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We propose steganographic systems for the case when covertexts (containers) are
generated by a finite-memory source with possibly unknown statistics. The probability
distributions of covertexts with and without hidden information are the same; this means
that the proposed stegosystems are perfectly secure, i.e. an observer cannot determine
whether hidden information is being transmitted. The speed of transmission of hidden
information can be made arbitrary close to the theoretical limit — the Shannon entropy of
the source of covertexts. An interesting feature of the suggested stegosystems is that they
do not require any (secret or public) key.
At the same time, we outline some principled computational limitations on steganography.
We show that there are such sources of covertexts, that any stegosystem that has linear (in
the length of the covertext) speed of transmission of hidden text must have an exponential
Kolmogorov complexity. This shows, in particular, that some assumptions on the sources of
covertext are necessary.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this work we take an information-theoretic approach to steganography, and construct perfectly secure steganographic
systems for the case of finite-memory sources of covertext. We also show that some (probabilistic) assumptions on the
sources of covertexts are necessary, by demonstrating some principled computational limitations on steganography that
arise in the absence of such assumptions.

Perhaps the first information-theoretic approach to steganography was proposed by Cachin [1], who modeled the se-
quence of covertext by a memoryless distribution. Besides laying out basic definitions of steganographic protocols and their
security, Cachin has constructed a steganographic protocol, which, relying on the fact that the probability distribution of
covertexts is known, assures that the distributions of covertexts with and without hidden information are statistically close
(but, in general, are not equal). For the case of an unknown distribution, a universal (distribution-free) steganographic sys-
tem was proposed, in which this property holds only asymptotically with the size of the hidden message going to infinity.
Distribution-free stegosystems are of particular practical importance, since in reality covertexts can be a sequence of graphi-
cal images, instant or email messages, that is, sources for which the distribution is not only unknown but perhaps cannot be
reasonably approximated. Cachin has also defined perfectly secure steganographic systems as those for which the probability
distribution of covertexts with and without hidden information are the same.

In [12] a perfectly secure universal (that is, distribution-free) steganographic system was proposed, for the case of i.i.d.
sources of covertexts. Here we generalize this construction, obtaining a perfectly secure universal steganographic system
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for a much larger class of sources covertext: that of all k-order Markov sources. The only probabilistic characteristic of the
source that has to be known is the bound k on the memory.

For any stegosystem the next property after its security that is of interest is its capacity. The capacity of a stegosystem
can be defined as the number of hidden bits transmitted per letter of covertext. We show that our stegosystem has the
maximal possible capacity: the number of hidden bits per covertext approaches (with the length of the block growing) the
Shannon entropy of the source of covertexts.

Another important feature of our stegosystems is that they do not require a secret key. Thus, the constructions presented
demonstrate that in order to achieve perfect steganographic security no secret has to be shared between the communicating
parties. Clearly, in this case Eve (the observer) can retrieve the secret message being transmitted; however, she will not be
able to say whether it is a secret message or a random noise. This property of our stegosystems (as indeed their secrecy) relies
on the fact that the secret message transmitted is indistinguishable from a Bernoulli (i.i.d.) sequence of equiprobable bits
(random noise). This is a standard assumption that can be easily fulfilled if Alice uses the Vernam cipher (a one-time pad)
to encode the secret before transmitting. For this, obviously, a cryptographic key is required. In other words, a secret key
can be used to obtain cryptographic security, but it is not required to obtain steganographic security, as long as the hidden
information is already indistinguishable from random noise. This also means that the proposed stegosystems can be directly
applied for covert public-key cryptographic communication.

The main idea behind the stegosystems we propose is the following. Suppose that for a covertext x generated by a
source, we can find a set S of covertexts such that each covertext in S has the same probability of being generated as x.
Moreover, assume that each element of S defines S uniquely. Then, instead of transmitting the covertext x that was actually
generated, we can transmit the covertext in the set S whose number in S (assuming some pre-defined natural ordering)
corresponds to the secret text we want to pass. This does not change the probabilistic characteristics of the source, provided
the secret text consists of i.i.d. equiprobable bits. Therefore, an observer cannot tell whether secret information is being
passed. Consider a simple example. Suppose that Alice wants to pass a single bit, and assume that the source of covertexts
is i.i.d., but its distribution is unknown. Alice reads two symbols from the source, say ab. She knows that (since the source
is i.i.d.) the probability of ba is the same. So if Alice’s secret bit to pass is 0 she transmits ab and if she needs to pass 1 then
she transmits ba. However, if the source has generated aa then Alice cannot pass her secret bit, but she has to transmit aa
anyway, to preserve the probabilistic characteristics of the source. (This example is considered in more details in Section 3.)
The same idea was used by von Neumann [17] in his method of extracting random equiprobable bits from a source of
i.i.d. (but not necessarily equiprobable) symbols. There are two disadvantages of the outlined stegosystem: first, the rate
of transmission of secret text is not optimal, and second, it applies only to i.i.d. covertexts. The following generalization
surmounts both obstacles. First, observe that for a sequence of symbols of length n output by an i.i.d. source (with unknown
characteristics), all permutations of this sequence have the same probability. To pass secret information, Alice transmits the
permuted sequence whose index number (in the set of all permutations) encodes her message. A stegosystem based on this
principle achieves (asymptotically with the block length n growing) maximal possible rate of transmission of hidden text:
the Shannon entropy of the source of covertexts. Moreover, this idea works far beyond i.i.d. sources of covertexts, by passing
from all permutations of a string of covertexts, to the set of strings that have the same frequency of occurrence of all tuples
of a given length. This way we can construct a stegosystem for k-order Markovian sources (for any given k).

Thus, we will show that there is a wide class of sources of covertexts, for which simple, perfectly secure steganographic
systems exist. Naturally, one is interested in the question of whether such stegosystems exist for any possible (stationary)
source of covertext. This problem is of interest since sources of covertexts that are of particular practical importance, such
as texts in natural languages or photographs, do not seem to be well-described by any known simple model (in particular,
the finite-memory assumption is often violated). Here we answer this question in the negative. More precisely, we demon-
strate that there exist such sets of distributions on covertexts of length n, for which simple stegosystems whose speed of
transmission of hidden text Ω(n) do not exist. Here simplicity is measured by Kolmogorov complexity of the system, and
stegosystem is considered “simple” when its complexity is exp(o(n)), when n goes to infinity. Kolmogorov complexity is
an intuitive notion which often helps to establish first results that help to understand the principled limitations a certain
problem or model imposes; it has been used as such in many works, see, for example, [6,15,16,18].

This result can be interpreted as that there are such complicated sources of data that one cannot conceivably put sig-
nificantly more information into a source without changing its characteristics, even though the entropy of the source is
very high. This seems to reflect what is well-known in practice; to take one example, it is apparently very hard to put any
hidden message into a given text in a natural language, without making the text “unnatural”. Of course, rather than trying
to change a given text, the communicating parties can easily agree in advance on two texts each of which codes one secret
bit, so that when the need for communication arises, Alice can transmit one of the texts, thereby passing one bit. However,
in order to communicate more than one bit, to use the same method they would have to have a database of covertexts that
is exponentially large with respect to the message to pass. Moreover, even this stegosystem would not be perfectly secure,
since the source of covertexts with hidden information is concentrated on a small subset of all the possible covertexts of
given length. If the stegosystem is used once, then perhaps no reliable detection of the hidden message is possible. If it is to
be used on multiple occasions, that is, if we wish to construct a general purpose stegosystem for transmitting, say, δn bits
with an n-bit message (for some fixed δ > 0), we will need to construct a database of effectively all possible covertexts. At
least, this is the case for some sources of covertexts, as we demonstrate here, and it seems likely that it is the case for such
sources as texts in natural languages or even photographic images. Thus, our negative result may be helpful in clarifying
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the nature of the difficulties that arise in construction of real steganographic systems which use human-generated sources
of covertexts.

Contents

The rest of the paper is organized as follows. In the next section we present the basic definitions. In Section 3 we present
a (perfectly secure) stegosystem for finite-memory source of covertexts, which has the mentioned asymptotic properties of
the rates of hidden text transmission; this stegosystem is a generalization of the stegosystem for i.i.d. sources of covertexts
described in [11,12]. In Section 3.2 we briefly describe how this stegosystem can be algorithmically realized in practice. In
Section 4 we present a result of the opposite kind: there are sources of covertexts that are so complex that any stegosystem
that has a linear speed of transmission, must have an exponential Kolmogorov complexity.

2. Notation and definitions

We use the following model for steganography, mainly following [1]. It is assumed that Alice has an access to an oracle
which generates covertexts according to some fixed but unknown distribution of covertexts μ. Covertexts belong to some
(possibly infinite) alphabet A. Alice wants to use this source for transmitting hidden messages. It is assumed that Alice does
not know the distribution of covertexts generated by the oracle, but this distribution is either memoryless or has a finite
memory (or order); moreover, a bound on the memory of the source of covertexts is known to all the parties (and is used
in the stegosystems as a parameter).

A hidden message is a sequence of letters from B = {0,1} generated independently with equal probabilities of 0 and 1.
We denote the source of hidden messages by ω. This is a commonly used model for the source of secret messages, since it
is assumed that secret messages are encrypted by Alice using a key shared only with Bob. If Alice uses the Vernam cipher
(a one-time pad) then the encrypted messages are indeed generated according to the Bernoulli 1/2 distribution, whereas if
Alice uses modern block or stream ciphers the encrypted sequence “looks like” a sequence of random Bernoulli 1/2 trials.
(Here “looks like” means indistinguishable in polynomial time, or that the likeness is confirmed experimentally by statistical
data, see, e.g. [8,10].) The third party, Eve, is a passive adversary: Eve is reading all messages passed from Alice to Bob and
is trying to determine whether secret messages are being passed in the covertexts or not. Clearly, if covertexts with and
without hidden information have the same probability distribution (μ) then it is impossible to distinguish them. Finite
groups of (covertext, hidden, secret) letters are sometimes called (covertext, hidden, secret) words. Elements of A (B) are
usually denoted by x (y).

The steganographic protocol can be summarized in the following definition.

Definition 1 (Steganographic protocol). Alice draws a sequence of covertexts x∗ = x1, x2, . . . generated by a source of cover-
texts μ, where xi , i ∈ N belong to some (finite or infinite) alphabet A.

Alice has a sequence y∗ = y1, y2, . . . of secret text generated by a source ω of i.i.d. equiprobable bits yi : ω(yi = 0) =
ω(yi = 1) = 1/2, independently for all i ∈ N. The sources μ and ω are assumed independent.

A stegosystem St is a pair of functions: an encoder and a decoder. The encoder StEnc is a function from An × {0,1}∗
(a block of covertexts and a secret sequence) to An , where n ∈ N is a parameter (the block length), whose value is known
to all parties (including Eve). The decoder StDec is a function from An to {0,1}∗ . Moreover, StDec(StEnc(x, y)) = y for all
(x, y) ∈ An × {0,1}∗ for which StEnc(x, y) is defined (that is, decoding is performed without errors). It is assumed that
Stn(x, t) can be undefined for some values of (x, t) ∈ An × {0,1}∗ , the interpretation being that Alice can chose how many
secret bits she can transmit based on the covertext x and the secret text y∗ , and that she always has more secret bits than
she can transmit.

From x∗ and y∗ Alice, using a stegosystem St obtains a steganographic sequence X = X1, X2, . . . that is transmitted
over a public channel to Bob. Bob (and any possible observer Eve) receives X and obtains, using the decoder StDec(X), the
resulting sequence y∗ .

The speed of transmission of secret text Ln is defined as the expected (with respect to the sources of covertexts x∗ and
secret bits y1, y2, . . .) average (per letter of covertext) length of the secret message that is transmitted

Ln(St) := 1

n
Eμ×ω max

{
k ∈ {0} ∪ N: StEnc(x1 . . . xn, y1 . . . yk) is defined

}
. (1)

For the convenience of notation, the definition is presented in terms of an infinite sequence of secret text. It means that
a stegosystem can use as many or as few bits of the hidden text for transmission in a given block as is needed. In practice,
of course, Alice has only a finite sequence to pass, which may result in that she will run out of secret bits when transmitting
the last block of covertexts. In this case we assume that the end of each message can always be determined (e.g. there is
always an encrypted “end of message” sign in the end), so that Alice can fill up the remainder with random noise. The
sequence of covertexts obtained from the source is routinely broken into blocks of size n, when n is the parameter of the
stegosystem. For comparison, in the simple stegosystem presented in the beginning of this section we had n = 2.
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Observe that we require by definition of a steganographic system that the decoding is always correct. Moreover, we do
not consider noisy channels or active adversaries, so that Bob always receives what Alice has transmitted.

Note also that there is no secret key in the protocol. A secret key may or may not be used before entering into the
steganographic communication in order to obtain the hidden sequence x∗; however, this is out of scope of the protocol.

Definition 2 (Perfect security). A steganographic system is called (perfectly) secure if the sequence of covertexts x∗ and the
steganographic sequence X have the same distribution: Pr(x1, . . . , xn ∈ C) = Pr(X1, . . . , Xn ∈ C) for any (measurable) C ⊂ An

and any n ∈ N, where the probability is taken with respect to all distributions involved: μ and ω.

3. A universal stegosystem for k-order Markov sources

Before presenting the stegosystem for k-order Markov sources, we give an example of a very simple stegosystem for i.i.d.
sources. This stegosystem demonstrates in a most concise way the main ideas used then in the general construction.

Consider a situation in which the source of covertexts μ generates i.i.d. symbols from the alphabet A = {a1,a2,a3}. Let,
for example,

y∗ = 01100 . . . , x∗ = a1a1 a2a3 a3a3 a1a3 a2a2 a2a1 a2a1 a3a2 . . . , (2)

where y∗ was generated by ω and x∗ is a sequence of covertexts generated by μ. (Spaces between pairs of letters are
introduced to facilitate the reading.)

The symbols of x∗ are grouped into pairs (thus, the block length n equals 2 in this example), which are processed
sequentially as follows. If the current pair is aiai , where i ∈ {1,2,3}, then this pair is transmitted unchanged to Bob, and
no secret information is transmitted with it. If the current pair is aia j with i �= j then Alice transmits this pair ordered
lexicographically (that is, ordered with respect to the ordering a1 < a2 < a3) if the secret bit to transmit is 0, and she
transmits this pair ordered reverse-lexicographically if the secret bit is 1. In other words, in the case i �= j Alice transmits a
pair of symbols selected as follows:

y = 0 y = 1

i < j aia j a jai
i > j a jai aia j

In our example, the sequence (2) is transmitted as

X = a1a1 a2a3 a3a3 a3a1 a2a2 a2a1 a1a2 a2a3 . . . .

Decoding is obvious: Bob groups the symbols of X into pairs, ignores all occurrences of aiai , and changes aia j to 0 if i < j
and to 1 otherwise.

Proposition 1. Suppose that a source μ generates i.i.d. random variables taking values in A = {a1,a2,a3} and let this source be used
for encoding secret messages consisting of a sequence of i.i.d. equiprobable binary symbols using the method described above. Then the
sequence of symbols output by the stegosystem obeys the same distribution μ as the input sequence.

The proof is easy to derive; it is given in [12]. It is also easy to see that the same method can be used when the alphabet
A is any partially ordered set. The ordering can also be arbitrary, and can be known to the observer Eve. For example, in
the case when A is the set of all digital images, one can assume length-lexicographical ordering on A.

3.1. The general construction

Next we describe the general construction of a universal stegosystem which has the desired asymptotic properties for
finite-memory sources of covertext. The main idea is as follows. First, the given sequence of covertexts is divided into
blocks, say, of length n > 2k, where k is an upper bound of the memory of the source μ of covertexts. For each block
x = (x1, . . . , xn), Alice finds all sequences of covertexts of lengths n that have the same probability as x and also have the
same k leading and k trailing symbols (the latter has to be done so that the probability of the sequence of blocks as a whole
is intact). Then Alice enumerates all these sequences, and transmits the one whose number codes her hidden text. To find
the sequences that have the same probability as the given one, this probability itself does not have to be known. Indeed,
words that have the same number of occurrence of all subwords of length k + 1 have the same probability, for any k-order
Markov distribution.

We now proceed with a more formal exposition.

Definition 3. A source (of covertexts) μ is called (stationary) k-order Markov, if

μ(xn+1 = a | xn = an, xn−1 = an−1, . . . , x1 = a1) = μ(xk+1 = a | xk = an, xk−1 = an−1, . . . , x1 = an−k+1)

for all n ∈ N and all a,a1,a2, . . . ,an ∈ A.
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As before, Alice needs to transmit a sequence y∗ = y1 y2 . . . of secret binary messages drawn by an i.i.d. source ω with
equal probabilities of 0 and 1, while a sequence of covertexts x∗ = x1x2 . . . drawn by an (unknown) source μ from an
alphabet A is available. It is known that μ has memory not greater than k, where k > 0 is given. First we break the
sequence x∗ into blocks of n symbols each, where n > 1 is a parameter. Each block will be used to transmit several symbols
from y∗ (recall that in the simple stegosystem given in the beginning of this section we had n = 2 and each block was used
to transmit 1 or 0 symbols). In this general case the following technical problem arises: the lengths of the blocks of symbols
from x∗ and from y∗ have to be aligned. The problem is that the probabilities of blocks from y∗ are divisible by powers
of 2, which is not necessarily the case with blocks from x∗ .

Let u denote the first n symbols of x∗: u = x1 . . . xn (the first block), and let νu(a1 . . .ak+1) be the number of occurrences
of the subword a1 . . .ak+1 in u. Define the set Su as the set of all words of length n in which the frequency of each subword
of length k + 1 is the same as in u, and whose first and last k symbols are the same as in u:

Su = {
v ∈ An: ∀s ∈ Ak+1 νv(s) = νu(s); ∀t ∈ {1, . . . ,k,n − k + 1, . . . ,n} vt = ut

}
. (3)

Elements of such sets, without the restriction on the first and last symbols, are known as strings of the same type, see [3].
Observe that, if μ has memory not greater than k, then μ-probabilities of all members of Su are equal. Let there be

given some ordering on the set Su (for example, lexicographical) which is known to all communicating parties, and let

Su = {s0, s1, . . . , s|Su |−1}
with respect to this ordering.

Denote m = �log2 |Su |	, where �y	 stands for the largest integer not greater than y. Consider the binary expansion of
|Su|:

|Su| = (αm,αm−1, . . . ,α0), (4)

where αm = 1, α j ∈ {0,1}, m > j � 0. In other words,

|Su| = 2m + αm−12m−1 + αm−22m−2 + · · · + α0.

Denote by δ(u) the index of the word u in the set Su (with respect to the considered order) and let (λm, λm−1, . . . , λ0)

be the binary expansion of δ(u). Let j(u) be the largest number satisfying α j �= λ j . Alice, having found j(u), reads j(u)

letters from the source of hidden text y∗; let τ be the number whose binary expansion is this sequence of letters. Alice
finds the word v in Su whose index is

∑
j(u)<s�m αs2s + τ and transmits v to Bob (in other words, v is the output of the

encoder).
The decoding is as follows. Bob, having received v , defines S v (which equals Su), then finds (in the same way as for

encoding) the number j(v) (which is the same for u and v: j(u) = j(v)) and τ , and then using τ he finds j(v) encoded
symbols.

All the subsequent n-letter words are encoded and decoded analogously. Denote by Stk
n(A) the described stegosystem.

The k-order (conditional) Shannon entropy hm(μ) of a source μ is defined as follows:

hm(μ) = −
∑

v∈Am

μ(v)
∑
a∈A

μ(a | v) logμ(a | v). (5)

Theorem 1. Suppose that an unknown k-order Markov source μ generates a sequence of covertext taking values in some alphabet
A, where k � 0 is known. Let this source be used for encoding secret messages consisting of a sequence of i.i.d. equiprobable binary
symbols using the described method Stk

n(A) with n > 1. Then

(i) the sequence of symbols output by the stegosystem obeys the same distribution μ as the input sequence,
(ii) if the alphabet A is finite then the average number of hidden symbols per letter Ln goes to the k-order Shannon entropy hk(μ) of

the source μ as n goes to infinity.

Proof. To prove (i) observe that if, as before, x1, x2 . . . denotes the sequence generated by the source of covertexts, and
X1, X2, . . . the transmitted sequence, then by construction we have P (X1, . . . , Xn) = P (x1, . . . , xn) where n is the length of
the block. For the second block we have

P (Xn+1, . . . , X2n | X1, . . . , Xn) = P (Xn+1, . . . , X2n | Xn−k+1, . . . , Xn)

= P (Xn+1, . . . , X2n | xn−k+1, . . . , xn) = P (xn+1, . . . , x2n | xn−k+1, . . . , xn) = P (xn+1, . . . , x2n | x1, . . . , xn),

where the first and the last equalities follow from the k-Markov property, the second is by construction (the last k symbols
of each block are kept intact), and the third one holds because the hidden texts are equiprobable, as are the elements of Su .
The same holds for all the following blocks, thereby establishing the equality of distributions (i).

Let S ′
u be the set of all strings of length n = |u| that have the same k-type as u, that is, the same frequencies of subwords

of length k: S ′
u = {v ∈ An: ∀s ∈ Ak+1 νv(s) = νu(s)}. In other words, S ′

u is the same as Su except the k first and last symbols
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are not fixed. Using a result of the theory of types [3], for any u for the size of the set S ′
u we have log |S ′

u| = nhk(Pu)+o(n),
where hk(Pu) is the kth-order entropy of the k-order Markov distribution Pu defined by the empirical frequencies of the
word u. Since the set Su is not more than a constant times smaller than S ′

u we also have log |Su | = nhk(Pu)+o(n). Moreover,
the law of large numbers implies that hk(u) → hk(μ) for μ-almost every sequence u as its size n goes to infinity. Therefore,

log |Su| = nhk(μ) + o(n) with μ-probability 1. (6)

Furthermore, define ϕ := |Su |/2m and let L(Su) be the average number of secret bits transmitted per word from Su :

L(Su) = 1

|Su|
m∑

i=0

αi i2
i .

We have

L(Su) = 1

|Su|
m∑

i=0

iαi2
i = 1

|Su|

(
m

m∑
i=0

αi2
i −

m∑
i=0

αi2
i(m − i)

)

= m −
(

2m
m∑

k=0

kαm−k2−k

)
> m − 2m+1/|Su| = m − 2/ϕ = log |Su| − logϕ − 2/ϕ.

Computing the maximum, we find logϕ + 2/ϕ � 2 for ϕ ∈ [1,2]. Thus, L(Su) > log |Su | − 2. From this and (6) we obtain the
second statement of the theorem. �

As mentioned in the Introduction, the main idea of the stegosystem St is to construct, for each given block of covertexts,
a set Su of equiprobable covertexts. The same idea was used in [12] to construct a stegosystem for i.i.d. sources μ, with the
main difference being in the definition of the sets Su . In that work we have also obtained non-asymptotic estimates on the
speed of transmission of secret text. Such estimates should be also possible to obtain for the case of k-order Markov sources,
based on the results of the theory of types (e.g., [3]), but, for the sake of simplicity, here we only consider asymptotic
behavior of the speed of transmission.

3.2. Complexity of encoding and decoding

Consider the resource complexity of the stegosystem St0
n(A), that is, the general construction of the previous section, but

for the case of i.i.d. sources of covertexts. The only resource-demanding part of this stegosystem is finding the rank of a
given block u in the set Su of all its permutations, and, vice versa, finding a block given its rank. (It is clear that all other
operations can be performed in linear time.)

Consider this computational problem in some detail. To store all possible words from the set Su would require memory
of order |A′|nn log |A′| bits (where A′ ⊂ A is the set of all symbols that occur in u and n = |u|; without loss of generality
in the sequel we assume A = A′), which is practically unacceptable for large n. However, there are algorithms for solving
this problem with polynomial resource complexity. The first such algorithm, that uses polynomial memory with the time of
calculation cn2, c > 0, per letter, was proposed in [7] (see also [4,14]). The time of calculation of the fastest known algorithm
is O (log3 n), see [9].

Next we briefly present the ideas behind the algorithm from [7]. Assume the alphabet A is binary. Let S be the set of
binary words of length n with w ones. The main observation is the following equality, which gives the lexicographical index
number of any word v = x1 . . . xn ∈ S:

rank(x1 . . . xn) =
n∑

k=1

xk

(
n − k

w − ∑k−1
i=1 xi

)
, (7)

where
( t

m

) = t!/(m!(t − m)!), 0! = 1 and
( t

m

) = 0 if t < m. The proof of this well-known equality can be found, for example,
in [5,9]. As an example, for n = 4, w = 2, v = 1010 we have

rank(1010) =
(

3
2

)
+

(
1
1

)
= 4.

The computation by (7) can be performed step-by-step based on the following obvious identities:(
t
p

)
=

(
t − 1
p − 1

)
· t

p
,

(
t
p

)
=

(
t − 1

p

)
· t

t − p
.

A direct estimation of the number of multiplications and divisions gives polynomial time of calculations by (7). The method
of finding a word v based on its rank, as well as a generalization to non-binary alphabets, are based on the same equality
(7); a detailed analysis can be found in [5,9].
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For the general case of k-order Markov sources of covertexts, again, the only resource-demanding part of the stegosystem
Stk

n(A) is the enumeration of all the sequences of the same type as a given one. For the case k = 1 and the binary alphabet,
[2] proposes an efficient algorithm for this problem. For k = 1 and arbitrary alphabet the recent work [19] gives a method
(Lemma 13) of performing such an enumeration in time O (n log3 log logn). (It is worth noting that the work [19] is de-
voted to the problem of generating uniformly random bits from a Markovian source of data, generalizing the von Neumann
scheme, which we have also used (Proposition 1) to construct a simple example of a universal stegosystem. Thus the prob-
lem of steganography is closely related to the problem of generating uniformly random bits from a non-uniform source of
randomness.) For the case k > 1, the problem of finding polynomial-time algorithms, to the best of the authors’ knowledge,
remains open. We conjecture that efficient algorithms for this case exist as well, based on the results cited above, and on
the consideration that often the k-order Markov case can be reduced to 1-order Markov by considering windows of size k
as states.

4. Principled computational limitations on steganography

In this section we abandon all probabilistic assumptions on the source μ of covertexts, and do not consider asymptotic
behavior of stegosystems with respect to the sequence of covertext. Therefore, it will be convenient to consider distributions
of covertexts μ as distributions on An , where n is a parameter interpreted as the total number of covertexts output by the
source μ. In other words, we have just one block of covertexts. (Clearly, if we show that it is impossible (for some sources)
to preserve the distribution of one block (the first one), then it is also impossible to preserve the distribution of several
consecutive blocks, no matter what is the probabilistic dependence between them.) With this exception, the rest of the
protocol is as defined in Definition 1.

We next briefly introduce the notion of Kolmogorov complexity. A formal definition can be found, for example, in [6].
Informally, Kolmogorov complexity of a word s is the length of the shortest program that outputs s. That is, for some
universal Turing machine U , we can define the Kolmogorov complexity KU (s) of a binary word s as the length of the
shortest program for U that outputs s. There are such machines U that KU (s) � KU ′ (s) + const for every s and every other
universal Turing machine U ′ (the constant may depend on U and U ′ but not on s). Fix any such U and define Kolmogorov
complexity K (s) as KU (s). (So, we can say that Kolmogorov complexity is defined up to an additive constant.) Complexity of
other objects, such as sets of words or programs, can be defined via simple encodings into words. We will use some simple
properties of K , such as K (s) � |s| + c for any word s, whose proofs can be found in e.g. [6]. Here it is worth noting that
K (s) does not take into account time or memory it takes to compute s.

Theorem 2. For every δ > 0 there is a family indexed by n ∈ N of distributions Pn on An with h(Pn) � n − 1, such that every
stegosystem Stn whose Kolmogorov complexity satisfies log K (Stn) = o(n) and whose speed of transmission of hidden text Ln(Stn) is
not less than δ, is not perfectly secure from some n on.

Proof. The informal outline of the proof is as follows. We will construct a sequence of sets Xn of words of length n whose
Kolmogorov complexity is the highest possible, namely 2Ω(n) . For each n ∈ N, the distribution Pn is uniform on Xn . We will
then show that, in order to have the speed of transmission δ > 0 a perfectly secure stegosystem must be able to generate a
large portion of the set Xn , for each n. This will imply that the complexity of such a stegosystem has to be 2Ω(n) . The latter
implication will be shown to follow from the fact that, in order to transmit some information, a stegosystem must replace
the input with some output that could have been generated by the source; this, for perfectly secure stegosystems, amounts
to knowing at least a large portion of Xn .

Next we present a more formal proof. Fix n ∈ N and let X ⊂ An be any set such that |X | = 2n−1 and

K (X) = 2n(1 + o(1)
)
. (8)

The existence of such a set can be shown by a direct calculation of the number of all subsets with 2n−1 elements; the
maximal complexity is equal (up to a constant) to the log of this value.

The distribution Pn is uniform on Xn . Assume that there is a perfectly secure stegosystem Stn for the family Pn , n ∈ N,
and let the speed of transmission of hidden text be not less than δ. Define the set Z as the set of those words which are
used as codewords Z := {x ∈ An: StDec(x) �= Λ}. Since the expected speed of transmission of hidden text is lower bounded
by δ, we must have |Z | � δ2n−1 (indeed, since every word codes at most n − 1 bits, the expected speed of transmission
must satisfy (n − 1)

|Z |
2n−1 � δn). Since St is perfectly secure we must have Z ⊂ X . Furthermore, define Z0 as the set of words

that code those secret messages that start with 0, and Z1 those that start with 1:

Zi := {
x ∈ An: StDec(x) = iu, u ∈ {0,1}∗}, i ∈ {0,1}. (9)

Since Z = Z1 ∪ Z0 we must have |Zi | � |Z |/2 � δ
2 2n−1 for some i ∈ {0,1}. Let this i be 1.

Thus, we have |X\Z1| � 2n−1(1 − δ
2 ). Let us lower-bound the complexity K (Z1|X\Z1) of the set Z1 given X\Z1. Given

the description of X\Z1 and the description of Z1 relative to X\Z1, one can reconstruct X . That is why K (Z1|X\Z1) �
K (X) − K (X\Z1) + O (1). Hence,
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K (Z1|X\Z1) � K (X) − max
|U |�2n−1(1−δ/2)

K (U ) + O (1). (10)

The latter maximal complexity can be calculated as follows:

max
|U |�2n−1(1−δ)

K (U ) = log

(
2n

2n−1(1 − δ/2)

)
+ O (1).

Applying the Stirling approximation for factorial, we obtain

max
|U |�2n−1(1−δ/2)

K (U ) � 2n(1 − γ )
(
1 + o(1)

)
,

where γ = 1 − h( 2−δ
4 , 2+δ

4 ). From this equality, (8), and (10) we get

K (Z1|X\Z1) � γ 2n−1(1 + o(1)
)
. (11)

We will next show how to obtain Z1 from X\Z1 and the stegosystem St, thus arriving at a contradiction with the assump-
tion that log K (St) = o(n).

For a set T ⊂ X define

ϕ(T ) := {
StEnc(x,1u): x ∈ T , u ∈ {0,1}n−1}.

Since St is perfectly secure, ϕ(T ) ⊂ X for every T ⊂ X . Let T0 = X\Z1, and Tk = Tk−1 ∪ ϕ(Tk−1). Since X is finite and each
Tk−1 is a subset of Tk , there must be such k0 ∈ N that Tk = Tk0 for all k � k0. There are two possibilities: either Tk0 = X
or X\Tk0 �= ∅. Assume the latter, and define Z ′

1 = X\Tk0 . Then to obtain an element of Z ′
1 as an output of the stegosystem

St, the input must be an element of Z ′
1 and a secret message that starts with 1. From this, and from the fact that the

distribution of the output is the same as the distribution of the input (that is, St is perfectly secure), we get

Pn
(

Z ′
1

) = Pn
(

Z ′
1, y = 1u

) = Pn
(

Z ′
1

)
ω(1) = Pn

(
Z ′

1

)
/2,

which implies Pn(Z ′
1) = 0 and Z ′

1 = ∅. Therefore, there is a k ∈ N such that Tk = X . This means that a description of Z1
can be obtained from a description of X\Z1 = T0 and St. Indeed, to obtain Z1 it is sufficient to run StEnc on all elements
of T0 with all inputs starting with 1, thus obtaining T1, and then repeat this procedure until we get Tk+1 = Tk for some k,
wherefrom we know that Tk = X and Z1 = Tk\T0. Thus,

K (Z1|X\Z1) � K (St) + O (1) = 2o(n) (12)

which contradicts (11). �
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