Journal of Algebra 321 (2009) 205-229

Bott periodicity and calculus of Euler classes on spheres

Satya Mandal^{*,1}, Albert J.L. Sheu

Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd., Lawrence, KS 66045, USA

ARTICLE INFO

Article history: Received 26 February 2008 Available online 1 October 2008 Communicated by Steven Dale Cutkosky

Keywords: Vector bundles Projective modules Chern classes Euler classes

ABSTRACT

A variety of computations regarding the Euler class group $E(A_n, A_n)$ and the Grothendieck group $K_0(A_n)$ of the algebraic sphere $Spec(A_n)$ is done. The Euler class of the algebraic tangent bundle on $Spec(A_n)$ is computed. It is also investigated whether every element in the Euler class group $E(A_n, A_n)$ is the Euler class of a projective A_n module of rank n.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Work on obstruction theory for projective modules started with the work of N. Mohan Kumar and M.P. Murthy [Mk,MkM,Mu1]. It is a result of Murthy [Mu1] that for a reduced (smooth) affine algebra A with dim A = n, over an algebraically closed field k, the top Chern class map $C_0 : K_0(A) \rightarrow CH_0(A)$ is surjective. This result is a consequence of the result [Mu1] that given any local complete intersection ideal I of height n, there is a projective A-module P with rank(P) = n that maps surjectively onto I.

For real smooth affine varieties such propositions will fail. Most common examples are that of real spheres. We denote the real sphere of dimension n by \mathbb{S}^n and A_n denotes the ring of algebraic functions on \mathbb{S}^n . We have, the Chow group of zero cycles $CH_0(A_n) = \mathbb{Z}/2$ (see 3.1) and by the theorem of Swan [Sw2], $K_0(A_n) = KO(\mathbb{S}^n)$. By the periodicity theorem of Bott (see 5.10), for nonnegative integers n = 8r + 3, 8r + 5, 8r + 6, 8r + 7 ($r \ge 0$) we have $K_0(A_n) = KO(\mathbb{S}^n) = \mathbb{Z}$. In these cases, the top Chern class map $C_0 = 0$ and it fails to be surjective.

On the other hand, by Bott periodicity (see 5.10), $\widetilde{K}_0(A_{8r}) = \widetilde{KO}(\mathbb{S}^{8r}) = \mathbb{Z}$, $\widetilde{K}_0(A_{8r+1}) = \widetilde{KO}(\mathbb{S}^{8r+1}) = \mathbb{Z}/(2)$, $\widetilde{K}_0(A_{8r+2}) = \widetilde{KO}(\mathbb{S}^{8r+2}) = \mathbb{Z}/(2)$, $\widetilde{K}_0(A_{8r+4}) = \widetilde{KO}(\mathbb{S}^{8r+4}) = \mathbb{Z}$. Therefore, in these cases, the question of surjectivity of the top Chern class map $C_0 : K_0(A_n) \to CH_0(A_n)$ fully depends on the top Chern class of the generator τ_n of $\widetilde{K}_0(A_n)$. In analogy to the obstruction theory in topology, it makes

* Corresponding author.

0021-8693/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jalgebra.2008.09.013

E-mail addresses: mandal@math.ku.edu (S. Mandal), sheu@math.ku.edu (A.J.L. Sheu).

¹ Partially supported by a grant from NSA (H98230-07-1-0046).

more sense to consider the Euler class group $E(A_n)$ of A_n as the obstruction group, instead of the Chow group $CH_0(A_n)$.

For (smooth) affine rings *A* with dim $A = n \ge 2$, over a field *k*, the original definition of Euler class groups E(A) was given by Nori [MS,BRS2]. For a projective *A*-module *P*, with det P = A and an orientation $\chi : A \xrightarrow{\sim} \det P$, an Euler class $e(P, \chi) \in E(A)$ was defined. We mainly refer to [BRS2], for basics on Euler class groups and Euler classes. For such a ring *A*, $\mathcal{PO}_n(A)$ will denote the set of all isomorphism classes of pairs (P, χ) , where *P* is a projective *A*-module rank *n*, with trivial determinant, and $\chi : A \xrightarrow{\sim} \det P$ is an isomorphism, to be called an orientation.

So, our main question is whether the Euler class map $e : \mathcal{PO}_n(A_n) \to E(A_n)$ is surjective. In fact, $E(A_n) = \mathbb{Z}$. For reasons given above, the Euler class map fails to be surjective for n = 8r + 3, 8r + 5, 8r + 6, 8r + 7 ($r \ge 0$). In fact, we also prove that for n = 8r + 1 this map fails to be surjective. For any even integer $n \ge 2$, we prove that any even class $N \in E(A_n) = \mathbb{Z}$, is in the image of e. For n = 2, 4, 8 we prove that e is surjective. For $n = 8r + 2, 8r + 4 \ge 2$, we prove that e is surjective if and only if the top Stiefel–Whitney class $w_n(\tau_n) = 1$ where τ_n is the generator of $\widetilde{K}_0(A_n)$. It remains an open question whether $w_n(\tau_n) = 1$. It follows (see 6.4) that $w_n(\tau_n) = 1$ if an only if $C_0(\tau_n) = 1$.

Among other results in this paper, we compute (see 3.3) the Euler class of the algebraic tangent bundle *T* over $Spec(A_n)$. As in topology (see [MiS]), $e(T, \chi) = -2$, when *n* is even and zero when *n* is odd. This provides a fully algebraic proof that the algebraic tangent bundles *T* over even dimensional spheres $Spec(A_n)$ do not have a free direct summand.

Given any real maximal ideal *m* of A_n , we attach (see 4.2) a local orientation ω on *m* in an algorithmic way and compute the class $(m, \omega) = 1$ or $(m, \omega) = -1$ in $E(A_n)$.

2. Preliminaries

Following are some of the notations we will be using in this paper.

Notations 2.1. First, the fields of real numbers and complex numbers will, respectively, be denoted by \mathbb{R} and \mathbb{C} . The quaternion algebra will be denoted by \mathbb{H} .

1. The real sphere of dimension *n* will be denoted by \mathbb{S}^n . Let

$$A_n = \frac{\mathbb{R}[X_0, X_1, \dots, X_n]}{(\sum_{i=0}^n X_i^2 - 1)} = \mathbb{R}[x_0, x_1, \dots, x_n]$$

denote the ring of algebraic functions on \mathbb{S}^n .

- 2. For any real affine variety X = Spec(A), let $\mathbb{R}(X) = S^{-1}A$, where *S* is the multiplicative set of all $f \in A$ that do not vanish at any real point of Spec(A). Also, $X(\mathbb{R})$ denote the set of all real points of *X*.
- 3. For any noetherian commutative ring A and line bundles L on Spec(A), the Euler class group will be denoted by E(A, L) and the weak Euler class group will be denoted by $E_0(A, L)$. Usually, E(A, A) will be denoted by E(A) and similarly $E_0(A)$ will denote $E_0(A, A)$. We refer to [BRS2] for the definitions and the basic properties of these groups.

The following theorem would be obvious to the experts (see [BRS1]).

Theorem 2.2. Let $X = \operatorname{spec}(A)$ be a smooth affine variety of dimension $n \ge 2$ over \mathbb{R} . Then, the natural map

$$E_0(\mathbb{R}(X)) \to CH_0(\mathbb{R}(X))$$

is an isomorphism and $CH_0(\mathbb{R}(X)) \approx \mathbb{Z}/(2)^r$ where r is the number of compact connected components of $X(\mathbb{R})$.

Proof. It follows directly from [BRS1, Theorem 5.5] and Theorem 2.3 below that $E_0(\mathbb{R}(X)) \xrightarrow{\sim} CH_0(\mathbb{R}(X))$. Also, by [BRS1, Theorem 4.10], $CH_0(\mathbb{R}(X)) \approx \mathbb{Z}/(2)^r$. \Box

Theorem 2.3. (See [BDM].) Let $X = \operatorname{spec}(A)$ be smooth affine variety of dimension $n \ge 2$ over \mathbb{R} . The following diagram of exact sequences

commute and the first vertical map φ is an isomorphism.

Proof. We only need to prove that φ is injective. The proof is given in the proof of [BDM, Proposition 4.29]. \Box

We also include the following easy lemma.

Lemma 2.4. Let A be any smooth affine ring over \mathbb{R} with dim $A = n \ge 2$ and L be a line bundle on Spec(A). Let P be a projective A-module of rank n and det P = L. Let $\chi, \eta : L \xrightarrow{\sim} \bigwedge^n P$ be two orientations. Suppose $e(P, \chi) = (I, \omega)$ where I is an ideal of height n and ω is a local orientation on I and $\eta = u\chi$ where u is a unit in A. Then $e(P, \eta) = (I, u\omega)$.

Proof. Write $F = L \oplus A^{n-1}$. By theorem in [BRS2], there is a surjective map $f : F \to I$ that induces (I, ω) as in the commutative diagram:

Here γ is an isomorphism with determinant χ , and δ is any isomorphism with det $(\delta) = u$. So $\gamma \delta \sim u\chi = \eta$ and $e(P, \eta) = (I, u\omega)$. \Box

3. The tangent bundle

It is well known that the tangent bundle T_n , over the real sphere \mathbb{S}^n , of even dimension $n \ge 1$, does not have a nowhere vanishing section. The purpose of this section is to compute the Euler class of the algebraic tangent bundle explicitly.

First, note that all line bundles over \mathbb{S}^n , with $n \ge 2$ are trivial, we have only one Euler class group $E(A_n, A_n)$ to be denoted by $E(A_n)$. Similarly, we have only one weak Euler class group $E_0(A_n)$. The following proposition entails some of the basic facts about Euler class groups of the spheres.

Proposition 3.1. The Euler class group of the sphere is given by $E(A_n) = \mathbb{Z}$, generated by (m, ω) where m is any real maximal ideal and ω is any local orientation of m. Similarly, the weak Euler class group is given by

$$E_0(A_n) \approx CH_0(A_n) = \frac{\mathbb{Z}}{(2)}.$$

Proof. From Theorem 2.3, we have the commutative diagram of exact sequences:

Since complex points in A_n are complete intersection [MS, Lemma 4.2], we have $CH(\mathbb{C}) = E^{\mathbb{C}}(A_n) = 0$ and the above diagram reduces to

We have by Theorem 2.2, $E_0(A_n) \xrightarrow{\sim} CH_0(A_n)$. Therefore, by [BRS1, Theorems 4.13, 4.10]

 $E(\mathbb{R}(\mathbb{S}^n)) = \mathbb{Z}$ and $CH_0(A_n) \approx E_0(\mathbb{R}(\mathbb{S}^n)) = \mathbb{Z}/(2).$

The proof is complete. \Box

The following definition will be convenient for subsequent discussions.

Definition 3.2. Let $m_0 = (x_0 - 1, x_1, ..., x_n)$ be the maximal ideal in A_n that corresponds to the real point $(1, 0, ..., 0) \in \mathbb{S}^n$. Write $F = A_n^n$ and let $e_1, ..., e_n$ be the standard basis of F. Define local orientation

 $\omega_0: F/m_0F \to m_0/m_0^2$ where for i = 1, ..., n, $\omega(e_i) = image(x_i)$.

By Proposition 3.1, (m_0, ω_0) will generate the Euler class group $E(A_n) = \mathbb{Z}$. This generator $(m_0, \omega_0) = 1$ will be called the **standard generator** of $E(A_n)$. Similarly, the class of $m_0 = 1$ will be called the **standard generator** of $E_0(A_n) = \mathbb{Z}/(2)$.

Unless stated otherwise, we use these standard generators in our subsequent discussions.

We compute the Euler class of the algebraic tangent bundle over $Spec(A_n)$ as follows.

Theorem 3.3. Let T_n be the projective A_n -module corresponding to the tangent bundle over \mathbb{S}^n . There is an orientation $\chi : A_n \xrightarrow{\sim} \bigwedge^n T_n$ such that, if $n \ge 2$ is even, then the Euler class $e(T_n, \chi) = -2 \in E(A_n)$ and if $n \ge 3$ is odd, then the Euler class $e(T_n, \chi) = 0 \in E(A_n)$.

Proof. Write $m_0 = (x_0 - 1, x_1, ..., x_n)$, $m_1 = (x_0 + 1, x_1, ..., x_n) \in Spec(A_n)$. Then m_0 , m_1 correspond, respectively, to the points (1, 0, ..., 0), (-1, 0, ..., 0) in \mathbb{S}^n . We have

$$m_0 = (x_1, \dots, x_n) + m_0^2, \qquad m_1 = (x_1, \dots, x_n) + m_1^2$$

and $m_0 \cap m_1 = (x_1, \dots, x_n)$. Write $F = A_n^n$ and let e_1, \dots, e_n be the standard basis. For j = 0, 1 we define local orientations

$$\omega_j : F/m_j F \to m_j/m_j^2$$
 where for $i = 1, ..., n$, $\omega_j(e_i) = image(x_i)$.

Therefore, $(m_0, \omega_0) = 1$ is the standard generator of $E(A_n) = \mathbb{Z}$. We write $J = m_0 \cap m_1 = (x_1, \dots, x_n)$ and define the surjective map

$$\alpha: F \rightarrow J$$
 where for $i \ge 1$, $\alpha(e_i) = x_i$.

Then, α induces the local orientation

$$\omega: F/JF \to J/J^2$$
 where $\omega(e_i) = image(x_i)$.

Since (J, ω) is global, it follows

$$(m_0, \omega_0) + (m_1, \omega_1) = (J, \omega) = 0$$

Hence

$$(m_1, \omega_1) = -(m_0, \omega_0) = -1.$$

Since $E(A_n) = E(\mathbb{R}(\mathbb{S}^n))$, we can apply [BDM, Lemma 4.2] and we have

$$(m_1, \omega_1) + (m_1, -\omega_1) = 0.$$

Therefore

$$(m_0, \omega_0) + (m_1, -\omega_1) = 2(m_0, \omega_0) = 2.$$

Let $D = diagonal(-x_0, 1, ..., 1) : F/JF \rightarrow F/JF$, then *D* is an automorphism and $det(D) = image(-x_0)$. Now, let $\eta = \omega D : F/JF \rightarrow J/J^2$. In fact,

$$\eta(e_1) = image(-x_0x_1)$$
 and $\eta(e_i) = image(x_i) \quad \forall i > 1.$

Note that

$$D = diagonal(-1, 1, \dots, 1) \mod m_0, \qquad D = Id \mod m_1.$$

Since, ω_i are the reductions of ω modulo m_i we have

$$(J, \eta) = (m_0, -\omega_0) + (m_1, \omega_1) = -[(m_0, \omega_0) + (m_1, -\omega_1)] = -2.$$

Now we apply [BRS2, Lemma 5.1], to α : $F \rightarrow J$, with $a = b = image(-x_0)$. We have the following:

1. Define *T* by the exact sequence

$$0 \to T \to A_n \oplus F = A^{n+1} \xrightarrow{\phi} A_n \to 0$$

where

$$\Phi = -(x_0, x_1, \dots, x_n) = (b, -\alpha).$$

- 2. We have (J, ω) is obtained from $(\alpha, \chi_0 = Id_{A_n})$.
- 3. By [BRS2, Lemma 5.1], *T* has an orientation $\chi : A_n \to \bigwedge^n T$ such that

$$e(T, \chi) = (J, image(-x_0)^{n-1}\omega) = (m_0, (-1)^{n-1}\omega_0) + (m_1, \omega_1).$$

4. If *n* is **EVEN**, we have

$$e(T, \chi) = (m_0, -\omega_0) + (m_1, \omega_1) = -2$$

And if, *n* is **ODD**, we have

$$e(T, \chi) = (m_0, \omega_0) + (m_1, \omega_1) = 0.$$

5. Note that $T = \ker(\Phi) \approx \ker(-\Phi) = T_n$ is the tangent bundle.

So, the proof is complete. \Box

4. An algorithmic computation in $E(A_n)$

Lemma 4.1. Let A_n be as above and let $m_1, M_1, m_2, M_2, ..., m_N, M_N \in \text{spec}(A_n)$ be a set of distinct maximal ideals that correspond to distinct real points in \mathbb{S}^n . We will assume that these points are in $\mathbb{S}^1 = \{x_j = 0: \forall j \ge 2\} \subseteq \mathbb{S}^n$. For i = 1, ..., N, let $L_i = 0, x_2 = 0, ..., x_n = 0$ be the line passing through the pair of points corresponding to m_i and M_i . Then

$$\bigcap_{i=1}^{N} (m_i \cap M_i) = \left(\prod_{i=1}^{N} L_i, x_2, \dots, x_n\right).$$

Proof. Let *J* denote the right-hand side. Claim that

$$J \subseteq m \in Spec(A_n) \implies m = m_i \text{ or } m = M_i \text{ for some } i.$$

To see this, note for such an *m*, we have $L_i \in m$ for some *i*. Therefore,

$$m_i \cap M_i = (L_i, x_2, \ldots, x_n) \subseteq m$$

Hence $m = m_i$ or M_i . Let m be such a maximal ideal and assume $m = m_i$. We have, $L_j \notin m_i \forall j \neq i$ and $J_{m_i} = (L_i, x_2, \dots, x_n)_{m_i} = (m_i)_{m_i}$. The proof is complete. \Box

Given various points *m* in \mathbb{S}^n , the following is an algorithm to compute class $(m, \omega) \in E(A_n)$.

Theorem 4.2. As in Definition 3.2, let $(m_0, \omega_0) = 1 \in E(A_n) = \mathbb{Z}$ be the standard generator. Let p = (a, b, 0, ..., 0) be a point in \mathbb{S}^n and let $M = (x_0 - a, x_1 - b, x_2, ..., x_n) \in Spec(A_n)$ be the maximal ideal corresponding to p. Assume $m_0 \neq M$ and so $a \neq 1$. Let

$$L = (1 - a)x_1 + b(x_0 - 1)$$
, so $(L, x_2, x_3, \dots, x_n) = m_0 \cap M$.

As in (3.2), $F = A_n^n$ and e_1, \ldots, e_n is the standard basis of F. Define

$$\omega_M : F/MF \to M/M^2$$
 by $\omega_M(e_1) = x_1 - b$, $\omega_M(e_i) = x_i$ $\forall i \ge 2$.

If $a \neq 0$ (i.e. *p* is not the north or the south pole), then ω_M is a surjective map and

$$(m_0, \omega_0) + (M, -sign(a)\omega_M) = 0.$$

So, if a > 0 then $(M, \omega_M) = 1$ and a < 0 then $(M, \omega_M) = -1$.

Proof. Define the surjective map

$$f: F \to m_0 \cap M$$
 by $f(e_1) = L$, $f(e_i) = x_i$ $\forall i \ge 2$.

We will see that f reduces to ω_0 modulo m_0 . With s = -1/2, t = 1/2 we have, $1 = s(x_0 - 1) + t(x_0 + 1)$. So

$$(x_0 - 1) = s(x_0 - 1)^2 + t(x_0^2 - 1) = s(x_0 - 1)^2 + t\sum_{i=1}^n -x_i^2 \in m_0^2.$$

Therefore $L - (1 - a)x_1 \in m_0^2$. Also since $M \neq m_0$ we have $a \neq 1$. In fact a < 1. Hence f reduces to

$$\omega_0: F/m_0F \rightarrow m_0/m_0^2$$

Now define

$$\gamma_M : F/MF \to M/M^2$$
 by $\gamma_M(e_1) = L$, $\gamma_M(e_i) = x_i \quad \forall i \ge 2$.

Since γ_M is the reduction of f, we have

$$(m_0, \omega_0) + (M, \gamma_M) = 0.$$

Let $\omega_M : F/MF \to M/M^2$ be as in the statement of the theorem. We will assume $a \neq 0$ or equivalently, -1 < b < 1. In this case, we prove that ω_M is a surjective map. (*Note below that for* ω_M *to be surjective, we need* $a \neq 0$.) We have

$$L = (1 - a)x_1 + b(x_0 - 1) = (1 - a)(x_1 - b) + b(x_0 - a).$$

We also have $a^2 + b^2 - 1 = 0$. Now again, with s = -1/2a, t = 1/2a we have $1 = s(x_0 - a) + t(x_0 + a)$ and

$$(x_0 - a) = s(x_0 - a)^2 + t(x_0^2 - a^2) = s(x_0 - a)^2 + t(b^2 - x_1^2) - t\sum_{i=2}^n x_i^2.$$

Therefore, ω_M is surjective. Further,

$$(b^2 - x_1^2) = (b - x_1)(b + x_1) = (b - x_1)[2b - (b - x_1)] = 2b(b - x_1) - (b - x_1)^2.$$

So,

$$(x_0 - a) = s(x_0 - a)^2 + t \left[2b(b - x_1) - (b - x_1)^2 \right] - t \sum_{i=2}^n x_i^2 = b/a(b - x_1) + w$$

for some $w \in M^2$. So,

$$(x_0 - a) - b/a(b - x_1) \in M^2$$
.

Therefore, modulo M, we have

$$L = (1 - a)(x_1 - b) + b(x_0 - a) \equiv (1 - a)(x_1 - b) + b(b/a)(b - x_1)$$

or

$$L \equiv (x_1 - b) \left[1 - a - b^2 / a \right] = (x_1 - b) \left[(a - 1) / a \right]$$

So, γ_M and ω_M differ by an isomorphism of determinant (a - 1)/a. Since a - 1 < 0, we have $\gamma_M = -sign(a)\omega_M$. Therefore,

$$(m_0, \omega_0) + (M, -sign(a)\omega_M) = 0.$$

Hence, if

$$a > 0 \Rightarrow (M, \omega_M) = -(M, -\omega_M) = (m_0, \omega_0) = 1$$

and

$$a < 0 \Rightarrow (M, \omega_M) = -(m_0, \omega_0) = -1.$$

So, the proof is complete. \Box

Remark 4.3. We will continue to use the notations of (3.2, 4.2). As we remarked in the proof of Theorem 4.2, if *p* is the north pole or the south pole and *M* is the corresponding maximal ideal, then ω_M , as defined in 4.2, will fail to define a local orientation. If $p = (0, \pm 1, 0, ..., 0)$ is the north or the south pole, then $M = (x_0, x_1 \mp 1, x_2, ..., x_n)$. For p = N the north pole or p = S the south pole, a natural local orientation is defined by:

$$\omega_p: F/MF \to M/M^2$$
 where $\omega_p(e_1) = x_0$, $\omega_p(e_i) = x_i \quad \forall i \ge 2$.

Then $(M, \omega_p) = -1$ if p is the north pole and $(M, \omega_p) = 1$ if p is the south pole.

Proof. Let p = N = (0, 1, 0, ..., 0) be the north pole. Then $M = (x_0, x_1 - 1, x_2, ..., x_n)$. Write $L = x_0 + x_1 - 1$. Then $m_0 \cap M = (L, x_2, ..., x_n)$. Consider the surjective map $f : F \rightarrow m_0 \cap M$ given by these generators. Note that $L - x_0 = x_1 - 1 \in M^2$. This follows because $1 = -(x_1 - 1)/2 + (x_1 + 1)/2$. So, it follows that f reduces to ω_p . Similarly, f reduces to ω_0 on m_0 . Therefore, $(M, \omega_p) = -1$.

If p = S = (0, -1, 0, ..., 0) is the south pole, then $M = (x_0, x_1 + 1, x_2, ..., x_n)$. We replace the equation of *L* by $L = x_0 - x_1 - 1$. Then $L - x_0 = -(x_1 + 1) \in M^2$. It follows, that *f* reduced to ω_p . Similarly, $L + x_1 = x_0 - 1 \in m_0^2$. This shows that *f* reduces to $-\omega_0$ on m_0 . Therefore, $(M, \omega_p) - (m_0, \omega_0) = 0$. So, $(M, \omega_p) = 1$. The proof is complete. \Box

Remark 4.4. In the statement of (4.2), we assumed that $p = (a, b, 0, ..., 0) \in \mathbb{S}^1 \subseteq \mathbb{S}^n$. Now suppose $p \notin \mathbb{S}^1$ is any point in \mathbb{S}^n . Let $e_0, ..., e_n$ be the standard basis of \mathbb{R}^n . So, m_0 is the ideal of e_0 . There is an orthonormal transformation $(E_0, ..., E_n)^t = A(e_0, ..., e_n)^t$ of \mathbb{R}^{n+1} such that $E_0 = e_0$ and $p = aE_0 + bE_1$. Write $A = (a_{ij}; i, j = 0, ..., n)$. It follows, $a_{00} = 1$ and $a_{0j} = a_{j0} = 0$ for all j = 1, ..., n. We can assume det A = 1.

Write $(Y_0, \ldots, Y_n)^t = A(X_0, \ldots, X_n)^t$. Then $Y_0 = X_0$, and for $i = 1, \ldots, n$ we have $Y_i = \sum_{j=1}^n a_{ij}X_j$. It follows that in the Y-coordinates, $e_0 = (1, 0, \ldots, 0)$ and $p = (a, b, 0, \ldots, 0)$. Let ω' be the local orientation on m_0 defined by (Y_1, \ldots, Y_n) . Since det A = 1, it follows that (m_0, ω') is the standard generator of $E(A_n)$ (see 3.2). Now, we can write down local orientation on M in Y-coordinates, as in (4.2) and the rest of (4.2) remains valid.

212

5. Bott periodicity

In this section, we will give some background on Bott periodicity, mostly from [ABS,F,Sw1]. We will recall the definition of the Clifford algebras of a quadratic forms.

Definition 5.1. (See [ABS].) Let *k* be a commutative ring and (V, q) be a quadratic *k*-module. Then a *k*-algebra C(q) with an injective map $i : V \to C(q)$ is said to be the **Clifford algebra** of *q*, if $i(x)^2 = q(x)$ and if it is universal with respect to this property. Following are some of the properties of C(q):

- 1. Note $C(q) = \frac{T(V)}{I(q)}$ where T(V) is the tensor algebra of V and I(q) is the two-sided ideal of T(V) generated by $\{x^2 q(x): x \in V\}$.
- 2. The \mathbb{Z}_2 -grading on T(V) induces a \mathbb{Z}_2 -grading on C(q) as $C(q) = C_0(q) \oplus C_1(q)$ where $C_0(q)$ denotes the even part and $C_1(q)$ denotes the odd part.
- 3. Also, if (V, q') is another quadratic *k*-module, then

$$C(q \perp q') \approx C(q) \widehat{\otimes} C(q')$$
 as graded rings.

This means, the multiplication structure is given by $(u \otimes x_i)(y_j \otimes v) = (-1)^{ij} uy_j \otimes x_i v$ for $x_i \in C_i(q'), y_j \in C_j(q)$.

4. If $V = \bigoplus_{i=1}^{n} ke_i$ is free with basis e_i then

$$C(q) = \bigoplus_{0 \leq i_1 < \cdots < i_r \leq n; r \geq 0} ke_{i_1 i_2 \dots i_r}.$$

We will mostly be concerned with this case where V is free. Further, if $q = \sum_{i=1}^{n} a_i X_i^2$ is a diagonal form, then

$$\forall i, j = 1, \dots, n;$$
 with $i \neq j$, $e_i^2 = a_i$ and $e_i e_j = -e_j e_i$.

Notations 5.2. We will introduce some notations for our convenience.

- 1. Let *k* be a commutative ring and (V, q) be a quadratic *k*-module and $V = \bigoplus_{i=1}^{n} ke_i$ is free and $q = q(X_1, ..., X_n)$. As in [Sw1], we denote $R_k(q) = R(q) = \frac{k[X_1, ..., X_n]}{(q-1)}$. We usually drop the subscript *k* and use the notation R(q).
- 2. Suppose *C* is a ring. Then:
 - (a) The category of finitely generated (left) *C*-modules will be denoted by $\mathcal{M}(C)$.
 - (b) If C has a \mathbb{Z}_2 -grading, the category of finitely generated (left) \mathbb{Z}_2 -graded C-modules will be denoted by $\mathcal{G}(C)$.
 - (c) The category of finitely generated (left) projective *C*-modules will be denoted by $\mathcal{P}(C)$.
- 3. Given a category C, with exact sequences, the Grothendieck group of C will be denoted K(C).
- 4. Given a ring *R*, we will denote $K_0(R) = K(\mathcal{P}(R))$. If the rank map $rank : K_0(R) \to \mathbb{Z}$ is defined, we denote $K_0(R) = rank^{-1}(0)$.
- 5. Given a connected smooth real manifold *X*, the Grothendieck group of the category of real vector bundles over *X* will be denoted by KO(X). As above, $\widetilde{KO}(X)$ will denote the kernel of the rank map.
- 6. For a commutative noetherian ring *R* of dimension *n* and X = Spec(R), the Chow group of zero cycles will be denoted by $CH_0(R)$ or $CH_0(X)$. When the top Chern class is defined, $C_0 = C^n : K_0(R) \to CH_0(R)$ will denote the homomorphism defined by the top Chern class.
- 5.1. Generators of $\widetilde{K_0}(A_n)$

In this subsection, we describe the generators of $\widetilde{K}_0(A_n)$.

Proposition 5.3. Let k be ring with $1/2 \in k$ and let $q = a_1 X_1^2 + \dots + a_n X_n^2$ be a diagonal form. Let e_1, \dots, e_n denote the canonical generators of C(-q). Let $M = M^0 \oplus M^1 \in \mathcal{G}(C(-q))$ be a \mathbb{Z}_2 -graded C(-q)-module and

$$N = R(q \perp 1) \otimes_k M = N^0 \oplus N^1$$

where

$$N^0 = R(q \perp 1) \otimes_k M^0, \qquad N^1 = R(q \perp 1) \otimes_k M^1$$

Let x_i denote the image of X_i in $R(q \perp 1)$. Define

$$\varphi(x) = \sum_{i=1}^n x_i (1 \otimes e_i) : N^1 \to N^0, \qquad \psi(x) = \sum_{i=1}^n x_i (1 \otimes e_i) : N^0 \to N^1.$$

Write $q \perp 1 = q + X_0^2$ *and let* $y = x_0 = image(X_0) \in R(q \perp 1)$. *Define*

$$\rho_M = \rho = \frac{1}{2} \begin{pmatrix} 1 - y & \varphi(x) \\ -\psi(x) & 1 + y \end{pmatrix} : N \to N.$$

That means, for $n_0 \in N^0$, $n_1 \in N^1$ we have

$$\rho(n_0, n_1) = \left((1 - y)n_0 + \varphi(x)n_1, -\psi(x)n_0 + (1 + y)n_1 \right) / 2.$$

Then,

$$\varphi\psi(x) = -q(x): N^0 \to N^0, \qquad \psi\varphi(x) = -q(x): N^1 \to N^1$$

and ρ is an idempotent homomorphism.

Proof. By direct multiplication, it follows $\varphi \psi = -q(x)$, $\psi \varphi = -q(x)$. Again, we have

$$\rho^{2} = \frac{1}{4} \begin{pmatrix} (1-y)^{2} - \varphi(x)\psi(x) & 2\varphi(x) \\ -2\psi(x) & -\psi(x)\varphi(x) + (1+y)^{2} \end{pmatrix}$$

which is

$$\frac{1}{4} \begin{pmatrix} (1-y)^2 + q(x) & 2\varphi(x) \\ -2\psi(x) & q(x) + (1+y)^2 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 2(1-y) & 2\varphi(x) \\ -2\psi(x) & 2(1+y) \end{pmatrix} = \rho.$$

This completes the proof. \Box

Definition 5.4. We use the notation as in Proposition 5.3. Define a functor

$$\alpha: \mathcal{G}(\mathcal{C}(-q)) \to \mathcal{P}(\mathcal{R}(q \oplus 1))$$
 by $\alpha(M) = kernel(\rho_M)$.

Since, $k \to R(q \perp 1)$ is flat, it follows easily that α is an exact functor. Therefore, α induces a homomorphism

$$\Theta_q: K(\mathcal{G}(C(-q))) \to \widetilde{K}_0(R(q \perp 1))$$

where $\forall M \in \mathcal{G}(C(-q))$

$$\Theta_q([M]) = [\alpha(M)] - rank(\alpha(M)).$$

Before we proceed, we will describe $\alpha(M)$ in (5.4) by patching two trivial bundles on the two (algebraic) hemispheres along the (algebraic) equator, as follows.

Proposition 5.5. *We will use all the notations of* (5.3, 5.4)*. We have* $q = q(X_1, ..., X_n), q \perp 1 = q + X_0^2$ *and* $y = x_0 = image(X_0)$ *. Let* $M = M^0 \oplus M^1 \in \mathcal{G}(C(-q)), N = N^0 \oplus N^1, \varphi, \psi$ *be as in* (5.3)*. Write*

$$F^0 = N_{1+y}^0 = R(q + X_0^2)_{1+y} \otimes M^0, \qquad F^1 = N_{1-y}^1 = R(q + X_0^2)_{1-y} \otimes M^1$$

Then $\alpha(M)$ is obtained by patching F^0 and F^1 via ψ_{1-y^2} . In particular, if k is a field, $rank(\alpha(M)) = \dim_k M/2 = \dim_k M_0$.

Proof. Define

$$\sigma: F_{1-y}^0 \to F_{1+y}^1$$
 by $\sigma(n_0) = \frac{-\psi(n_0)}{1+y}$

and

$$\eta: F_{1+y}^1 \to F_{1-y}^0 \text{ by } \sigma(n_1) = \frac{\varphi(n_1)}{1-y}$$

Then for $n_0 \in F_{1-v}^0$, we have

$$\eta \sigma(n_0) = \frac{-\varphi \psi(n_0)}{1 - y^2} = \frac{q(x_1, \dots, x_n)(n_0)}{1 - y^2} = n_0.$$

So, $\eta \sigma = 1$ and similarly, $\sigma \eta = 1$. Consider fiber product

and define $P(\sigma)$ by the patching diagram

Define

$$f_0: F^0 = N^0_{1+y} \to \alpha(M)_{1+y}$$
 by $f_0(n_0) = \left(n_0, \frac{\psi(n_0)}{1+y}\right)$

and

$$f_1: F^1 = N^1_{1-y} \to \alpha(M)_{1-y}$$
 by $f_1(n_1) = -\left(\frac{-\varphi(n_1)}{1-y}, n_1\right).$

We check that f_0 , f_1 are well-defined isomorphisms. Recall that

$$\rho_M = \rho = \frac{1}{2} \begin{pmatrix} 1 - y & \varphi(x) \\ -\psi(x) & 1 + y \end{pmatrix}$$

Using the identities $q(x) + y^2 = 1$, $\varphi \psi = -q$, $\psi \varphi = -q$, direct computation shows

$$f_0(n_0) = \left(n_0, \frac{\psi(n_0)}{1+y}\right), \qquad f_1(n_1) = -\left(\frac{-\varphi(n_1)}{1-y}, n_1\right) \in kernel(\rho) = \alpha(M)$$

So, f_0 , f_1 are well defined. Clearly, f_0 , f_1 are injective and their surjectivity can also be checked directly. Now consider the patching diagram:

We check $f_1 \sigma = f_0$. For $n_0 \in F_{1-\nu}^0$, we have

$$\begin{split} f_1 \sigma(n_0) &= -\left(\frac{-\varphi(\frac{-\psi(n_0)}{1+y})}{1-y}, \frac{-\psi(n_0)}{1+y}\right) \\ &= -\left(\frac{-q(x)}{1-y^2}(n_0), \frac{-\psi(n_0)}{1+y}\right) = \left(n_0, \frac{\psi(n_0)}{1+y}\right) = f_0(n_0), \end{split}$$

since $q(x) = 1 - y^2$. In this patching diagram above, f is obtained by properties of fiber product diagrams. Now, since f_0 , f_1 are isomorphisms, $f : P(\sigma) \to \alpha(M)$ is also an isomorphism. Let $P(\psi_{1-y^2})$ denote the projective module obtained by patching F^0 and F^1 via ψ_{1-y^2} . Since $P(\sigma) \approx P(\psi_{1-y^2})$, the proposition is established. \Box

5.2. Further background on Bott periodicity

For the benefit of the readership, in this subsection, we give some further background on Bott periodicity from [ABS,Sw1]. We establish that Θ_q defined in (5.4) is a surjective homomorphism, when $q = \sum_{i=1}^{n} X_i^2 \in \mathbb{R}[X_1, \dots, X_n]$. In this case, $R(q \perp 1) = A_n$. We have the following proposition.

Proposition 5.6. (See [ABS].) We continue to use notations as in (5.3, 5.4). The composition

$$K(\mathcal{G}(C(-q\perp-1))) \longrightarrow K(\mathcal{G}(C(-q))) \xrightarrow{\Theta_q} \widetilde{K_0}(R(q\perp1))$$

is zero. Further, as in [ABS,Sw1], define ABS(q) by the exact sequence

$$K(\mathcal{G}(C(-q \perp -1))) \longrightarrow K(\mathcal{G}(C(-q))) \longrightarrow ABS(q) \longrightarrow 0$$

So, there is a homomorphism $\alpha_q : ABS(q) \to \widetilde{K}_0(R(q \perp 1))$ such that the diagram

$$K(\mathcal{G}(C(-q\perp-1))) \longrightarrow K(\mathcal{G}(C(-q))) \longrightarrow ABS(q) \longrightarrow 0$$

$$\downarrow \alpha_q$$

$$\downarrow \alpha_q$$

$$\widetilde{K_0}(R(q\perp1))$$

commute.

Proof. We reinterpret the proof of Swan [Sw1, 7.7], and sketch a direct proof. Let e_1, \ldots, e_n denote the canonical generators of C(-q) and f be the other generator of $C(-q \perp -1)$. Let $M = M^0 \oplus M^1 \in \mathcal{G}(C(-q-Z^2))$. Write $N = M \otimes R(q \perp X_0^2)$ and define $f^* : M \to M$ such that $f_{|M^0|}^* = f_{|M^0|}, f_{|M^1|}^* = -f_{|M^1|}$ and similarly define e_i^* .

With the notations as in (5.3, 5.4), we have $\rho = \frac{1-\gamma}{2}$, where

$$\gamma = \begin{pmatrix} y & -\varphi \\ \psi & -y \end{pmatrix} = \begin{pmatrix} y & 0 \\ 0 & -y \end{pmatrix} + \sum_{i=1}^{n} x_i e_i^*.$$

So, $\alpha(M) = \{w \in N: w = \gamma(w)\}$. Also note $\gamma^2 = 1$. Define

$$L^{0} = \ker(f^{*} - 1) = \left\{ (m_{0}, fm_{0}): m_{0} \in M^{0} \right\} = \left\{ (-fm_{1}, m_{1}): m_{1} \in M^{1} \right\}$$

and

$$L^{1} = \ker(f^{*} + 1) = \{(fm_{1}, m_{1}): m_{1} \in M^{1}\} = \{(m_{0}, -fm_{0}): m_{0} \in M^{0}\}.$$

So, $M = L^0 \oplus L^1$ and $N = Q^0 \oplus Q^1$ with $Q^0 = L^0 \otimes R(q \perp X_0^2)$, $Q^1 = L^1 \otimes R(q \perp X_0^2)$. We check that $diagonal(1, -1)L^0 \subseteq L^1$ and $e_i^*L^0 \subseteq L^1$. So, $\gamma(Q^0) \subseteq Q^1$ and similarly, $\gamma(Q^1) \subseteq Q^0$. We have $Q^0 \cap \alpha(M) \subseteq Q^0 \cap Q^1 = 0$, and for $n = n^0 + n^1$ with $n^i \in Q^i$, we have $n = (n^0 - \gamma(n^1)) + (n^1 + \gamma(n^1)) \in Q^0 + \alpha(M)$. So, $N = Q^0 \oplus \alpha(M)$ and $\alpha(M) \approx N/Q^0 = Q^1$ is free. The proof is complete.

The following theorem relates topological and algebraic *K*-groups.

Theorem 5.7. (See [ABS,F,Sw1].) Let $q = X_1^2 + \cdots + X_n^2 \in \mathbb{R}[X]$. Then the following is a commutative diagram of isomorphisms:

In particular, the homomorphism

$$\Theta_q : K(\mathcal{G}(C(-q))) \to \widetilde{K}_0(R(q \perp 1))$$
 is surjective.

Proof. Note that $R(q \perp 1) = \frac{\mathbb{R}[X_0, X_1, ..., X_n]}{(X_0^2 + q - 1)} = A_n$. The diagonal isomorphism is established in [ABS]. The horizontal (equivalently the vertical) homomorphism is an isomorphism due to the theorem of Swan [Sw2, Theorem 3]. So, the proof is complete. \Box

5.3. Patching matrices

Proposition 5.5 exhibits the importance of a suitable description of the homomorphism ψ_{1-y^2} , as a matrix. We are interested in the cases of real spheres $Spec(A_n)$ with $K_0(A_n) \approx KO(\mathbb{S}^n)$ nontrivial. So, $q = \sum_{i=1}^n X_i^2 \in \mathbb{R}[X_1, ..., X_n]$ and n = 8r, 8r + 1, 8r + 2, 8r + 4. We only need to consider the irreducible \mathbb{Z}_2 -graded modules M over $C_n = C(-q)$.

We will include the following from [ABS] regarding Bott periodicity.

Theorem 5.8. Let $q_n = q = \sum_{i=1}^n X_i^2 \in \mathbb{R}[X_1, ..., X_n]$ and $C_n = C(-q)$. Write $a_n = (\dim_{\mathbb{R}} \mathcal{I}_n)/2 = \dim_{\mathbb{R}} \mathcal{I}_n^0$ where $\mathcal{I}_n = \mathcal{I}_n^0 \oplus \mathcal{I}_n^1$ is an irreducible \mathbb{Z}_2 -graded C_n -module. The following chart summarizes some information regarding $C_n = C(-q)$:

n	C _n	$K(\mathcal{G}(C_n))$	$ABS(q_n)$	a _n
1	\mathbb{C}	\mathbb{Z}	\mathbb{Z}_2	1
2	\mathbb{H}	\mathbb{Z}	\mathbb{Z}_2	2
3	$\mathbb{H} \oplus \mathbb{H}$	\mathbb{Z}	0	4
4	$\mathbb{M}_2(\mathbb{H})$	$\mathbb{Z}\oplus\mathbb{Z}$	\mathbb{Z}	4
5	$\mathbb{M}_4(\mathbb{C})$	\mathbb{Z}	0	8
6	$\mathbb{M}_8(\mathbb{R})$	\mathbb{Z}	0	8
7	$\mathbb{M}_8(\mathbb{R}) \oplus \mathbb{M}_8(\mathbb{R})$	\mathbb{Z}	0	8
8	$\mathbb{M}_{16}(\mathbb{R})$	$\mathbb{Z}\oplus\mathbb{Z}$	\mathbb{Z}	8

Further

$$C_{n+8} \approx C_8 \otimes C_n \approx \mathbb{M}_{16}(\mathbb{R}) \otimes C_n$$

and

$$K(\mathcal{G}(C_{n+8})) \approx K(\mathcal{G}(C_n)), \quad ABS(q_{n+8}) \approx ABS(q_8), \quad a_{n+8} = 16a_n.$$

The following corollary will be of some interest to us.

Corollary 5.9. With notations as above (5.8), for nonnegative integers r, we have

 $\mathcal{C}_{8r} \approx \mathbb{M}_{16^r}(\mathbb{R}), \qquad \mathcal{C}_{8r+1} \approx \mathbb{M}_{16^r}(\mathbb{C}), \qquad \mathcal{C}_{8r+2} \approx \mathbb{M}_{16^r}(\mathbb{H}), \qquad \mathcal{C}_{8r+4} \approx \mathbb{M}_{2*16^r}(\mathbb{H})$

and

$$a_{8r} = 16^r/2$$
, $a_{8r+1} = 16^r$, $a_{8r+2} = 2 * 16^r$, $a_{8r+4} = 4 * 16^r$.

Proof. First part follows from (5.8). For the later part, let I_n be an irreducible C_n -module. Note that for n = 8r, 8r + 1, 8r + 2, 8r + 4, Clifford algebras C_n are matrix algebras. Form general theory, I_n is isomorphic to the module of column vectors. So, dim_{\mathbb{R}} I_n is easily computable. One can also establish, by induction, that there are \mathbb{Z}_2 -graded C_n -modules \mathcal{I}_n with dim $\mathcal{I}_n = \dim I_n$. So, \mathcal{I}_n is irreducible and $a_n = (\dim \mathcal{I}_n)/2 = (\dim I)/2$. This completes the proof. \Box

Theorem 5.10. Following chart describes the $\widetilde{KO}(\mathbb{S}^n)$ groups.

n	8r	8r + 1	8r + 2	8r + 3	8r + 4	8r + 5	8r+6	8r + 7
$\widetilde{KO}(\mathbb{S}^n)$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0

Proof. It follows from Theorem 5.7 and Corollary 5.9. For a complete proof the reader is referred to the book [H] or [ABS]. \Box

Now we state our result on the matrix representation of ψ . In fact, we will do it more formally at the polynomial ring level.

Proposition 5.11. Let n = 8r, 8r + 1, 8r + 2, 8r + 4 be a nonnegative integer and $q(X) = \sum_{i=1}^{n} X_i^2 \in \mathbb{R}[X_1, \dots, X_n]$. As before, $C_n = C(-q)$ and e_1, \dots, e_n are the canonical generators of C_n .

Let $M = M^0 \oplus M^1$ be a \mathbb{Z}_2 -graded irreducible C_n -module. Write $m = a_n = \dim_{\mathbb{R}} M^0$. Define

$$\Psi = \Psi_n = \sum_{i=1}^n X_i (1 \otimes e_i) : \mathbb{R}[X_1, \dots, X_n] \otimes M^0 \to \mathbb{R}[X_1, \dots, X_n] \otimes M^1$$

and

$$\Phi = \Phi_n = \sum_{i=1}^n X_i(1 \otimes e_i) : \mathbb{R}[X_1, \dots, X_n] \otimes M^1 \to \mathbb{R}[X_1, \dots, X_n] \otimes M^0.$$

Then, there are choices of bases u_1, \ldots, u_m of M^0 and v_1, \ldots, v_m of M^1 such that the matrix Γ of Ψ and the matrix Δ of Φ have the following properties:

- 1. Each row and column of Γ , Δ has exactly n nonzero entries and for i = 1, ..., n exactly one entry in each row and column is $\pm X_i$.
- 2. As a consequence, $\Delta = -\Gamma^t$ and they are orthogonal matrices.

Proof of (1) \Rightarrow **(2).** Suppose we have bases of M^0, M^1 as above that satisfy (1). Write $u = (u_1, \ldots, u_m)^t$, $v = (v_1, \ldots, v_m)^t$. Then we have $-q(x)(u) = \Phi(u) = \Gamma \Delta(v)$. So, $\Gamma \Delta = -q$. Let Γ_i^r denote the *i*th-row of Γ and Δ_i^c denote the *i*th-column of Δ . So, $\Gamma_i^r \Delta_i^c = -\sum_{i=1}^n X_i^2$. Comparing two sides, we have $\Gamma_i^r = -(\Delta_i^c)^t$. So, $\Delta = -\Gamma^t$. Since $\Gamma \Delta = -q$, we have Γ, Δ are orthogonal matrices. Proof of (1) comes later. \Box

Before we get into the proof of 5.11, we wish to deal with the initial cases of n = 2, 4, 8 with some extra details.

Lemma 5.12. Let $q = X_1^2 + X_2^2 \in \mathbb{R}$ and $C_2 = C(-q)$. Then $C_2 = \mathbb{H}$, where the canonical basis of $\mathbb{R}^2 \subseteq C_2$ is $e_1 = i, e_2 = j$ and the matrices of Ψ_2 and Φ_2 have the property (1) of Proposition 5.11.

Proof. A matrix representation of Ψ is given by

$$\begin{pmatrix} \Psi(1) \\ \Psi(k) \end{pmatrix} = \begin{pmatrix} X_1 & X_2 \\ X_2 & -X_1 \end{pmatrix} \begin{pmatrix} i \\ j \end{pmatrix}.$$

Similarly, we can get a matrix representation of Φ . The proof is complete. \Box

Now we consider the case n = 4. We will include additional information that will be useful later.

Lemma 5.13. Let $q = \sum_{i=1}^{4} X_i^2 \in \mathbb{R}[X_1, X_2, X_3, X_4]$ and $C_4 = C(-q)$. Then:

1. We have $C_4 = \mathbb{M}_2(\mathbb{H})$ where the canonical basis of $\mathbb{R}^4 \subseteq C_4$ is given as follows:

$$e_1 = \begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}, \qquad e_2 = \begin{pmatrix} j & 0 \\ 0 & j \end{pmatrix},$$

and

$$e_3 = \begin{pmatrix} 0 & k \\ k & 0 \end{pmatrix}, \qquad e_4 = \begin{pmatrix} k & 0 \\ 0 & -k \end{pmatrix}.$$

2. Following [F], write $w_4 = 1 + e_1e_2e_3e_4$. We have the following identities,

 $e_1e_2e_3e_4w_4 = w_4, \quad -e_1e_2w_4 = e_3e_4w_4, \quad e_1e_3w_4 = e_2e_4w_4, \quad -e_1e_4w_4 = e_2e_3w_4.$

3. Let $M = C_4 w_4$. Then, M is irreducible.

4. Then Ψ_4 , Φ_4 have the desired property (1) of (5.11).

Proof. Proof of (1) follows by direct checking. Identities in (2) are obvious. The statement (3) is a theorem of Fossum [F]. To see a proof, let $M = Cw_4 = M^0 \oplus M^1$ be the \mathbb{Z}_2 -graded decomposition of M. We have

$$M^{0} = \mathbb{R}w_{4} + \sum_{i < j} \mathbb{R}e_{i}e_{j}w_{4} + \mathbb{R}e_{1}e_{2}e_{3}e_{4}w_{4}; \qquad M^{1} = \sum \mathbb{R}e_{i}w_{4} + \sum_{i < j < k} \mathbb{R}e_{i}e_{j}e_{k}w_{4}.$$

Using the identities above, it is easy to check that a basis of M^0 is given by

$$u_1 = w_4$$
, $u_2 = -e_1 e_2 w_4$, $u_3 = -e_1 e_3 w_4$, $u_4 = -e_1 e_4 w_4$

and a basis of M^1 is given by

$$v_1 = e_1 w_4 = e_1 u_1,$$
 $v_2 = e_2 w_4,$ $v_3 = e_3 w_4,$ $v_4 = e_4 w_4 = e_1 e_2 e_3 w_4.$

Since dimension of an irreducible module over $C_4 = \mathbb{M}_2(\mathbb{H})$ is eight, M is irreducible. This establishes (3).

Now, we write down the matrix of Ψ_4 , Φ_4 with respect to the above bases:

$$\begin{pmatrix} \Psi(u_1) \\ \Psi(u_2) \\ \Psi(u_3) \\ \Psi(u_4) \end{pmatrix} = \begin{pmatrix} X_1 & X_2 & X_3 & X_4 \\ -X_2 & X_1 & X_4 & -X_3 \\ -X_3 & -X_4 & X_1 & X_2 \\ -X_4 & X_3 & -X_2 & X_1 \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \\ \nu_4 \end{pmatrix}.$$

Also

$$\begin{pmatrix} \Phi(v_1) \\ \Phi(v_2) \\ \Phi(v_3) \\ \Phi(v_4) \end{pmatrix} = \begin{pmatrix} -X_1 & X_2 & X_3 & X_4 \\ -X_2 & -X_1 & X_4 & -X_3 \\ -X_3 & -X_4 & -X_1 & X_2 \\ -X_4 & X_3 & -X_2 & -X_1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix}$$

The proof is complete. \Box

Now we will consider the case of n = 8.

Lemma 5.14. Let $q = \sum_{i=1}^{8} X_i^2 \in \mathbb{R}[X_1, \dots, X_8]$ and $C_8 = C(-q)$. Let E_1, E_2, \dots, E_8 be the canonical generators of C_8 . Following Fossum [F], let

$$w_8 = (1 + E_1 E_2 E_5 E_6 + E_1 E_3 E_5 E_7 + E_1 E_4 E_5 E_8)(1 + E_1 E_2 E_3 E_4)(1 + E_5 E_6 E_7 E_8).$$

Then $M = C_8 w_8$ is irreducible and Ψ_8 , Φ_8 have the desired property (1) of (5.11).

Proof. It is a theorem of Fossum [F], that $M = C_8 w_8$ is irreducible. A basis of M is also given in [F]. We will describe this basis of M and provide a proof of irreducibility. By (5.1), there is an isomorphism $C_8 \approx C_4 \otimes C_4$. As in (5.13), we denote the canonical generators of C_4 by e_1 , e_2 , e_3 , e_4 and $w_4 = 1 + e_1e_2e_3e_4$.

We will identify $C_8 = C_4 \otimes C_4$. Under this identification, the canonical generators of C_8 are given by $E_i = e_i \otimes 1$ for i = 1, 2, 3, 4 and $E_i = 1 \otimes e_{i-4}$ for i = 5, 6, 7, 8. Also, w_8 is identified as

 $w_8 = (w_4 \otimes w_4 + e_1 e_2 w_4 \otimes e_1 e_2 w_4 + e_1 e_3 w_4 \otimes e_1 e_3 w_4 + e_1 e_4 w_4 \otimes e_1 e_4 w_4).$

We denote $w = w_8$. Let $M = C_8 w_8 = M^0 \oplus M^1$ be the \mathbb{Z}_2 -graded decomposition of M. We denote the basis [F] of M^0 by u_i as in the table:

	u_1	<i>u</i> ₂	<i>u</i> ₃	u_4	u_5	u_6	u ₇	<i>u</i> ₈
=	w	E_1E_2w	E_1E_3w	E_2E_3w	E_1E_5w	E_2E_5w	E_3E_5w	$E_1E_2E_3E_5w$

and similarly, v_i will denote the basis [F] of M^1 as follows:

	v_1	v_2	v ₃	<i>v</i> ₄	v_5	v_6	v ₇	<i>v</i> ₈
=	$E_1 w$	$E_2 w$	E_3w	$E_1E_2E_3w$	E_5w	$E_1E_2E_5w$	$E_1E_3E_5w$	$E_2E_3E_5w$

The following multiplication table will be useful for our purpose:

	<i>u</i> ₁	<i>u</i> ₂	u ₃	u_4	u_5	u_6	u ₇	u ₈
E_1	v_1	$-v_2$	$-v_3$	v_4	$-v_{5}$	v_6	v_7	$-v_{8}$
E_2	v_2	v_1	$-v_4$	$-v_3$	$-v_6$	$-v_{5}$	v_8	v_7
E ₃	<i>v</i> ₃	v_4	<i>v</i> ₁	v_2	$-v_7$	$-v_{8}$	$-v_{5}$	$-v_6$
E_4	<i>v</i> ₄	$-v_3$	v ₂	$-v_1$	v ₈	$-v_{7}$	v_6	$-v_{5}$
E_5	v_5	v_6	v7	v ₈	<i>v</i> ₁	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄
E_6	v_6	$-v_{5}$	$-v_{8}$	v7	<i>v</i> ₂	$-v_{1}$	$-v_4$	V ₃
E_7	v_7	<i>v</i> ₈	$-v_{5}$	$-v_6$	v ₃	<i>v</i> ₄	$-v_1$	$-v_2$
E_8	$-v_8$	v7	$-v_6$	v_5	<i>v</i> ₄	$-v_3$	<i>v</i> ₂	$-v_1$

This table is constructed by using the identities in (5.13). For the benefit of the reader, we give proof of one of them. We prove $E_6u_1 = E_6w = v_6$. First, we have $E_6w = -E_5(E_5E_6w) = -E_5(1 \otimes e_1e_2)w$. We compute

 $E_5 E_6 w = (1 \otimes e_1 e_2) w$

$$= (w_4 \otimes e_1 e_2 w_4 + e_1 e_2 w_4 \otimes e_1 e_2 e_1 e_2 w_4 + e_1 e_3 w_4 \otimes e_1 e_2 e_1 e_3 w_4 + e_1 e_4 w_4 \otimes e_1 e_2 e_1 e_4 w_4)$$

= $(-e_1 e_2 \otimes 1)[e_1 e_2 w_4 \otimes e_1 e_2 w_4 + w_4 \otimes w_4 + e_2 e_3 w_4 \otimes e_2 e_3 w_4 + e_2 e_4 w_4 \otimes e_2 e_4 w_4]$
= $-E_1 E_2 [e_1 e_2 w_4 \otimes e_1 e_2 w_4 + w_4 \otimes w_4 + (-e_1 e_4 w_w \otimes -e_1 e_4 w_4) + e_1 e_3 w_4 \otimes e_1 e_3 w_4].$

Therefore, $E_5E_6w = (1 \otimes e_1e_2)w = -E_1E_2w$. So,

$$E_6w = -E_5(E_5E_6w) = -E_5(-E_1E_2w) = E_1E_2E_5w = v_6.$$

This establishes $E_6u_1 = v_6$.

A similar multiplication table $(E_i v_j)$ can be constructed using the fact $E_i v_j = u_k \Leftrightarrow -v_j = E_i u_k$. This shows that the vector space V generated by $\{u_i, v_j: i, j = 1, ..., 8\}$ is a C_8 -(left)module. So V = M. Since, an irreducible C_8 -module has dimension sixteen, M is irreducible.

Now we compute the matrix Γ of Ψ with respect to these bases. We have, $\Psi(u_i) = \sum_{j=1}^{8} X_j E_j u_i$. The (i, j)th entry of the matrix Γ of Ψ is $\pm X_k$ if and only if $E_k u_i = \pm v_j$. For a fixed *i* there is exactly one *j* such that $E_k u_i = \pm v_j$ and similarly for a fixed *j* there is exactly one *i* such that $E_k u_i = \pm v_j$. So, for k = 1, ..., 8; $\pm X_k$ appears exactly once in each row and column. In fact, The matrix of Ψ is

$$\Gamma = \begin{pmatrix} X_1 & X_2 & X_3 & X_4 & X_5 & X_6 & X_7 & -X_8 \\ X_2 & -X_1 & -X_4 & X_3 & -X_6 & X_5 & X_8 & X_7 \\ X_3 & X_4 & -X_1 & -X_2 & -X_7 & -X_8 & X_5 & -X_6 \\ -X_4 & X_3 & -X_2 & X_1 & X_8 & -X_7 & X_6 & X_5 \\ X_5 & X_6 & X_7 & X_8 & -X_1 & -X_2 & -X_3 & X_4 \\ -X_6 & X_5 & -X_8 & X_7 & -X_2 & X_1 & -X_4 & -X_3 \\ -X_7 & X_8 & X_5 & -X_6 & -X_3 & X_4 & X_1 & X_2 \\ -X_8 & -X_7 & X_6 & X_5 & -X_4 & -X_3 & X_2 & -X_1 \end{pmatrix}.$$

Similar argument can be given for Φ . So, Ψ , Φ have the property (1) of (5.11).

We remark that the property (2) of (5.11) was established as a consequence of property (1). Alternately, we can use the fact $E_i v_j = u_k \Leftrightarrow -v_j = E_i u_k$ to establish property (2). This completes the proof of (5.14). \Box

Now we are ready to give a complete proof of Proposition 5.11.

Proof of 5.11. We already proved $(1) \Rightarrow (2)$. So, we only need to prove (1). The case n = 1, is obvious and Lemmas 5.12, 5.13, 5.14, respectively, establish the proposition in the cases n = 2, 4, 8.

We will use induction, i.e. we assume that (1) of the proposition is valid for some m = 8r, 8r + 1, 8r + 2, 8r + 4 and prove that the same is valid for n = m + 8.

First, we set up some notations. For a matrix A, the *i*th-row will be denoted by $_{r}A_{i}$ and the *i*th-column will be denoted by $_{c}A_{i}$. We have m + 8 variables $X_{1}, \ldots, X_{m}, X_{m+1}, \ldots, X_{m+8}$. For $i = 1, \ldots, 8$, we will write $Y_{i} = X_{m+i}$. In our cases, there is only one irreducible \mathbb{Z}_{2} -graded C_{m} -module, which will be denoted by $M(m) = M(m)^{0} \oplus M(m)^{1}$. We have $C_{m+8} = C_{m} \otimes C_{8}$. Comparing dimensions (see 5.9), we have $M(m + 8) = M(m) \otimes M(8)$.

Write $N = \dim_{\mathbb{R}} M(m)^0$. We assume that there are bases u_1, \ldots, u_N of $M(m)^0$ and v_1, \ldots, v_N of $M(m)^1$ and bases μ_1, \ldots, μ_8 of $M(8)^0$ and ν_1, \ldots, ν_8 of $M(8)^1$ such that

$$\begin{pmatrix} \Psi_m(u_1) \\ \cdots \\ \Psi_m(u_N) \end{pmatrix} = A(X) \begin{pmatrix} v_1 \\ \cdots \\ v_N \end{pmatrix} \text{ and } \begin{pmatrix} \Psi_8(\mu_1) \\ \cdots \\ \cdots \\ \Psi_8(\mu_8) \end{pmatrix} = B(Y) \begin{pmatrix} v_1 \\ \cdots \\ v_8 \end{pmatrix}$$

where $A(X) = (a_{ij}(X_1, ..., X_m))$ and $B(Y) = (b_{ij}(Y_1, ..., Y_8))$ have the properties Γ of the proposition. Also

$$M(m+8)^0 = M(m)^0 \otimes M(8)^0 \oplus M(m)^1 \otimes M(8)^1$$
 with basis $u_i \otimes \mu_j$, $v_i \otimes v_j$

and

$$M(m+8)^1 = M(m)^1 \otimes M(8)^0 \oplus M(m)^0 \otimes M(8)^1 \text{ with basis } v_i \otimes \mu_j, \ u_i \otimes v_j.$$

The canonical generators of C_m will be denoted by e_1, \ldots, e_m and the canonical generators of C_8 will be denoted by e'_1, \ldots, e'_8 . With $E_1 = e_1 \otimes 1, \ldots, E_m = e_m \otimes 1$; $E'_1 = E_{m+1} = 1 \otimes e'_1, \ldots, E'_8 = E_{m+8} = 1 \otimes e'_8$, we have

$$\Psi_{m+8} = \sum_{i=1}^{N} X_i E_i + \sum_{i=1}^{8} Y_i E'_i.$$

We have

$$\Psi_{m+8}(u_1 \otimes \mu_1) = \sum_{i=1}^N X_i E_i(u_1 \otimes \mu_1) + \sum_{i=1}^8 Y_i E_i'(u_1 \otimes \mu_1)$$
$$= \sum_{i=1}^N a_{1i}(X) v_i \otimes \mu_1 + \sum_{i=1}^8 b_{1i}(Y) u_1 \otimes v_i.$$

We will use the notations $u = (u_1, \ldots, u_N)^t$, $v = (v_1, \ldots, v_N)^t$, $\mu = (\mu_1, \ldots, \mu_8)^t$, $v = (v_1, \ldots, v_8)^t$. With these notation,

$$\Psi_{m+8}(u_1 \otimes \mu_1) = {}_r A(X)_1 v \otimes \mu_1 + {}_r B(Y)_1 u_1 \otimes v.$$

For i = 1, ..., N, likewise, we get

$$\Psi_{m+8}(u_i \otimes \mu_1) = {}_r A(X)_i v \otimes \mu_1 + {}_r B(Y)_1 u_i \otimes v.$$

Therefore,

$$\Psi_{m+8}(u\otimes\mu_1) = \begin{pmatrix} {}^{r}A_1(X) & 0 & \dots & 0 \\ {}^{r}A_2(X) & 0 & \dots & 0 \\ \dots & 0 & \dots & 0 \\ {}^{r}A_N(X) & 0 & \dots & 0 \\ \end{pmatrix} \begin{pmatrix} {}^{r}B_1(Y) & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & {}^{r}B_1(Y) \end{pmatrix} \begin{pmatrix} v\otimes\mu_1 \\ \dots \\ v\otimes\mu_8 \\ u_1\otimes\nu \\ \dots \\ u_N\otimes\nu \\ \end{pmatrix}.$$

Given a row vector a(Y) of length 8, let $\mathcal{R}(a(Y)) \in \mathbb{M}_{N \times 8N}$ denotes the matrix as on the right-hand side of the above matrix. With such notations,

Using similar calculations for $\Psi_{m+8}(u \otimes \mu_i)$ we have

$$\begin{pmatrix} \Psi_{m+8}(u \otimes \mu_1) \\ \Psi_{m+8}(u \otimes \mu_2) \\ \cdots \\ \Psi_{m+8}(u \otimes \mu_8) \end{pmatrix} = \begin{pmatrix} A(X) & 0 & \cdots & 0 \\ 0 & A(X) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A(X) \end{pmatrix} \begin{pmatrix} \mathcal{R}(rB_1(Y)) \\ \mathcal{R}(rB_2(Y)) \\ \vdots \\ \mathcal{R}(rB_8(Y)) \end{pmatrix} \begin{pmatrix} v \otimes \mu_1 \\ \cdots \\ v \otimes \mu_8 \\ u_1 \otimes v \\ \cdots \\ u_N \otimes v \end{pmatrix}$$

This gives the upper 8N rows of the matrix of Ψ_{m+8} which form a $8N \times (8N + 8N)$ matrix. Now we proceed to compute

$$\begin{pmatrix} \Psi_{m+8}(v_1 \otimes v) \\ \Psi_{m+8}(v_2 \otimes v) \\ \cdots \\ \Psi_{m+8}(v_N \otimes v) \end{pmatrix}.$$

Again, the matrices of Φ_m , Φ_8 are respectively $-A(X)^t$, $-B(Y)^t$. We have,

$$\Psi_{m+8}(v_1 \otimes v_1) = \sum_{i=1}^m X_i(e_i \otimes 1)(v_1 \otimes v_1) + \sum_{i=1}^8 Y_i(1 \otimes e'_i)(v_1 \otimes v_1)$$

= $\Phi_m(v_1) \otimes v_1 - v_1 \otimes \Phi_8(v_1) = -\sum_{j=1}^N a_{j1}(X)u_j \otimes v_1 + \sum_{j=1}^8 b_{j1}(Y)v_1 \otimes \mu_j$
= $-_r A_1(X)^t u \otimes v_1 + _r B_1(Y)^t v_1 \otimes \mu.$

Similarly, for i = 1, ..., 8, we have

$$\Psi_{m+8}(v_1 \otimes v_i) = \Phi_m(v_1) \otimes v_i - v_1 \otimes \Phi_8(v_i) = -_r A_1(X)^t u \otimes v_i + _r B_i(Y)^t v_1 \otimes \mu;$$

and for $k = 1, \ldots, N$, we have

$$\Psi_{m+8}(\nu_k \otimes \nu_i) = \Phi_m(\nu_k) \otimes \nu_i - \nu_k \otimes \Phi_8(\nu_i) = -{}_r A_k(X)^t u \otimes \nu_i + {}_r B_i(Y)^t \nu_k \otimes \mu.$$

So, the left half of the matrix of $\Psi_{m+8}(v_1 \otimes v)$ is given by

$$\begin{pmatrix} cB_1^t & 0 & \cdots & 0 \\ cB_2^t & 0 & \cdots & 0 \\ \end{pmatrix}$$
 $\begin{pmatrix} cB_2^t & 0 & \cdots & 0 \\ cB_2^t & 0 & \cdots & 0 \\ \end{pmatrix} \in \mathbb{M}_{8 \times 8N}.$

Similarly, the left half of the matrix of $\Psi_{m+8}(v_2 \otimes v)$ is given by

$$\begin{pmatrix} 0 & _{c}B_{1}^{t} & \cdots & 0 & | & 0 & _{c}B_{2}^{t} & \cdots & 0 & | & \cdots & | & 0 & _{c}B_{8}^{t} & \cdots & 0 \end{pmatrix} \in \mathbb{M}_{8 \times 8N}.$$

So, the left-lower block of the matrix Ψ_{m+8} is given by

$$\begin{pmatrix} {}^{c}B_{1}(Y)^{t} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & {}^{c}B_{1}(Y)^{t} & \cdots & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & 0 & \cdots & {}^{c}B_{1}(Y)^{t} & \cdots & 0 & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & {}^{c}B_{8}(Y)^{t} \end{pmatrix}^{t}$$

$$= \begin{pmatrix} \mathcal{R}({}^{r}B_{1}(Y)) \\ \mathcal{R}({}^{r}B_{2}(Y)) \\ \cdots \\ \mathcal{R}({}^{r}B_{8}(Y)) \end{pmatrix}^{t} = (Upper-Right \ Block)^{t} \in \mathbb{M}_{8N \times 8N}.$$

Now we compute the right half of the same matrix of

$$\begin{pmatrix} \Psi_{m+8}(v_1 \otimes v) \\ \Psi_{m+8}(v_2 \otimes v) \\ \cdots \\ \Psi_{m+8}(v_N \otimes v) \end{pmatrix}.$$

Let \mathbb{I}_8 denote the identity matrix of order 8. Then, the right half of this matrix is given by

$$-\begin{pmatrix} a_{11}(X)\mathbb{I}_8 & a_{21}(X)\mathbb{I}_8 & \cdots & a_{N1}(X)\mathbb{I}_8\\ a_{12}(X)\mathbb{I}_8 & a_{22}(X)\mathbb{I}_8 & \cdots & a_{N2}(X)\mathbb{I}_8\\ \cdots & \cdots & \cdots & \cdots\\ a_{1N}(X)\mathbb{I}_8 & a_{2N}(X)\mathbb{I}_8 & \cdots & a_{NN}(X)\mathbb{I}_8 \end{pmatrix}$$

Now, the upper left and lower right blocks of the matrix of Ψ_{m+8} involve only the variables X_1, \ldots, X_m and the upper right and lower left blocks involve only the variables Y_1, \ldots, Y_8 . Recall that A(X) and B(Y) have the properties of Γ of the proposition. Examining all four blocks of the matrix of Ψ_{m+8} , it follows that the matrix of Ψ_{m+8} also has the property of Γ of the proposition. By symmetry, the matrix of Φ_{m+8} also has the property of Δ of the proposition. This completes the proof of Proposition 5.11. \Box

6. Complete intersections

In this final section, we consider the question whether a local complete intersection ideal I of A_n , with height(I) = n, is the image of a projective A_n -module P of rank n. For an affirmative answer to this question for all such ideals I it is necessary that the top Chern class map $C_0 : K_0(A_n) \rightarrow CH_0(A_n)$ is surjective. Since $CH_0(A_n) = \mathbb{Z}_2$ and for n = 8r + 3, 8r + 5, 8r + 6, 8r + 7, by (5.10), $K_0(A_n) = \mathbb{Z}$, the top Chern class map C_0 fails to be surjective. So, in these cases, the question has a negative answer.

We consider the stronger question whether each element of the Euler class group $E(A_n) = \mathbb{Z}$ is Euler class of a projective A_n -module P of rank n. We start with the following two theorems about even classes and odd classes.

Theorem 6.1. Let A_n be the ring of algebraic functions on \mathbb{S}^n , as in nation (2.1), and $n \ge 2$ be **even**. Let N = 2r be an even integer. Then there is a stably free A_n -module P of rank n and an orientation $\chi : A_n \xrightarrow{\sim} \det(P)$ such that $e(p, \chi) = N$.

Proof. By Lemma 2.4, we can assume $N \ge 0$. Let m_1, \ldots, m_N be even number of distinct real maximal ideals and assume that the corresponding real points are on $\mathbb{S}^1 = (x_2 = 0, \ldots, x_n = 0)$. As in Lemma 4.1,

$$\bigcap_{i=1}^{N} m_i = (L, x_2, \dots, x_n) \quad \text{where } L = \prod_{i=1}^{N/2} L_i \quad \text{with } L_i \text{ linear.}$$

Write $F = A_n^n$ and $J = \bigcap_{i=1}^N m_i = (L, x_2, ..., x_n)$. The standard basis of F will be denoted by $e_1, ..., e_n$. Define

$$f: F \rightarrow J$$
 by $f(e_1) = L$, $f(e_i) = x_i \quad \forall i \ge 2$.

Let

$$\omega: F/JF \to J/J^2$$
 and for $i = 0, 1$ $\omega_i: F/m_iF \to m_i/m_i^2$,

be induced by f. Therefore

$$(J,\omega) = \sum_{i=1}^{N} (m_i, \omega_i) = 0 \in E(A_n).$$

We can assume

$$(m_i, \omega_i) = 1 \quad \forall i = 1, ..., s, \qquad (m_i, \omega_i) = -1 \quad \forall i = s + 1, ..., N.$$

Let $u \in A$ be such that $u - 1 \in m_i$ for i = 1, ..., s and $u + 1 \in m_i$ for i = s + 1, ..., N. Note $u^2 - 1 \in J$. Define *P* by the exact sequence

$$0 \to P \to A_n \oplus F \xrightarrow{(u,-f)} A_n \to 0.$$

By [BRS2, Lemma 5.1], P has an orientation χ such that

$$e(P, \chi) = u^{-(n-1)}(J, \omega) = \sum_{i=1}^{s} (m_i, \omega_i) + \sum_{i=s+1}^{N} -(m_i, \omega_i) = N.$$

The proof is complete. \Box

Theorem 6.2. Let A_n be the ring of algebraic functions on \mathbb{S}^n . Assume $n = \dim A_n$ is **even**. Then, there exists a projective A_n -module P with rank(P) = n and an orientation $\chi : A_n \xrightarrow{\sim} \det P$ with $e(P, \chi) = N$ for some odd integer N if and only if the same is possible for all odd integers N.

Proof. Suppose *N* odd and $e(P, \chi) = N$. By Lemma 2.4, we can assume N > 0. Now assume *M* be any other odd integer. Again, we can assume M > 0. Let m_1, \ldots, m_M be distinct real maximal ideals and $(m_i, \omega_i) = 1 \in EL(A_n) = \mathbb{Z}$. Write $F = A_n^n$ and $I = \bigcap_{i=1}^M m_i$. Let $\omega_I : F/IF \to I/I^2$ be obtained from $\omega_1, \ldots, \omega_M$. Then $M = (I, \omega_I)$. Note that the weak Euler class group

$$E_0(A_n) \approx CH_0(A_n) = \mathbb{Z}/(2).$$

Therefore, the weak Euler class $e_0(P) = image(N) = 1 = image(M) = (I)$. So, by proposition [BRS2, Proposition 6.4], there is a projective A_n -module Q of rank n and a surjective map $f : Q \twoheadrightarrow I$, and also $[P] = [Q] \in K_0(A_n)$. Fix an orientation $\chi_0 : A_n \xrightarrow{\sim} \det Q$. Using an isomorphism $\gamma : F/IF \xrightarrow{\sim} Q/IQ$, with $\det \gamma \equiv \chi_0$, f induces orientations $\eta : F/IF \rightarrow I/I^2$ and $\eta_i : F/m_iF \rightarrow m_i/m_i^2$, for i = 1, ..., M. Then, by definition,

$$e(Q, \chi_0) = (I, \eta) = \sum_{i=1}^{M} (m_i, \eta_i).$$

We can assume that

$$(m_i, \eta_i) = 1 \quad \forall i \leq s, \text{ and } (m_i, \eta_i) = -1 \quad \forall i > s.$$

Pick $u \in A_n$ such that $u - 1 \in m_i$ for $i \leq s$ and $u + 1 \in m_i$ for i > s. Let Q' be defined by

$$0 \to Q' \to A_n \oplus Q \xrightarrow{(u,-f)} A_n \to 0.$$

Then, by [BRS2, Lemma 5.1], Q' has an orientation χ' such that

$$e(Q', \chi') = (I, \bar{u}^{-(n-1)}\eta) = \sum_{i=1}^{s} (m_i, \bar{u}^{-(n-1)}\eta_i) + \sum_{i=s+1}^{N} (m_i, \bar{u}^{-(n-1)}\eta_i)$$

Here *n* is even. So, $e(Q', \chi') = \sum_{i=1}^{s} (m_i, \eta_i) + \sum_{i=s+1}^{N} (m_i, -\eta_i) = M$. This completes the proof. \Box

226

Before we proceed, we need the following proposition that relates top Chern classes with Stiefel–Whitney classes.

Proposition 6.3. Let A_n be the ring of algebraic functions on the real sphere \mathbb{S}^n and $X = Spec(A_n)$. Then, the following diagram

commutes, where C_0 denotes the top Chern class map and w_n denotes the top Stiefel–Whitney class.

Proof. Note, $CH_0(\mathbb{R}(X)) = \mathbb{Z}/(2)$ and $H^n(\mathbb{S}^n, \mathbb{Z}/(2)) = \mathbb{Z}/(2)$. Any element in $\widetilde{K_0}(X)$ can be written as $[P] - [A_n^n]$, where P is a projective A_n -module of rank n. By Bertini's theorem (see [BRS1, 2.11]), we can find a surjective map $f : P \to I$ where $I = m_1 \cap m_2 \cap \cdots \cap m_N$ is intersection of N distinct maximal ideals. Assume m_1, \ldots, m_r are real maximal ideals and m_{r+1}, \ldots, m_N are the complex maximal ideals. For $i = 1, \ldots, r$, let $y_i \in \mathbb{S}^n$ be the point corresponding to m_i . So, $C_0(P) = \overline{r} \in \mathbb{Z}/(2)$, where \overline{r} is the image of r in $\mathbb{Z}/(2)$.

Let \tilde{P} denote the bundle on \mathbb{S}^n induced by P. Then f induces a section s on the bundle \tilde{P} , transversally intersecting the zerosection, exactly on the points y_1, \ldots, y_r . So, $w_n(\tilde{P}) = \bar{r}$. The proof is complete. \Box

Remark. In a subsequent paper [MaSh], a more general version of Proposition 6.3 was proved later.

Now, we have the following corollary to Theorem 6.2.

Corollary 6.4. Let A_n be the ring of algebraic functions on \mathbb{S}^n . Assume $n = \dim A_n \ge 2$ is **even**. Then, the following are equivalent:

- 1. $e(P, \chi) = 1$ for some projective A_n -module P with rank(P) = n and orientation $\chi : A_n \xrightarrow{\sim} \det P$.
- 2. For some odd integer N, $e(P, \chi) = N$ for some projective A_n -module P with rank(P) = n and orientation $\chi : A_n \xrightarrow{\sim} \det P$.
- 3. For any odd integers N, $e(P, \chi) = N$ for some projective A_n -module P with rank(P) = n and orientation $\chi : A_n \xrightarrow{\sim} \det P$.
- 4. The top Chern class $C_0(P) = 1$ for some projective A_n -module P with rank(P) = n.
- 5. The Stiefel–Whitney class $w_n(V) = 1$ for some vector bundle V with rank(V) = n.

Let n = 8r, 8r + 2, 8r + 4 and let P_n be a projective A_n -module of rank n such that $[P_n] - n = \tau_n$ is the generator of $\widetilde{K}_0(A_n)$. Then above conditions are equivalent to $w_n(P_n) = 1$ (which is equivalent to $C_0(P_n) = 1$).

Proof. By (6.2), (1) \Leftrightarrow (2) \Leftrightarrow (3). It is obvious that (2) \Leftrightarrow (4). Also by (6.3), we have (4) \Leftrightarrow (5), because we can assume [Sw2] that V is algebraic.

For the later part, we only need to prove that $(5) \Rightarrow w_n(P_n) = 1$. To prove this assume that $w_n(P_n) = 0$ and let *V* be any vector bundle of rank *n* over \mathbb{S}^n . We have $[V] - rank(V) = k\tau_n$. So, the total Stiefel–Whitney class $w(V) = w(k\tau_n) = w(\tau_n)^k = 1$. So, $w_n(V) = 0$. The proof is complete. \Box

Remark 6.5. We have the following summary. Let *P* denote a projective A_n -module of rank $n \ge 2$ and $\chi : A_n \xrightarrow{\sim} \det P$ be an orientation. Then

- 1. For n = 8r + 3, 8r + 5, 8r + 7 we have $\widetilde{K}_0(A_n) = 0$. So, the top Chern class $C_0(P) = 0$. By [BDM], $P \approx Q \oplus A_n$. Therefore $e(P, \chi) = 0$.
- 2. For n = 8r + 6, we have $\widetilde{K_0}(A_n) = 0$. So, $C_0(P) = 0$, and hence $e(P, \chi)$ is always even. Further, by (6.1), for any even integer N there is a projective A_n -module Q with rank(Q) = n and an orientation $\eta : A_n \xrightarrow{\sim} \det Q$, such that $e(Q, \eta) = N$.
- 3. For n = 8r + 1, we have $\widetilde{K}_0(A_n) = \mathbb{Z}/2$. If $e(P, \chi)$ is even then $C_0(P) = 0$. So, $P \approx Q \oplus A_n$ and $e(P, \chi) = 0$ for all orientations χ . So, only even value $e(P, \chi)$ can assume is zero.
- 4. Now consider the remaining cases, n = 8r, 8r + 2, 8r + 4. We have $\widetilde{K}_0(A_{8r}) = \mathbb{Z}$, $\widetilde{K}_0(A_{8r+2}) = \mathbb{Z}/2$, $\widetilde{K}_0(A_{8r+4}) = \mathbb{Z}$. As in the case of n = 8r + 6, for any even integer N, for some (Q, η) the Euler class $e(Q, \eta) = N$. The case of odd integers N was discussed in (6.4).

This leads us to the following question.

Question 6.6. Suppose n = 8r, 8r + 1, 8r + 2, 8r + 4 and τ_n is the generator of $\widetilde{K_0}(A_n)$. Then, whether $w_n(\tau_n) = 1$ (which is equivalent to $C_0(\tau_n) = 1$)?

Apparently, answer to this question is not known. For n = 1, the question has affirmative answer. We will be able to answer this question for n = 2, 4, 8 using the description (5.11) of the patching matrix ψ_n .

Theorem 6.7. Let n = 2, 4, 8 and A_n denote the ring of algebraic functions on \mathbb{S}^n . Let τ_n be the generator of $\widetilde{K}_0(A_n)$. Then, the top Chern class $C_0(\tau_n) = 1$.

Proof. Here n = 2, 4, 8 and $q = q_n = \sum_{i=1}^n X_i^2$. If $M = M^0 \oplus M^1$ is an irreducible \mathbb{Z}_2 -graded C_n -module, then $\tau_n = [P] - rank(P)$, where $P = \alpha(M)$ as defined in Proposition 5.5. We have $R(q + X_0^2) = A_n$ and P is obtained by patching together $F^0 = (A_n)_{1+x_0} \otimes M^0$ and $F^1 = (A_n)_{1-x_0} \otimes M^1$ via $\psi = \psi_n$. In the cases of n = 2, 4, 8, by (5.9), $rank(P) = \dim M_0 = n$. By (5.11), with respect some bases of M^0, M^1 , the matrix of ψ has the first column $(x_1, \ldots, x_n)^t$.

We write $y = x_0$ and $F = A_n^n$. Let e_1, \ldots, e_n denote the standard basis of F. We identify $F^0 = F_{1+y}, F^1 = F_{1-y}$ and consider ψ as a matrix with first column $(x_1, \ldots, x_n)^t$.

Let $I = (y - 1, x_1, ..., x_n)$ be the ideal of the north pole of \mathbb{S}^n . Then, $I_{1+y} = (x_1, ..., x_n)$. Define surjective maps $f_0: F^0 \twoheadrightarrow I_{1+y}$ where $f_0(e_i) = x_i$ for i = 1, ..., n; and $f_1: F^1 \twoheadrightarrow I_{1-y}$ where $f_1(e_1) = 1$ and $f_1(e_i) = x_i$ for i = 2, ..., n. We have the following patching diagram:

The map *f* is induced by the properties of fiber product diagrams. Since f_0 , f_1 are surjective, so is *f*. Therefore, the top Chern class $C_0(P) = cycle(A_n/I) = 1$. Since $\tau_n = [P] - n$, we have $C_0(\tau_n) = 1$. This completes the proof. \Box

Corollary 6.8. Let n = 2, 4, 8. Then, given any integer N there is a projective A_n -module Q of rank n and orientation $\chi : A_n \xrightarrow{\sim} \det Q$, such that the Euler class $e(Q, \chi) = N$.

Also, suppose I is a locally complete intersection ideal of height n and $\omega : (A_n/I)^n \rightarrow I/I^2$ is a surjective homomorphism. Then, there is a projective A_n -module P of rank n, and orientation $\chi : A_n \rightarrow \det P$ and a surjective homomorphism $f : P \rightarrow I$ such that (I, ω) is induced by (P, χ) .

Proof. First part follows immediately from (6.1, 6.4, 6.7). The later part follows from [BRS2, Corollary 4.3]. \Box

Acknowledgment

The authors would like to thank M.V. Nori for many helpful discussions.

References

- [ABS] M.F. Atiyah, R. Bott, A. Shapiro, Clifford modules, Topology 3 (1964) 3-38.
- [BDM] S.M. Bhatwadekar, Mrinal Kanti Das, Satya Mandal, Projective modules over smooth real affine varieties, Invent. Math. 166 (1) (2006) 151–184.
- [BRS1] S.M. Bhatwadekar, Raja Sridharan, Zero cycles and the Euler class groups of smooth real affine varieties, Invent. Math. 136 (1999) 287–322.
- [BRS2] S.M. Bhatwadekar, Raja Sridharan, The Euler class group of a Noetherian ring, Compos. Math. 122 (2000) 183-222.
- [F] Robert M. Fossum, Vector bundles over spheres are algebraic, Invent. Math. 8 (1969) 222-225.
- [H] Husemoller Dale, Fibre Bundles, third ed., Grad. Texts in Math., vol. 20, Springer-Verlag, New York, 1994, xx+353 pp.
- [MS] Satya Mandal, Raja Sridharan, Euler classes and complete intersections, J. Math. Kyoto Univ. 36 (3) (1996) 453–470.
- [MaSh] Satya Mandal, Albert J.L. Sheu, Obstruction theory in algebra and topology, preprint.
- [MiS] John W. Milnor, James D. Stasheff, Characteristic Classes, Ann. of Math. Stud., vol. 76, Princeton University Press/University of Tokyo Press, Princeton, NJ/Tokyo, 1974, vii+331 pp.
- [MkM] N. Mohan Kumar, M.P. Murthy, Algebraic cycles and vector bundles over affine three-folds, Ann. of Math. (2) 116 (3) (1982) 579-591.
- [Mk] N. Mohan Kumar, Some theorems on generation of ideals in affine algebras, Comment. Math. Helv. 59 (1984) 243-252.
- [Mu1] M.P. Murthy, Zero cycles and projective modules, Ann. of Math. 140 (1994) 405-434.
- [Sw1] R.G. Swan, Vector bundles, projective modules and the K-theory of spheres, in: Algebraic Topology and Algebraic K-Theory, Ann. of Math. Stud., vol. 113, Princeton University Press, Princeton, NJ, 1983, pp. 432–522.
- [Sw2] R.G. Swan, K-theory of quadric hypersurfaces, Ann. of Math. 122 (1985) 113-153.