Discrete Mathematics 38 (1982) 117-119 North-Holland Publishing Company 117

NOTE

ON BALANCED CLAW DESIGNS OF COMPLETE MULTI-PARTITE GRAPHS

Kazuhiko USHIO

Department of Mechanical Engineering, Niihama Technical College, Niihama, Ehime 792, Japan

Received 26 September 1979 Revised 15 January 1981

In this paper, it is shown that a necessary and sufficient condition for the existence of a balanced claw design BCD (m, n, c, λ) of a complete *m*-partite graph $\lambda K_m(n, n, ..., n)$ is $\lambda (m-1)n \equiv 0 \pmod{2c}$ and $(m-1)n \geq c$.

1. Introduction

A complete m-partite graph $\lambda K_m(n, n, ..., n)$ $(m \ge 2)$ is a multigraph with m independent sets of n points each, such that any two points in different subsets are joined exactly λ lines. A complete graph λK_m with m points may be regarded as a particular type of complete m-partite multigraph where n = 1. A complete bipartite graph K(1, c) is called a c-claw $(c \ge 2)$. A point of degree c is called a root and each point of degree one is called a leaf of the c-claw.

A claw design $CD(m, n, c, \lambda)$ is a line-disjoint decomposition of $\lambda K_m(n, n, \ldots, n)$ into subgraphs each isomorphic to a *c*-claw. The claw design is said to be balanced and is denoted by $BCD(m, n, c, \lambda)$, if furthermore each point of $\lambda K_m(n, n, \ldots, n)$ belongs to exactly the same number of *c*-claws.

A necessary and sufficient condition for the existence of a particular type of $CD(m, n, c, \lambda)$ or $BCD(m, n, c, \lambda)$ has been obtained, such as, CD(m, 1, c, 1) [5], $CD(m, 1, c, \lambda)$ [2], CD(m, n, c, 1) [3], $BCD(m, 1, c, \lambda)$ [1] and BCD(m, n, c, 1) [4].

2. Balanced Claw Designs

We use the following labeling scheme for $\lambda K_m(n, n, ..., n)$. Let the points of $\lambda K_m(n, n, ..., n)$ be $v_1, v_2, ..., v_{mn}$ and define the length of v_i and v_j by min{|i - j|, mn - |i - j|}. Let v_i and v_j be adjacent if and only if the length of v_i and v_j is not divisible by m and let join v_i and v_j by exactly λ lines. Then the m disjoint 0012-365X/82/0000-0000/\$02.75 © 1982 North-Holland

independent sets of $\lambda K_m(n, n, \ldots, n)$ with this labeling are

 $V_i = \{v_i, v_{i+m}, v_{i+2m}, \ldots, v_{i+(n-1)m}\}, i = 1, 2, \ldots, m.$

By the turning of a c-claw we mean the simultaneous increasing of all indices of c+1 points of the c-claw by 1. The indices are reduced modulo mn to the set of residues $\{1, 2, \ldots, mn\}$.

Theorem. There exists a BCD (m, n, c, λ) if and only if

(i) $\lambda(m-1)n \equiv 0 \pmod{2c}$, and

(ii) $(m-1)n \ge ...$

Proof. (*Necessity*) Suppose that there exists a BCD (m, n, c, λ) . Since c+1 points of a *c*-claw are all different, we have $(m-1) \ge c$. Therefore, condition (ii) is necessary. Let *b* be the number of the total *c*-claws and let *r* be the number of *c*-claws such that each point of $\lambda K_m(n, n, ..., n)$ belongs to exactly *r c*-claws. Then we have obviously

$$\lambda\binom{m}{2}n^2 = bc$$
 and $mnr = b(c+1)$.

Therefore, we have

$$b = \lambda m(m-1)n^2/(2c)$$
 and $r = \lambda (m-1)n(c+1)/(2c)$.

For a point v, let $r_1(v)$ be the number of c-claws in which v is a root point and let $r_2(v)$ be that of c-claws in which v is a leaf point. Then we have

$$r_1(v)c+r_2(v)=\lambda(m-1)n$$

and, of course,

$$r_1(v) + r_2(v) = r.$$

From these relations we have

$$r_1(v) = \lambda(m-1)n/(2c)$$
 and $r_2(v) = \frac{1}{2}\lambda(m-1)n$.

Thus r_1 and r_2 do not depend on the particular point v. Since b, r, r_1 , r_2 are all integers, we have

 $\lambda (m-1)n \equiv 0 \pmod{2c}.$

Therefore, condition (i) is also necessary.

(Sufficiency) Proof will be shown by a construction algorithm. For a set of parameters m, n, c, λ satisfying conditions (i) and (ii), we write $\lambda (m-1)n = 2cs$. Arrange (m-1)n points adjacent to a point v_{mn} in increasing order of indices

118

repeatedly λ times, i.e.,

$$v_1, v_2, \ldots, v_{m-1}, v_{m+1}, \ldots, v_{2m-1}, v_{2m+1}, \ldots, v_{nm-1}, \ldots$$

...
 $v_1, v_2, \ldots, v_{m-1}, v_{m+1}, \ldots, v_{2m-1}, v_{2m+1}, \ldots, v_{nm-1}.$

Since $sc = \frac{1}{2}\lambda(m-1)n$, consider s c-claws C_i (i = 1, 2, ..., s), where the root point of each C_i is v_{mn} and c leaf point of C_1 are first c points in the sequence and cleaf points of C_2 are next c points in the sequence, and so on. The turnings of these $C_i mn - 1$ times yield, with C_i themselves, mns line-disjoint c-claws of $\lambda K_m(n, n, ..., n)$. Since $mnsc = \lambda {m \choose 2}n^2$, we have a BCD (m, n, c, λ) with $r_1 = s$ and $r_2 = \frac{1}{2}\lambda(m-1)n$. This completes the proof.

Corollary [1]. There exists a BCD $(m, 1, c, \lambda)$ if and only if

- (i) $\lambda(m-1) \equiv 0 \pmod{2c}$, and
- (ii) $m-1 \ge c$.

References

- [1] C. Huang, On the existence of balanced bipartite designs II, Discrete Math. 9 (1974) 147-159.
- [2] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979) 273-278.
- [3] K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of a complete multi-partite graph, Hiroshima Math. J. 8 (1978) 207-210.
- [4] K. Ushio, On balanced claw-decomposition of a complete multipartite graph, Memoirs of Niihama Technical College 16 (1980) 29-33.
- [5] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On claw-decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975) 33-42.