NOTE.

A DOUBLY DIVISIBLE NEARLY KIRKMAN SYSTEM

Paul SMITH

Department of Mathematics, University of Victoria, Victoria, B.C., Canada

Received 30 January 1976
Revised 3 May 1976

In this note we exhibit an example of a new class of combinatorial array. A Room square [9] is an \(r \times r \) square each of whose cells is either empty or contains a distinct unordered pair with entries from the set of integers \(\{1, 2, \ldots, r+1\} \) such that each integer appears exactly once in each row and exactly once in each column. We present an analogous square whose entries are unordered triples, none of whose two-element subsets is repeated.

By a doubly divisible design (DDD) we mean an \(m \times n \) rectangle each of whose cells is either empty or contains an unordered \(k \)-tuple of distinct positive integers chosen from the set \(S = \{1, 2, \ldots, kn\} \) with the conditions: (1) each integer appears exactly once in each row, (2) no integer appears more than once in each column, (3) no two distinct integers appear together in more than one \(k \)-tuple (block). Such designs have applications in statistics and particularly interesting applications in the construction of schedules for duplicate bridge tournaments. An extensive literature exists concerning DDD's with \(k = 2 \). (Room squares and Howell movements.)

We use the standard notation: for the parameters: \(v = kn \) is the cardinality of \(S \), \(b \) is the number of blocks (non-empty cells), \(r \) is the replication number for each of the \(v \) elements and \(k \) is the number of elements in each block.

If we replace condition (2) above by (2') each element appears exactly once in each column and then add condition (4) \(r = \lfloor (v-1)/(k-1) \rfloor \), we call the design a Wingo square. A Room square is a Wingo square with \(k = 2 \). The only example previously known of such a design with \(k > 2 \) is a duplicate bridge schedule composed by Laura Wingo [2] with parameters \(v = 24 \), \(b = 42 \), \(k = 4 \), \(r = 7 \).

A Kirkman system is a set of \(n(3n-1)/2 \) blocks of size 3 which is partitioned into \((3n-1)/2 \) "parallel" classes each containing \(n \) blocks. The entries in each block are selected from the integers \(\{1, 2, \ldots, 3n\} \) in such a way that no two distinct elements appear together in two distinct blocks and each class contains all of the \(3n \) elements. It has been shown [6] that Kirkman systems exist for all odd values of \(n \). It is clear that if we take a square with \((3n-1)^2/4 \) cells and place the blocks of distinct parallel classes of a Kirkman system in distinct rows in such a way that the columns form a new partition, then the result is a Wingo square. No such construction is known to exist.
But a Wingo square does exist for \(k = 3, n = 8 \). The blocks in any row are chosen from the same parallel class of a nearly Kirkman system (NKS), and the columns yield a different partition into parallel classes. We constructed the square by first building cyclic NKS's on the first 24 integers by difference set methods. (Many such systems exist.) Since a cyclic NKS is completely determined by any one of its parallel classes, we treated the first class as a starter for a DDD. We then applied the appropriate criteria to permute the entries and produce a strong starter. A computer search yielded the strong starter: \(\{1, 12, 23, -2, 10, 18, 7, 12, 22, 6, 15, 19, -5, 9, 11, 13, 14, 16, 3, 4, 21, -4, 8, 9, 24\} \). The full square is shown in Fig. 1.

It may be remarked that in the language of block designs, the blocks of this array form a PBIBD with parameters \(v = 24, b = 88, k = 3, r = 11, \lambda_1 = 1, \lambda_2 = 0 \).

An analysis of the completed design will suggest the method of construction. The set of positive integers less than or equal to 24 was partitioned into three sets \(A = \{1, \ldots, 11\}, B = \{12, \ldots, 22\} \) and \(C = \{23, 24\} \). The assignment of elements to blocks and blocks to cells in the first row completely determines the design, since the elements in sets \(A \) and \(B \) cycle down the right pandiagonals, while the elements in set \(C \) remain constant. In order to find a set \(\{B_i\} \) of eight blocks for the initial row we assumed the form:

\[
B_1 = \{a_0, b_0, 23\}, \quad B_{12} = \{a_1, a_2, a_3\}, \quad B_{13} = \{b_1, b_2, b_3\}, \quad B_{14} = \{a_4, a_5, b_0\},
\]

\[
B_{15} = \{b_4, b_5, a_6\}, \quad B_{16} = \{a_6, a_7, b_9\}, \quad B_{17} = \{b_6, b_7, a_9\}, \quad B_{18} = \{a_{10}, b_{10}, 24\}
\]

where the \(a_i \) and \(b_i \) are distinct elements in \(A \) and \(B \) respectively. (1) For all pairs \(a_i \) and \(a_j \) (resp. \(b_i \), \(b_j \)) appearing together in a block, the ten differences \(a_i - a_j \) (resp. \(b_i - b_j \)) must be distinct mod 11. (2) For all pairs \(a_i, b_i \) appearing together in a block, the ten differences \(b_i - a_i \) must be distinct mod 11. Without loss we set \(a_0 = 11, b_0 = 22 \). It is easily verified that if these conditions are met, the set \(\{B_i\} \), \(i = 1, \ldots, 8, \) for fixed \(i \) comprising a parallel class. Here if \(a_k \) is in \(B_i \), then \((a_k + i - 2, \text{mod} \ 11) + 1 \) is in \(B_j \) and a similar condition holds for \(b_k \). If \(c_k \) is in \(B_{1j} \), \(c_k \) is in \(B_{1i} \) for all \(i \).

The construction of NKS's was done empirically in two steps using backtrack algorithms. The first step was to find all partitions \(A^\perp \cup B \) of the form

\[
P_i(A) = \{(11), (a_1, a_2, a_3), (a_4, a_5), (a_6, a_7), (a_8, a_9), (a_{10})\}
\]

satisfying condition (1) of the previous paragraph. Corresponding partitions of \(B \) were obtained by setting \(b_i = a_k + 11 \). These partitions were stored.

The second step involved finding all possible sets of blocks satisfying condition (2), each formed by combining a \(P_i(A) \) and a \(P_i(B) \). It is possible to list all these sets, but since the C.P.U. time would be excessive, they were generated one at a time, and a third step algorithm was applied.

The third step, that of obtaining a doubly-divisible NKS from a set of initial blocks, is analogous to methods used for constructing Room squares of order \(2n - 1 \) from a 1-factorization of the complete graph \(K_{2n} \) [10]. It is sufficient to place
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>16</td>
<td>24</td>
<td>32</td>
<td>40</td>
<td>48</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>54</td>
<td>63</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>22</td>
<td>33</td>
<td>44</td>
<td>55</td>
<td>66</td>
<td>77</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>48</td>
<td>60</td>
<td>72</td>
<td>84</td>
</tr>
</tbody>
</table>

Fig. 1.
the eight blocks in the cells C_i, $i = 1, \ldots, 11$, of the first row in such a way that the following conditions are satisfied. (3) For each pair s, t in A appearing in cells C_i and C_j, respectively, $s - t + i - j \equiv 0 \ mod \ 11$. A similar condition holds for s, t in B.

It can easily be seen that this condition guarantees that each entry appears exactly once in each column of the 11×11 square.

Termination occurred with the discovery of the illustrated design, but it appears likely that many others could be obtained.

References

[8] Paul Smith, PBIB designs and the Kirkman problem, manuscript.