The entropic aproach for stock market volatility is a new 
approach and it explores the new horizons for future research in this domain. 
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