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In this paDer, it is shown that a necessary and Mkient condition for the existence of a 
balanced claw design BCD(m, II. c, A b of a complete nt-partlte graph AK,,,(n, n, . . . , n) is 
h(m- l)a ~0 (mod2c) and (III-- l)nac. 

on 

A complete m -partite graph AK,, (n, FI, . . . , ni (m 3 2) is a muhigraph w,kh m 
independent sets of n points each, such that any two points in different S”J~:SZIS are 
joined exactly A lines. A complete graph AK, with m points may be regarded as a 
particular type of complet: m-partite multigraph where n - 1. A complete bipartite 
graph K( 1, c) is called a c-claw (; > 2). A point of degree c is called a root and 
each point of degree one is called a leaf of the c-ckw. 

A claw design CD(m, n, c, A) is a line-disjoint decomposition of 

hK,,,(n, n, . . . , n) into subgraphs e;l+ Gomorphic to a c-claw. The claw design is 
s&d to be balanced and is denoted by BCD(m, n, c, A), if furthermore each point 
of AK&, n, . . . , n) belongs to exactly the same number of c-claws. 

A necessary and sufkient condition for the existence of a particular fype of 

CD( m, n, c, A) or BCD( m, n, c, A ) has been obtained, such as, CMm, 1, c, 1) [5], 

CD(m I, c, A) [2], CD( w, n, c, 1) [3], BCD(m, 1, c, A) [l] and BCD(m, n, c 1][4]. 

We use the following labeling scheme for AK&-z, n, . . . , n). Let the points of 
AK,& n,. . . 9 n) be q, v2,. . . , v,, and define the length of vi and vj by min{)i - 

is not 
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independent sets of AK,,,(rz, n, . . . , 6) with this labeling are 

By the turning of a c-claw we mean the simultaneous increasing of all indices of 
c i- 1 points of the c-claw by 1. The indices are reduced modulo mn to the set of 
residues t l,2, . . I , mn}. 

‘Fltmrem. There exists a BCD( m, n, c, A) if and only if 
(i) A( m - 1)n ~0 (mod 2c), and 

(ii) (171 - 1)~ 3 <. 

roof. (Necessity) Suppose that there exists a BCD(m, n, c, A). Since c + 1 points 
of a c-claw are all different. we have (WI - 1)s c. Therefore, condition (ii) is 
necessary. Let b be the number of the total c-claws and let r be the number of 
c-claws such that each point of AK,,,(nl n, . . . , rz) belongs to exactly r c-claws. 
Then we have obviously 

n’=bc and mnr=b(:+ 1). 

Therefore, we have 

b = Am!m - l)n2/(2c) and r = h(m - l)n(c + 1)1(2c). 

For a point u, let r,(u) be the number of c-claws in which u is a root point and let 
r&u) be that of c-claws in which u is a leaf point. Then we have 

r,(u)c + r?(v) = h(m - 1)~ 

z.nd, of course, 

r1(21) + rz(v) = r. 

From these relations we have 

r,(u) = A(tn - l)n/(%c) and T*(V) =$A(m - 1)~ 

Thus rl and r2 do not depend on the particular point u. Since b, r, rl, r2 are ah 
integers, we have 

A (WI - 1)n = 0 (mod 2~). 

Therefore, condition (i) is also necessary. 
(Sufficiency) Proof will be shown by a construction algorithm. For a set of 

parameters m, n, c, A satisfying conditions (i) and (ii), we wail, Aim - 1)n = 2~s. 
Arrange (FYI - l)n point5 adjacent to a point I_+,,,, in increasing order of indices 
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repeatedly A times, i.e., 
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Ul, UT.. . . % Q-l, &,I,. . . J tJ7m-lr U2m+l,. . . 1 Unm._], 

. . . 

ut, u2,. - e 9 fJ*-1, Urn+19 * * * , Qm-I, 2)2m+l,. *. , U”,,_l. 

Since SC = )A(m - l)n, consider s c-4aws Ci (i = 1,2, . . . , s), where the root point 
of each Ci is u,, and LJ leaf point of C, are first c points in the sequence and c 
leaf paints of Cz are next c points in the sequence, and so on. The turnings of 
these Ci mn - 1 times yield, with Ci themselves, mns line-disjoint c-claws of 
hK,,(n, n, . . . , n). Since mnsc -2 A(y)n’, we have a BCD(m. n, c, A) with rl = s and 
r2 = $h(m - lb. This completes the oroof. 

Codhry [ 11. There exists Q BCD(m. 1. c. A 1 if and only if 
(3 A(m - I)=0 (mod 2c), and 

(ii) m - 1 3 c. 
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