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Abstract 

Evaluation of thermal shock stress intensity factors is a problem of interest in many industries. Many structures experiencing 

thermal shock can be accurately idealised to comprise finite length elastically / thermo-elastically restrained plates and finite 

length elastically / thermo-elastically restrained hollow cylinders. This article describes how a `user-friendly` Compliance 

Adjusted Weight Function (CAWF) approach can be used to assess mode I stress intensity factor associated with the creep-free 

thermal shock of such structure with edge and semi-elliptical surface cracks. Based upon a mechanical weight function 

philosophy, the CAWF approach utilises a mechanical weight function analysis, available mechanical weight functions / 

geometry factors attributed to an equivalent semi-infinite cracked structure, a crack-free finite element analysis and an elastic

Line-Spring analysis of compliance. The need for deriving different weight functions at each configuration of boundary restraint

is therefore removed and the results of several verification exercises highlight that the CAWF approach is suitable for estimates 

within 5-10% of benchmark fracture mechanics finite element values. This suitability of the CAWF approach is valid for a wide 

range of cracked plate configurations, cracked hollow cylinder configurations and boundary restraint. An exception to this 

suitability is observed when examining semi-elliptical surface crack configurations and a free or near free boundary restraint 

condition. Adjustments to correction for this `free boundary effect` are discussed elsewhere. 
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1. Introduction 

The storage, transportation and processing of thermo-fluids is an essential part of numerous engineering 

processes. Of the many types of structures used in such process, many can be accurately idealised to comprise finite 

length elastically / thermo-elastically restrained plates and finite length elastically / thermo-elastically restrained 

hollow cylinders. The onset of thermal fatigue damage is also common place whereby cracks or crack like flaws 

develop and the prediction of fitness-for-purpose (i.e. structural integrity and remaining life) under severe thermal 

shock conditions is an important problem. In creep-free thermal shock conditions a fitness-for-purpose assessment is 

closely associated with a mode I thermal shock stress intensity factor (KI
TS) evaluation and the ease at which such a 

fitness-for-purpose can be performed is also dependent on the `user-friendliness` of the KI
TS evaluation procedure. 
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To address this observation, a Compliance Adjusted Weight Function (CAWF) approach is proposed for the `user-

friendly` estimation of KI
TS associated with the analysis of two types of creep-free thermal shocked cracked 

structure. One is an elastically / thermo-elastically restrained edge or semi-elliptical surface cracked plate. The other 

constitutes an elastically / thermo-elastically restrained edge or semi-elliptical surface cracked hollow cylinder. 

2. The CAWF Approach 

2.1. Background 

Evaluation of mode I stress intensity factor; including those attributed to thermal shock i.e. KI
TS ; are typically 

evaluated using an analytic solution approach or a numerical methodology such as a finite element [1], thermal 

weight function [2-3] or mechanical weight function approach [4-8]. Implementation of these analytic methods is all 

but limited to mathematically simplified infinite or semi-infinite idealizations. In contrast, the finite element and the 

aforementioned weight function methodologies are suitably generalized and can be used in almost any circumstance 

provided they are appropriately formulated. However, appropriate formulation of these analysis types is a process 

that often prohibits the `user-friendliness` of their application in either general circumstances or when  analysing  KI

or KI
TS associated with realistic structural idealizations such as finite length elastically / thermo-elastically restrained 

cracked plates and cracked hollow cylinders.  

First consider the finite element approach.  Application of fracture mechanic finite element analysis requires the 

specification of KI evaluation methods and traditionally requires specification of specialised crack tip / front mesh 

discretisations [9, 10] that become increasing difficult to satisfy when considering cracks that exhibit non planar and 

non regular characteristics. Implementation of the Energy Domain Integral or J-Integral method [11] into 

commercially available finite element codes such as ABAQUS [12, 13] and ANSYS [14] have partially resolved the 

issue of KI evaluation though the `user-friendliness` of a fracture mechanic finite element analysis is still comprised 

by the requirement for a case by case specification of specialised crack tip / crack front mesh discretisations. Recent 

steps having been taken to counteract the difficulty is incorporation of the Extended Finite Element Method (X-

FEM) [15-17] into the Abaqus finite element code, though the generality and `user-friendliness of these X-FEM 

regimes are not yet confirmed. 

Now consider the thermal approach [2, 3].  Specific to the analysis of thermo-elastic induced KI , the thermal 

weight function approach is a computationally efficient approach that is most practically implemented via an 

equivalent fracture mechanic finite element formulation [18, 19] , and thus shares the prohibition to `user-

friendliness` associated with the requirement for a case by case specification of specialised crack tip / crack front 

mesh discretisations . Furthermore, unless the thermal weight function approach is included as basic functionality in 

commercial finite element codes it is questionable as to whether it actually offers any appreciable gain after 

recognising that the time saving associated with using it may be minimal in comparison to the time required for 

accurate mesh design. 

Finally, consider the mechanical weight function approach. Introduced by Bueckner [4] and Rice [5], the 

mechanical weight function approach was originally proposed to constitute an efficient method with which to 

evaluate KI associated with a two or three dimensional structure and the prescription of body force or traction type 

load. Subsequently, the mechanical weight function methodology has been extended to allow or incorporate KI

evaluations involving mixed traction, displacement prescribed load configurations and mixed fracture modes [6-8].  

This in turn means that the mechanical weight function approach can be rationalised to constitute an efficient 

method which to evaluate the KI associated with an arbitrary elastic or thermo-elastic response. For instance, it can 

be shown that a KI
TS evaluation associated with the thermal shock of the finite elastically / thermo-elastically 

restrained cracked structure can be written, 

( )
c

TS TS s
I cp c

A

K s hσ= dA                                                                                                                                              (1)
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where s describes a specific crack tip / crack front location; a denotes a characteristic crack depth; Ac describes the 

surface area of the crack face; denotes the component of stress developed at and normal to the prospective crack 

plane (cp) within an equivalent thermal shocked crack free component; hs denotes the mechanical weight function 

associated with the structural boundary conditions and crack font location s.

TS
cpσ

An equivalent 2D mechanical weight function paradigm can also be written, 

( )
0

a

TS TS s
I cpK s hσ= da                                                                                                                                                  (2)

In either case it is clear that the mechanical method is a potential candidate for `user-friendly` KI evaluation 

because it can clearly alleviate the difficulties associated with explicitly modelling the crack tip/crack front if an 

appropriate hs is known in priory. It can also be identified that a significant proportion of resource associated with 

implementation of a MWF problem can be accredited to the acquisition of an appropriate hs through either retrieval 

of formularised relations within reference literature or explicit hs derivation using one of the many techniques [20-

32]. Unfortunately, the hs derivation methodologies adopted within each of these works can be categorised into two 

types of approach that may or may not be considered particularly `user-friendly`, especially when it is recognised 

that hs depend on structural boundary conditions and must therefore be evaluated on a case by case basis. 

One approach is to rely on complicated fracture mechanic finite element analyses that will inevitably compromise 

the appeal of a mechanical weight function evaluation.  

An obvious 'user-friendly` alternative is to acquire a previously documented hs or use a multiple reference stress 

intensity factor methodology if the hs corresponds to the target cracked structure and the multiple reference stress 

intensity factor correspond to the target cracked structure and are known in priory. This requirement for in prior 

knowledge of either hs or multiple reference stress intensity factor implies that a `user-friendly` mechanical weight 

function evaluation of KI is at present limited to a variety of cracked infinite structures or structures that are 

representative of a selection of semi-infinite or finite length rigidly restrained cracked plate, semi-infinite cracked 

hollow cylinder, semi-infinite plate with cracked fastener holes and semi-infinite cracked joint. The implications 

associated with this observation are extensive and critically effect the mechanical weight function evaluation of 

fracture problems that are important and relevant to many industrial processes. An example of such a set of 

problems corresponds to the mechanical weight function evaluation of KI
TS associated with the thermal shock of 

finite length elastically/thermo-elastically restrained cracked plates and finite length elastically/thermo-elastically 

restrained cracked hollow cylinders. That is, it is easily substantiated that there exists only two options if attempting 

to implement a mechanical weight function philosophy to thermal shocked finite length elastically/thermo-

elastically restrained cracked plates and finite length elastically/thermo-elastically restrained cracked hollow 

cylinders.  

The first option is to derive a mechanical weight function for the appropriate /thermo-elastically restrained 

cracked plate/cracked hollow cylinder configuration and then use Eq.1 or Eq.2. The drawback to this approach is 

attributed to an observance that impractical complex curve fitting regimes and a fracture mechanic finite element 

analysis is often required for this task. Furthermore, if a fracture mechanic finite element analysis was to be used to 

it would be far simpler in most cases just to solve the KI
TS rather than endeavouring to construct a suitable 

mechanical weight function.  

A more `user-friendly` alternative would be to adopt an approximation such as that indicated Eq.(3a) and Eq.(3b).  

( )

if boundary restraint stiffnes is low

if boundary restraint stiffness is high

c

c

TS s
cp f c

ATS
I

TS s
cp r c

A

h dA

K s
h dA

σ

σ
=

(3a)

(3b)
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In this case, a traditional mechanical weight function philosophy can be seen to approximate the evaluation 

process by utilising (1) the hf
s and hr

s for an equivalent semi-infinite / free (f) and rigidly (r) restrained cracked plate 

/ cracked hollow cylinder (2) the  associated with an equivalent finite length elastically/thermo-elastically 

restrained crack-free plate / hollow cylinder. In the case of a general crack and load configuration this approach is 

denoted by Eq.3a and Eq.3b.  

TS
cpσ

Figure 1: Typical evaluation characteristics if Eq.(3a) and Eq.(3b) are used for estimating KI
TS associated with the creep-free thermal shock of 

finite length elastically/thermo-elastically restrained cracked plates / cracked hollow cylinders. Note that t is used to denote wall thickness and l
denotes hollow cylinder length. 

However, the limitations of these approximations have been investigated [33-35]  and it can be shown by virtue 

of Fig.1 that the approximations attributed to Eq.3a and Eq.3b are either excessively conservative or non-
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conservative under a wide range of intermediate boundary restraint stiffness. More importantly, the lack of an 

overlap between Eq.3a and Eq.3b as well as their observed conservatism or non-conservative tends to imply that the 

indicated adaptation cannot be easily defined and a confident and 'user-friendly` MWF analysis must use Eq.3a or 

an equivalent two dimensional variant. The difficulty with such a realisation lies in the previously noted observation 

that the evaluations attributed to Eq.3a (or an equivalent two dimensional variant) can be drastically over 

conservative to a point where the evaluations become unsuitable for implementation to fitness-for-purpose 

assessment. It is therefore reasonable to perceive that the mechanical weight function approach does not constitute a 

`user-friendly` approach with which to evaluate KI
TS associated with the creep-free thermal shock of finite length 

elastically / thermo-elastically restrained crack plates and finite length elastically / thermo-elastically restrained 

cracked hollow cylinders. In fact, this viewpoint can be extended to more general structures and it is reasonable to 

perceive that the mechanical weight function approach does not constitute a `user-friendly` method with which to 

evaluate KI for any particular structure unless the mechanical weight function or reference stress intensity factors for 

that precise structure are known in priory. 

The aim of this article is to demonstrate how a CAWF approach can provide both `user-friendly` and confident 

assessments of the KI
TS associated with the creep-free thermal shock of finite length elastically / thermo-elastically 

restrained crack plates and finite length elastically / thermo-elastically restrained cracked hollow cylinders. Based 

upon mechanical weight function fundamentals, the CAWF approach incorporates a mechanical weight function 

analysis, a crack-free finite element analysis and an elastic Line-Spring analysis of compliance. Significantly, the 

CAWF approach is advantageous over a fracture mechanic finite element analysis, a thermal weight function 

analysis and a mechanical weight function analysis for several predominant reasons. First and foremost, the 

mechanical weight function component of the CAWF evaluation utilises well known and easily documented 

mechanical weight functions and geometry factors for an equivalent semi-infinite cracked structure. Second, the 

requirement for finite element analysis only extends to crack-free analyses that are significantly more simplified and 

do not require implementation of complex crack tip / crack front mesh discretisations. Finally, the ease at which the 

Line-Spring compliance analysis can be documented further advantages the CAWF approach. More specific details 

concerning the CAWF approach and current CAWF formulations are presented below.  

2.2. The CAWF Formulation for Thermal Shocked Cracked Plates and Cracked Hollow Cylinders 

Two distinct CAWF formulations are presented here. One formulation can be used as a method in which to 

estimate KI
TS associated with the thermal shock of finite length elastically/thermo-elastically restrained cracked 

plates. A description of the said cracked plates is provided in Fillery and Hu [36] and this plate associative CAWF 

formulation can be written for an edge or semi-elliptical surface crack configuration as, 

( )

0

6
( ) ( ,0)

2

1 1 1

2

a cp cpP Ma acpTS s s sTS TSK s a h d f fI tt tt f p gbQ A Q W tcp

asf p Q
T Aeff

xa t a effs sf fgb pQ I Q Ieff eff

π πσ ξ ξ

π

π π

≈ + +−

− − −+ − ×

−

A C A C C F
cpr r f

)

                                                 (5)

where s denotes a crack front location; a denotes the crack depth; denotes a prospective crack plane stress 

within an equivalent crack-free plate; denotes an operation of elastic Line-Spring 

( ,0cp
ttσ ξ

)1
T− F(1 1− − −A C A C C

cpr r f
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compliance; ,
cp

TSP cp
TSM  denote principle tensile force and bending moment; effx , effA  and effI denote cross 

sectional area properties attributed to the elastic Line-Spring compliance; s
pf , s

gbf  and  denote geometry 

factors and a mechanical weight function associated with an equivalent semi-infinite cracked plate; Q denotes an 

elliptical crack shape factor. 

s
tt f−h

The second CAWF formulation corresponds to a method in which to estimate KI
TS associated with the thermal 

shock of finite length elastically/thermo-elastically restrained cracked hollow cylinders. A description of the said 

cracked plates is provided in Fillery and Hu [37] and this hollow cylinder associative CAWF formulation can be 

written for an edge or semi-elliptical surface crack configuration as, 

( )

4 4

0

4
( ,

cp
axiσ η

A C
r

( ),0

0)

1 1

axi

− −
A C

1

a

TS
I

o i

o

cp cpP Ma as s sTS TSK a h d f ff p gbQ A Q R Rcp

asf p Q
T Aeff

xRa a effs sf fgb pQ I Q Ieff eff

π πη

π

π π

≈ + +− −

−+ − ×

−

C F
cpr f

                                                            (6)

where denotes a prospective crack plane stress within an equivalent crack-free hollow cylinder; cp
axiσ η s

pf , s
gbf

and  denote geometry factors and a mechanical weight function associated with an equivalent semi-infinite 

cracked hollow cylinder. 

s
axi f−h

2.3. The CAWF`s Crack-Free Finite Element Formulation  

A most desirable attribute of the CAWF approach is its ability to constitute a `user-friendly` method for 

estimating KI
TS associated with the creep-free thermal shock of a finite length elastically / thermo-elastically 

restrained cracked plate and a finite length elastically / thermo-elastically restrained cracked hollow cylinder. 

Although the mathematics of the CAWF approach has been demonstrated to be extensive, there are two reasons for 

affixing the `user-friendly` description. First, the KI
TS evaluation is performed by using a simple crack-free stress 

analysis and mechanical weight functions / geometry factors that are either currently available or easily documented 

within published literature. Second, the elastic compliance analysis that comprises the CAWF approach is suitable 

for tabulation where it is expected the cracked structural compliance associated with C, Cr and Cf will be 

documented for future references. Thus, the CAWF approach can prove a systematic and `user-friendly` method if: 

1. Boundary restraint compliance terms contributing to C, Cr and Cf can be efficiently ascertained in a 

`user friendly` manner. 

2. Prospective crack plate stress within equivalent crack-free plates and hollow cylinders can be efficiently 

ascertained in a `user friendly` manner.  

Assuming cracked structural compliance associated with C, Cr and Cf are appropriately tabulated, it is easily 

identified that such a 'user friendly' evaluation is possible if the CAWF approach is embedded into a crack-free finite 

element procedure that comprises two distinct steps. For brevity, specifics concerning this finite element formulation 

are not presented here and readers are referred to Fillery and Hu [36, 37]. 

3. Application of the CAWF Approach to Thermal Shocked Cracked Plates / Cracked Hollow Cylinders 

This section presents a validation for the CAWF formulations presented above by evaluating KI
TS associated with 

the thermal shock of finite length elastically restrained cracked plates and finite length elastically restrained cracked 
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hollow cylinders. Proof of validation is provided via Fig.2 and Fig.3. Both figures indicate that three types of 

analysis approach are used to establish CAWF validation. These approaches are: 

1. The CAWF approach,  

2. A fracture mechanic finite element analysis. 

3. A comparative mechanical weight function evaluation which comprises Eq.3a or equivalently the 

CAWF formulations of Eq.5 or Eq.6 with C  = Cf.

Inspection of Fig.3 and Fig.4 will also summarize several key qualitative and quantitative attributes of the CAWF 

evaluations that are notable. For example, collective assessment of Fig.2 and Fig.4 demonstrates: 

1. A good to excellent correlation between the CAWF approach and the benchmark fracture mechanic 

finite element (FEA) analyses.  

2. A difference between the CAWF approach and the benchmark fracture mechanic finite element analyses 

is noticeable when considering  a surface crack configuration, small plate or hollow cylinder aspect ratio 

and a low or near free boundary restraint; herein denoted a free boundary effect. 

Key attributes of the CAWF approach that are not shown can additionally be listed as follows: 

1. The difference between the CAWF approach and Eq.3a (i.e. what is considered the next most `user-

friendly` evaluation) is most pronounced at small plate or hollow cylinder aspect ratio (i.e. l/t<10) where 

compliance change due to crack inclusion is most pronounced. 

2. The difference between the CAWF approach and Eq.3a (i.e. what is considered the next most `user-

friendly` evaluation) is at times very significant and is most pronounced at large crack depth to thickness 

ratios a/t>0.5 where compliance change due to crack inclusion is most pronounced. 

3. The difference between the CAWF approach and Eq.3a is most pronounced at large crack aspect ratio 

(i.e. c/a > 5-8) where compliance change due to crack inclusion is most pronounced. 

4. The difference between the CAWF approach and Eq.3a is lessened at small crack depth to thickness 

ratios a/t<0.4 where compliance change due to crack inclusion is negligible. 

5. The difference between the CAWF approach and Eq.3a is lessened at small plate or hollow cylinder 

aspect ratios where compliance change due to crack inclusion is negligible. 

6. The difference between the CAWF approach and Eq.3a is lessened at small crack aspect ratio where 

compliance change due to crack inclusion is negligible. 

Readers are referred to Fillery and Hu [38, 39] for more specific details concerning these validation exercises. 

Note that treatment for the aforementioned free boundary effect (2nd list point) has also been addressed and a CAWF 

adjustment proposed in Fillery and Hu [40]. 

Acknowledgements 

This research was concluded within the CRC for Integrated Engineering Asset Management, established and 

supported under the Australian Government’s Cooperative Research Centres Programme. Financial support from the 

Robert and Maude Gledden postgraduate award at the University of Western Australia is also acknowledged. 

B.P. Fillery, X.Z. Hu / Procedia Engineering 2 (2010) 499–509 505



8 X.Z. Hu et al. / Procedia Engineering 00 (2010) 000–000 

Figure 2: Maximum normalised KI
TS attributed to the creep-free thermal shock of an elastically restrained edge/ semi-elliptical surface cracked 

plate; a plate aspect ratio l/t=5. Note that a denotes crack depth, c denotes crack aspect for a semi-elliptical surface crack, the horizontal axes are 

logarithmic, vertical axes of top charts are logarithmic and error bars (where visible) illustrate a ±5% error margin about target fracture mechanic 

finite element results (FEA). 
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Figure 3: Maximum normalised KI
TS attributed to the creep-free thermal shock of an elastically restrained edge/ semi-elliptical surface cracked 

hollow cylinder; a hollow cylinder aspect ratio l/t=5. Note that a denotes crack depth, c denotes crack aspect for a semi-elliptical surface crack, 

the horizontal axes are logarithmic, vertical axes of top charts are logarithmic and error bars (where visible) illustrate a ±5% error margin about 

target fracture mechanic finite element results (FEA). 
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