NOTE

ON BALANCED CLAW DESIGNS OF COMAPLETE MULTI-PARTITE GRAPHS

Kazuhiko USHIO
Department of Mechanical Engineering. Niihama Technical College, Niihama, Ehime 792, Japan

Received 26 September 1979
Revised 15 January 1981

Abstract

In this paper, it is shown that a necessary and sufficient condition for the existence of a balanced claw design $\mathrm{BCD}(m, n, c, \lambda)$ of a complate m-partite graph $\lambda K_{m}(n, n, \ldots, n)$ is $\lambda(m-1) n \equiv 0(\bmod 2 c)$ and $(m-1) n \geqslant c$.

1. Introduction

A complete m-partite graph $\lambda K_{m}(n, n, \ldots, n)(m \geqslant 2)$ is a multigraph with m independent sets of n points each, such that any two points in different cubsets are joined exactly λ lines. A complete graph λK_{m} with m points may be regarded as a particular type of complete m-partite multigraph where $n-1$. A complete biparsite graph $K(1, c)$ is called a c-claw $(i \geqslant 2)$. A point of degree c is called a root and each point of degree one is called a leaf of the c-clew.

A claw design $\mathrm{CD}(m, n, c, \lambda)$ is a line-disjoint decomposition of $\lambda K_{m}(n, n, \ldots, n)$ into subgraphs earh isomorphic to a c-claw. The claw design is said to be balanced and is denoted by $\operatorname{BCD}(m, n, c, \lambda)$, if furthermore each point of $\lambda K_{m}(n, n, \ldots, n)$ belongs to exactly the same number of c-claws.

A necessary and sufficient condition for the existence of a particular type of $\mathrm{CD}(m, n, c, \lambda)$ or $\mathrm{BCD}(m, n, c, \lambda)$ has been obtained, such as, $\mathrm{C} \nu(m, 1, c, 1)$ [5], $\mathrm{CD}(m, 1, c, \lambda)$ [2], $\mathrm{CD}(\nmid n, n, c, 1)$ [3], $\mathrm{BCD}(m, 1, c, \lambda)[1]$ and $\mathrm{BCD}(m, n, c .1][4]$.

2. Balanced Claw Designs

We use the following labeling scheme for $\lambda K_{m}(n, n, \ldots, n)$. Let the points of $\lambda K_{m}(n, n, \ldots, n)$ be $v_{1}, v_{2}, \ldots, v_{m n}$ and $d s$ fine the length of v_{i} and v_{j} by $\min \{\mid i-$ $j|, m n-|i-j|\}$. Let v_{i} and v_{i} be adjacent if and only if the length of v_{i} and v_{j} is not divisible by m and let join v_{i} and v_{i} by exactly λ lines. Then the m disjoint
independent sets of $\lambda K_{m}(n, n, \ldots, n)$ with this labeling are

$$
V_{i}=\left\{v_{i}, v_{i+m}, v_{i+2 m}, \ldots, v_{i+(n-1) m}\right\}, \quad i=1,2, \ldots, m .
$$

By the turning of a c-claw we mean the simultaneous increasing of all indices of $c+1$ points of the c-claw by 1 . The indices are reduced modulo $m n$ to the set of residues $\{1,2, \ldots, m n\}$.

Theorem. There exists a $\operatorname{BCD}(m, n, c, \lambda)$ if and only if
(i) $\lambda(m-1) n \equiv 0(\bmod 2 c)$, and
(ii) $(m-1) n \geqslant$ 。

Proof. (Necessity) Suppose that there exists a $\operatorname{BCD}(m, n, c, \lambda)$. Since $c+1$ points of a c-claw are all different. we have $(m-1) \geqslant c$. Therefore, condition (ii) is necessary. Let b be the number of the total c-claws and let r be the number of c-claws such that each point of $\lambda K_{m}(n, n, \ldots, n)$ belongs to exactly $r c$-claws. Then we have obviously

$$
\lambda\binom{m}{2} n^{2}=b c \quad \text { and } \quad m n r=b(c+1)
$$

Therefore, we have

$$
b=\lambda m(m-1) n^{2} /(2 c) \quad \text { and } \quad r=\lambda(m-1) n(c+1) /(2 c)
$$

For a point v, let $r_{1}(v)$ be the number of c-claws in which v is a root point and let $r_{2}(v)$ be that $\mathrm{o}^{f} c$-claws in which v is a leaf point. Then we have

$$
r_{1}(v) c+r_{2}(v)=\lambda(m-1) n
$$

and, of course,

$$
r_{1}(v)+r_{2}(v)=r
$$

From these relations we have

$$
r_{1}(v)=\lambda(m-1) n /(2 c) \quad \text { and } \quad r_{2}(v)=\frac{1}{2} \lambda(m-1) n
$$

Thus r_{1} and r_{2} do not depend on the particular point v. Since b, r, r_{1}, r_{2} are all integers, we have

$$
\lambda(m-1) n \equiv 0(\bmod 2 c) .
$$

Therefore, condition (i) is also necessary.
(Sufficiency) Proof will be shown by a construction algorithm. For a set of parameters m, n, c, λ satisfying conditions (i) and (ii), we wricu $\lambda(m-1) n=2 c s$. Arrange $(m-1) n$ points adjacent to a point $v_{m n}$ in increasing order of indices
repeatedly $\boldsymbol{\lambda}$ times, i.e.,

$$
\begin{aligned}
& v_{1}, v_{3}, \ldots, v_{m-1}, v_{m+1}, \ldots, v_{2 m-1}, v_{2 m+1}, \ldots, v_{n m-1} \\
& \ldots \\
& v_{1}, v_{2}, \ldots, v_{m-1}, v_{m+1}, \ldots, v_{2 m-1}, v_{2 m+1}, \ldots, v_{m m-1} .
\end{aligned}
$$

Since $s c=\frac{1}{2} \lambda(m-1) n$, consider $s c$-ilaws $C_{i}(i=1,2, \ldots, s)$, where the root point of each \mathcal{C}_{i} is $v_{m n}$ and c leaf point of C_{1} are first c points in the sequence and c leaf puints of C_{2} are next c points in the sequence, and so on. The turnings of these $C_{i} m n-1$ times yield, with C_{i} themselves, mns line-disjoint c-claws of $\lambda K_{m}(n, n, \ldots, n)$. Since mnsc $=\lambda\binom{m}{2} n^{2}$, we have a $\operatorname{BCD}(m, n, c, \lambda)$ with $r_{1}=s$ and $r_{2}=\frac{1}{2} \lambda(m-1) n$. This completes the proof.

Corollary [1]. There exists a $\mathrm{BCD}(m, 1, c, \lambda)$ if and only if
(i) $\lambda(m-1) \equiv 0(\bmod 2 c)$, and
(ii) $m-1 \geqslant c$.

References

[1] C. Huang, On the existence of balanced biparite designs II, Discrete Math. 9 (1974) 147-159.
[2] M. Tarsi. Decomposition of complete multistapiss into stars, Discrete Math. 26 (1979) 273-278.
[3] K. Ushio, S. Tazawa and S. Yamamoto, On claw-decomposition of a complete multi-partite graph, Hiroshima Math. J. 8 (1978) 207-210.
[4] K. Ushio, On balanced claw-decomposition of a complete multipartite graph, Memoirs of Niihama Technical College 16 (1980) 29-33.
[5] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On claw-decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975) 33-42.

