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Abstract

We show that for any metric spad# satisfying certain natural conditions, there is a finitely generated group
G, an ultrafilterw, and an isometric embeddingf M to the asymptotic con€one,(G) such that the induced
homomorphism* : =1 (M) — n1(Cong,(G)) is injective. In particular, we prove that any countable group can be
embedded into a fundamental group of an asymptotic cone of a finitely generated group.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

To any metric spac¥ with a distance functiodist, one can associate a new metric sp@oee,,(X),
the so-callechsymptotic conef X, by taking the ultralimit of scaled spaces, (1/n)dist) with respect
to an ultrafilterw. Informally speakingCone,,(X) shows whaiX looks like if the observer is placed at
‘infinity’ (see the next section for a precise definition). This notion appears in the proof of Gromov’s
theorem about groups of polynomial growth (it is defined though in the polynomial growth case,
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where for the convergence to the limit one does not need ultralimits, the corresponding limit space is
considered already if6]).

It is known that a group is hyperbolic if and only if any of its asymptotic cones R-are[8] (Misha
Kapovich pointed out to the first author that if one of the cones of a finitely presented grouR-ises)
then this group is hyperbolic).

The application of asymptotic cones to the study of algebraic and geometric properties of hyperbolic
groups appears in a different languaggL®] and in[18]. For recent progress sg,19,21Jand references
therein. Asymptotic cones can be used for proving rigidity theorems for symmetric §phdesr other
results about asymptotic cones we refeflt@,4,5,15-17,22,10]

The case whekKX is a finitely generated group endowed with a word metric is of particular interest.

In [8], Gromov pointed out a connection between homotopical properti€sé,(G) and asymptotic
invariants ofG. Namely, if Cone,(G) is simply connected with respect to all ultrafilters, thénis
finitely presented and the Dehn function is polynomial. A partial converse result was obtaidéd. in
However almost nothing was known about algebraic structure of the fundamental-gi@gme, (G))

in caser; (Cong,(G)) is nontrivial. In particular, no examples of non-free finitely generated subgroups
of such fundamental groups were known until now. (It was observ§?] ithat the asymptotic cones of
Baumslag—Solitar groups

BS,, =(a,b|b"*a?b =al),

where|p| # |¢q|, contain non-free infinitely generated groups.)
The following question is stated [8].

Problem 1.1. Which groups can appear géinitely generatejd subgroups in fundamental groups of
asymptotic cones of finitely generated groups?

In the present paper we answer this question (for finitely generated groups) by proving the following
theorem.

Theorem 1.2. Let M be a metric space such that

(M1) M is geodesigcthat is for any two points:, y € M there is a path joining x and y of length
disty (x, y);
(M2) there is a sequence of compact subdétsC M, C - -- of M such that

o
M:U M;.
i=1

Then there exists a group G generated®tementsan ultrafilter o, and an isometric embedding
1 of M into the asymptotic cone Can@). If, in addition M is uniformly locally simply-connected
i.e.,
(M3) there exists > 0such that any loop in any ball of radigs contractible then G and the embedding
of M into the asymptotic cone of G can be chosen in such a way that the induced homomorphism
of the fundamental groups

¥ (M) — n1(Cong,(G))

is injective
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Obviously any combinatorial compled with countable number of cells in each dimension admits
a (natural) metric which induces the standard topologyMband with respect to whiclM satisfies
(M1)—(M3). Since any countable group is a fundamental group of a countable combinatorial 2-complex,
we obtain

Corollary 1.3. For any countable group Hhere exists a finitely generated group G and an ultrafilber
such thatr1(Cone,(G)) contains a subgroup isomorphic ta H

The construction in the proof of Theorem 1.2 is similar to thgl#] and can be intuitively understood
as follows. Given a metric spad¢ with metricdisty, satisfying (M1)—(M3), we first approximatd by
finite ¢;-netsNet, whereg; — 0 asi — oo. Then we choose a rapidly growing sequence of natural
numbers{n;} and use a construction similar to that frgh#] to produce embeddings of Net into a
finitely generated grou® endowed with a word metridist; such that;, being considered as a map
from a metric spacéNet, distyy) to (G, (1/n;)dists), is a(4;, ¢;)-quasi-isometry, wher¢;, — 1 and
¢i — 0asi — oo. This gives an isometric embeddingM — Cong,(G) for any ultrafilterw satisfying
o{n;} = 1. Then condition (M3) allows one to show thahduces an injective map on the fundamental
groupny(M).

The paper is organized as follows. In the next section we collect main definitions and results which are
used in what follows. Some auxiliary results about words with small cancellation properties are proved
in Section 3. In Section 4 we construct the grépnd the injective map: M — Cone,(G) mentioned
in Theorem 1 and show thats an isometry. In Section 5 we conclude the proof of the main theorem by
proving injectivity of /* : m1(M) — =1(Cong,(G)).

2. Preliminaries
2.1. Asymptotic cones

Recall that anon-principal ultrafilterw is a finitely additive non-zero measure on the set of all subsets
of N such that each subset has measure either 0 or 1 and all finite subsets have measure 0. For any bounde
functioni : N — R its limit 2(w) with respect to a non-principal ultrafilteris uniquely defined by the
following condition: for everys > 0

o({i e N: |h(@i) — h(w)] <d}) =1.
Definition 2.1. Let X be a metric space with a distance functitist . We fix a basepoin® € X and
consider the set of all sequengesN — X such that

dist(0, g(i)) <const, - i
(here the constanbnst, depends og). To any pair of such sequences g one may assign a function

hgl,gz(i) _ diSt(gl(l..), gz(l))

We say that the sequences, g2 are equivalent if the limitzg, ,(w) = 0. The setCong,(G) of all
equivalence classes of sequences with the distance

distcone(g1, 82) = hgy,g,(®)
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is called amasymptotic conef X with respect to the non-principal ultrafilter. Clearly this space does
not depend of the basepoint chosen.

If Gis a group generated by a finite $twe can regards as a metric space assuming the distance
between two elements, b € G to be equal to the length of the shortest word in the alphabét
representing ~15. Such a distance function is called therd metric associated ta Siven an ultrafilter
w, this leads to the asymptotic co@one,(G). It is worth noting that in some exampl&one,(G)
strongly depends on the choice of the ultrafi[2].

2.2. Cayley graphs and van Kampen diagrams

Recall that a&Cayley graph CagG) of a groupG generated by a s&iis an oriented labelled 1-complex
with the vertex seV (Cay(G)) =G and the edge sét(Cay(G))=G x S.Anedgee=(g, s) € E(CayG))
goes from the verteg to the vertexgsand has the labdlab(e) = s. As usual, we denote the origin and
the terminus of the edge i.e., the verticeg andgs by e_ ande,, respectively. The word metric da
associated t&can be extended ©ayG) by assuming the length of every edge to be equal to one. Also,
it is easy to see that a wokl in S** represents 1 i if and only if some (or, equivalently, any) pah
in Cay(G) labelledW s a cycle.

A planarmap4 over a group presentation

G=(S|2) 1)

is a finite oriented connected simply-connected 2-complex endowed with a labelling fuietion
E(4) — S*! (we use the same notation as for Cayley graphs) suctLinate 1) = (Lab(e)) .

Given a combinatorial path=e1e2 .. .. e; in 4 (respectively ilCay(G)), whereeq, eo, ..., ey € E(4)
(respectivelyey, ea, ..., e € E(CayG))), we denote byLab(p) its label. By definition,Lab(p) =
Lab(e1)Lab(ep) ... Lab(ex). We also denote by_ = (e1) _ andp = (ex) the origin and the terminus
of p, respectively. A patlp is calledirreducible if it contains no subpaths of type:—! for e € E(4)
(respectivelye € E(Cay(G))). The length p| of pis, by definition, the numbé¢ of edges ob.

Given a cellIT of 4, we denote byII the boundary of1; similarly, 94 denotes the boundary off.
The label ofoIT or 84 is defined up to a cyclic permutation. A mapover a presentation (1) is called a
van Kampen diagraraver (1) if the following holds. For any cell of 4, the boundary labdlab(017) is
equal to a cyclic permutation of a woRi*1, whereP e 2. Sometimes it is convenient to use the notion
of O-refinement in order to assume diagrams to be homeomorphic to a disc. We do not explain this notion
here and refer the interested reade[1i8).

The van Kampen lemma states that a wikdver the alphabei™?! represents the identity in the group
given by (1) if and only if there exists a simply-connected planar diagfawver (1) such thaL.ab(04)
coincides withw [11,13] A van Kampen diagram is calledinimal if it contains the minimal number
of cells among all diagrams with the same boundary labels.

2.3. Approximations of metric spaces by graphs

We recall that a subsetis called aj-net in a metric spack, if for all y € Y there existg € Z such
that the distance betwegrandzis less thard. We say that a subsgtof a metric spac¥is a(d1, d2)-net
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if Zis ad1-net and the distance between any two pointg isfgreater thaid,. The following lemma will
be used in Section 4.

Lemma 2.2. Suppose that M is a metric space satisfying conditifvi) and (M2). There exists a
sequence of finite subsets N&t Nero C --- of M such that for alli € N, Net is a (2/i, 1/i)-net
in M;.

Proof. We proceed by induction dnSuppose thatlet _1isa(2/(i —1), 1/ —1)-netinM; _1if i > 1,
andNet_1 =@ if i = 1. We consider an arbitrary finite/ i-netN in M; that containdNet_; as a subset.
Let .4~ denote the set of all subsdtssuch thatNet_1 € L € N and for any two different elements
x,y € L we havedisty; (x, y) > 1/i. Note that the set/” is non-empty as it contairdet_;.

Consider a partial order an” which corresponds to inclusion, i.e., foraay B € 4", A < B if and
only if A € B. Since./" is finite, we can take a maximal sub&ewith respect to this order. Note that
for anyr € N, we havedisty, (¢, B)<1/i. Indeed, otherwis® U {r} € ./ and thusB is not maximal.
Therefore, for anyw € M;, we havedisty; (x, B)<2/i. ThusBis a(2/i,1/i)-netinM;. O

3. Words with small cancellations

To prove the main result of our paper we will need an infinite set of words satisfying certain small
cancellation conditions. We begin with definitions.

Let X be an alphabet arfda free group with the bask Throughout the following discussion we write
U = V to express the letter-by-letter equality of the wotdlandV. Given a wordW over the alphabet
X, by a cyclic wordW we mean the set of all cyclic shifts @. Two cyclic wordsW; and W, are equal
if and only there exist cyclic shift&1, U, of W1 and W» respectively such thdf; = U,. A subword of
a cyclic wordW s a subword of a cyclic shift V. By || W| we denote the length of a (cyclic) wowl.
Finally, for a real number, [r] means the greatest integer which is less than or equal to

Definition 3.1. A sets of cyclic words inX satisfies the conditioa™ (/) if for all common subwordé
of any two different cyclic word®, C € 71, we have|A|| < Amin{| B|l, |C||} and for all cyclic words
B € 71 all subwordsA of B of length|| A|| > || B|| occur inB only once.

Definition 3.2. Given a setZ7” of words inX, we define ayrowth functionof T by the formula
o7 (n) =147 (n),
whereZ (n) is the set of all words fron¥ having length exactly, i.e.,
T (n)={Weg :|W|=n}
The main result of this section is the following.

Proposition 3.3. There exists a sef of words in the alphabeX = {a, b} and a non-increasing function
AN — (0, 1) satisfying the following conditions.

(i) The functiorns &~ is non-decreasing anlim,, , oo 7 (n) = oco.
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@iy lim,_~A(n) =0.
(i) 7 satisfiesC*(1/50) condition and for allz € N, the set J;2,, 7 (k) satisfiesC*(i(n)).

The proof of Proposition 3.3 is based on four auxiliary lemmas. Recall that for>aya wordw is
calledl-aperiodic if it has no non-empty subwords of the fovih The following lemma can be found in
the book[13, Theorem 4.6]

Lemma 3.4. Denote byf (n) the number of alb-aperiodic words of lengtl > 0 over the alphabet
X ={a, b}. Then we have

f(n)>(3/2)".

Let# (k) ={Xk.1, ..., Xk ) be the set of all different 6-aperiodic words of lengtim the alphabet
{a,b}. Foreveryk >8andevery =0,1..., ([f(k)/k] — 1), consider the (cyclic) word

Wii = (a®h X _gix110)(a®h Xy _gixs2b) ... (a®hXi_gixiib). )

Set

&/kZ{Wk’[:izo,l,...,<|:%i|—l>}.

The next lemma is an immediate consequence of (2) and Lemma 3.4.

Lemma 3.5. For anyk > 8 and anyW < .7}, we have

@ W] =k?
(b) #/>(3/2)%/k — 1.

Lemma 3.6. For anyk > 8, the setUj?O:k,;zij satisfiesC*(3/k).

Proof. Supposethal/ € .«/;, j >k, is a cyclic word and/ is a subword ol such that| V|| > (3/k) U]
Thenwe havd V|| >(3//)||U| =3/ > 2j + 8. Note that any subword &f of length greater than;2+ 8
contains a subword of type

a®hX ;_g;ba®, 3)

whereX ;_g; € Z(j — 8). Since all words fron®'(j — 8) are aperiodic and different, such a subword
occurs inU only once. Thereforé/ occurs inU once.

Further, letU1, U be two cyclic words frorrUj?Ozk </ j andV a common subword of/;, U such
that ||V || > (3/k) min{||U1]||, ||U2]l}. Arguing as above, we can show thatontains a subword of type
(3) for j = min{||U1]|, ||U2|l}. It remains to observe that such a subword appears in a unique word
from.z. O
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For eachn € N, n>81, we construct a sex,, of words over{a, b} as follows. First we divide each set
o/ into (2k 4+ 1) disjoint parts such that

2k+1
A= I_l A ki (4)
i=1
and
ot
A > 5
totni> | | ©
foranyi =1, ..., 2k + 1. We set
B :&{k,l: (6)

wherek =[/n] andl =n — [/n]?. Note tha{\/n] >[v/81] > 8and <n — (/n —1)°=2n — 1< 2k + 1.
Thus4, is well-defined fom >81. Furthermore, for an{ € %,,, we haveW < A fa- Hence

n=|W|zn-10%>n-2Jn 7)
by Lemma 3.5. Finally, given an arbitrary woWd € %,,, we form a new word

W= wbp", 8
wherem = n — |W|. We callW acoreof the wordW . Inequality (7) yields

0<m < 2/n. 9)
We set

Tm)={W:W e %,

foralln>81 ands (n) = ¢ for n < 81.
The proof of the next lemma is straightforward. We leave it to the reader.

Lemma 3.7. Let A, B, C, D be arbitrary words in the alphabet.>Suppose thatax{||C]||, || D[} <y
and any common subword of cyclic words A and B has length at m®dkex the length of any common
subword of the cyclic words AC and BD is at m8st+ 2y.

Proof of Proposition 2.1. Let us take7 (n) as defined above and set= | J;~, 7 (k). Combining (5),
(6), and Lemma 3.5, we obtain

o =) =50 = [zwﬁ] +1] 7 | [Val@lval + 1)

Evidently we have lim_, a(n) = oco. Moreover, passing to a subset®fif necessary we can always
assume that(n) is non-decreasing.
Let us show that the unidn);2,, 7 (k) satisfiesC*(i(n)) for

o . 2yl
Wnl n—2yn

2ALm) ] N [(3/2>W] - wﬁ]} |

;\,(l’l) =
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Suppose thal/ 1, U are two different words fron J;2, 7 (k), n>81, andV is a common subword of
Ui, Uj. Let U1 and U be the cores ot/ and U, respectively/ = min{||U1||, ||U2||}. Note that the
length of any common subword éf; andUs> is at most 3/[+/n] by Lemma 3.6. According to Lemma
3.7 and inequality (9) this yields

v _ (O/LynDI +2[ /]
min{||U1|, |U2l} !

<J(n).

IncaseU € |J;g2,, 7 (k) andV is a common subword of two different cyclic shifts@f we obtain the

inequality || V|| /IIU | < A(rn) in an analogous way. Finally, |&t be an integer such thatN) < 5_10- Then
we set7 (n) = ¢ for all n <N and redefing.(n) to be equal to 250 foralln<N. O

4. Main construction

Throughout the rest of the paper we fix a metric spdcgatisfying conditions (M1) and (M2). Let
be the set of words provided by Proposition 3.3 ards - its growth function. Also, let us fix a sequence

Net1 C Netp C - --

constructed in Lemma 2.2 such tiNgt is a(2/i, 1/i)—netinM;,i € N. By I'; we denote the complete
(abstract) graph with the vertex 9¢et. Further, we endow’; with a metric in which the length of an
edgee with endpointsk andy is distys (x, y). Thus there is a map; — M that maps each vertex of
to the corresponding point &fet and maps edges of to geodesics i. It is clear that the restriction
of this map to the set of vertices 0f is an embedding.

We consider a sequenge, i € N, satisfying the following three conditions:

() {n;/i}is anincreasing sequence of natural numbers.
() Foranyi € N, a(n;j/i)>N;(N; — 1)/2, whereN; = fiNet;.
() n;/i>n;_1diamM;_q foralli e N,i>2.

Obviously we can always ensure (1)—(111), choosimgaftern; _1. (Recall that(n) — oo asn — o0.)
For everyi € N, we take an arbitrary orientation on edgeg'afLet E (I';) denote the set of all oriented
edges off’;. In the next lemmadx] means the smallest integgsuch thaty > x.

Lemma 4.1. There exists an injective labelling functign |72, E(I';) — 7+ such that for any edge
e € E(I';) with endpointst, y, we have

¢(e)ll = Tn;disty (x, y)] (10)
and¢(e~1) = ¢(e) L. In particular, the set{¢(e) | e € E(I';)} of all edge labels of ; satisfiesC*(A(i)).

Proof. Suppose that, y € Net; andu, v € Net; for somej > i. Then combining conditions (1)—(lIl)
and the fact thalNet; is a(2/j, 1/j)-net, we obtain

[n;disty (x, y)] < [n;diamM;] < nit1/( + 1< |—I’lj/j—| < fnjdiStM(u, v)].
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Thus it suffices to show that the numbgrof unordered pairs, y € Net; such thafn;disty (x, y)] =k

is less than the number of words of lengtim 7 for every possiblé. Obviously, we have
N;(N; — 1)
ik < ———5——

and
Ni(N; — 1)
2
sinces is non-decreasing ardisty; (x, y) > 1/i foranyx, y € Net;.

The assertion “in particular” can be derived as follows. Note that > i by the property (I). Since
foranye € E(I';), we have

o(k)=a(ni/i)=

@) =n;disty(e—, e ) >n;/i >,

¢(e) belongs to the uniobj?‘;i 7 (j). It remains to apply Proposition 3.3

If p=-etes...e,isacombinatorial path if;, whereeq, e, ..., e, € E(I';), we define the labeb(p)
to be the wordp(e1)¢p(e2) ... d(ey,). Let

#; ={¢(p) | p is an irreducible cycle im’;}

and

Finally, we define the grou@ by the presentation
(a,b|R). (11)

Let 4 be a van Kampen diagram over (11),a cell of 4. We say thatil hasrank i if Lab(0Il) is a
word from ;. Further, we call a wordlV in the alphabetaﬂ, bﬂ} arl;-wordif Wis a label of some
irreducible combinatorial pathin I';. (Evidently such a patpis unique as7 satisfiesC*(S—lo) and¢ is
injective.)

Suppose that is a path in a van Kampen diagrafrover (11). IfLab(p) is aI';-word corresponding
to the pathey ...e; in I';, Whereey, . .., ¢; are edges of;, thenp can be represented as a product

pP=pi...p (12)

of its segmentys, ..., p; with labelsLab(p1) = ¢(e1), ..., Lab(p;) = ¢(e;). In this case we call the
decomposition (12) aanonicaldecomposition op.

Note that for the boundany of a cellIT in 4, two edges (say andf) adjacent to the vertefp;), =
(pi+1)_ = eq = f_ for somei can have mutually inverse labels. This allows one to idewtifjth f—1:
then we can pass to the next pair of edges adjaceat te f, and so on. Since” satisfiesC*(S—lo),
not more than 150 of each segmemniy, ..., p; can be cancelled by such reductions. The irreducible
pathp] ... p;, wherep; is a subpath op;, is called areduced boundargf IT and is denoted b§,4l1.
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Thus we havep!|> g‘—glp,- |. Also, to each patlg in 4, we assign a patireg Which is obtained frong by
eliminating edges that do not appear in reduced boundaries of cells in

It seems more natural to consider the reduced boundary. However, in the sequel, working with the
notion of the well-attached cells defined below, it is convenient, for technical reasons, to distinguish
between the notion of the boundary and that of the reduced boundary.

Given two cellsIiy, I1o of the same rankin a van Kampen diagram over (11), we say thafl;
andII, arewell-attached to each othgeif the following is true. Up to a cyclic shif)I11 (respectively
(0I12)~1) admits a canonical decompositiol1 = p1 . . . p, (respectivelydIl>) *=g¢1 ... ¢s) associated
to a pathe; ... e; (respectivelyfi ... fy) in I';, wheree; = f1 andpy = ¢1. Letd be the reduced cycle
in I'; obtained frome...e, f1. .. f,*. Then the label of the cycle= pa...p,g; 1. .. ¢, is freely
equal to thd;-word corresponding td. Thus, by the definition of;, Lab(c) is freely equal to a relator
and hence we can replace cdlis andII, with one cell (se¢13] for details).

Now suppose thatd =uw, whereLab(w) is al';-word. We say that a celll of ranki is well-attached
to a segment w of boundary df if, up to a cyclic shift,dIT (respectivelyw—1) admits a canonical
decompositio®II = p1 ... p, (respectivelyw=1 = ¢1 ... ¢,) associated to a path . .. ¢, (respectively
fi...fs)IinT;, wheree; = f1 andp1 = ¢1. In this case we denote laythe reduced cycle in; obtained
from f1... f, tes. .. e,. Then the label of the path=g;...q, *p2... p, is freely equal to the;-
word corresponding td. Thus, by cutting the celil, we obtain a subdiagramof 4 such thatX = uv,
wherev is also al’;-word.

We can summarize these observations as follows.

Lemma 4.2. Let 4 be a van Kampen diagram ovélrl).

(1) Suppose that is minimal i.e., it has a minimal number of cells among all diagrams of&k) with
the same boundary label. Then no two cellgi@fre well attached to each other.

(2) Suppose thatab(04) = VW, where W is al’;-word. Assume that a cell is well-attached to the
subpath ob4 labelled W Then there exists a subdiagrarof 4 (which can be obtained from by
cutting the celll7) such thatLab(0X) = VU, where U is al’;-word.

The next lemma provides certain sufficient conditions for two cells (or a cell and a part of boundary of
a diagram) to be well-attached.
Lemma 4.3. Let 4 be a van Kampen diagram ovérl).

(1) Suppose thall;, IT, are cells in4 such that there exists a common subpath@ Qi1 and(9,e4l12) ~*
such that

1 .
lpl=— m|n{|arednl|a |aredH2|}-

10

ThenIl; andII, are well-attached to each other.
(2) Suppose thadA = vw, whereLab(w) is a I';-word. Assume that for a cell, there is a common
subpath ¢ ofvreq and (8,,4/7) ~* of length

1
|Q| 21_0 |aredH|-

Thenll is well-attached to the subpath w@f.
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Proof. Let us prove the first assertion of the lemma. Up to a cyclic shift, admits canonical decom-
positionps ... p;. Let p] ... p; be the corresponding decompositiondaf;/11, wherep: is a subpath
of p;. Thenp and a certairp; have a common subpathof length at Ieas’(%))|plf| 2(%0)“9,4. Let
g1 .. .45 be the canonical decomposition@fiy, ¢; . .. g; the corresponding decomposition@f/1>.
Let Z denote the set of endpoints of pa#fis. .., ¢;. If qis cut by vertices fronZ into at most two
parts, then one of these parts has length at I§|@$I> (%oﬂm > (5—10)|pi|.|f g contains more than one
vertex fromz, thenq} is a subpath op; for somej (note thaﬂq}|> (g‘—g)|qj|). In both cases we found a

common subpath gf; andg; of length at Ieas(sio) min{| p;|, |g;1}. Therefore the labels of edgesand

f; of I' and I respectively corresponding 9 andg; contain a common subword of length at least
(o) min{llp(e) |, ¢(f)}. Sinces satisfiesC*(g5) and¢ is injective, we havey; = ¢;, k =, and

e; = f;. The proof of the second assertion is similar and we leave it to the reader.

From Lemmas 4.2 and 4.3, we immediately obtain

Corollary 4.4. Let A be a minimal van Kampen diagram oJdrl). Then for any common subpath p of
the reduced boundaries any two cdlls and I of 4, we have p| < 1—10 min{|0,egqlI1l, 10,eq2]}-

Up to notation, the proof of the next lemma coincides with the proof of LemmdBiijl\We provide
it for convenience of the reader.

Lemma 4.5. Suppose that W is B;-word. Then there exists a word V such thiat=V in G, V is of the
minimal length among all of the wordaot necessarily";-wordg representing the same element as W
in G, and V is freely equal to &;-word.

Proof. LetV be a shortest word representing the same eleméitiasG. We consider a van Kampen
diagram4 over (11) corresponding to this equality. Without loss of generality we may assume that the
word W and 4 are chosen in such a way thathas the minimal number of cells among all diagrams
corresponding to equalities ®fto I';-words. We are going to show thdtcontains no cells at all, and
thusV is freely equal to d;-word.

Assume that there is at least one cellinDenote by4’ the map obtained from by eliminating all
edges that do not appear in reduced boundaries of cells Biien4’, as a map, satisfie@’(%) small
cancellation condition (sgé&1, Chapter 5]by Corollary 4.4. By Greendlinger's Lemma, this means that
4 contains a cellT such that there is a common subpatt®,@§/T and(04)eq Of length|p| > 0.7|0,g4l1].
(We substitutel = 0.1 in the Greendlinger’s constant134 from [11]).

The boundary o1 consists of two partg andw corresponding to wordg andW. If the pathp has
a common subpath with’=} of length at least @[o11|, thenT is well-attached to the subpathof 4
by Lemma 4.3. However, by the second assertion of Lemma 4.2 this contradicts the chdiemafi.
Hence there is a common subpatf 8,41 and vy such thatg| > (0.7 — 0.2)[0eqlT| = 0.5/eq 1.
Thusd,eqll = gq1, lg] > |g1l, and the wordd.ab(q), Lab(q1) represent the same element in the group
G. But Lab(q) is a subword oW and we arrive at a contradiction to our choicé/adis a shortest word
representing the same elemenvésn G. O

Definition 4.6. For each’ € N, we construct an embedding

oj : Net;i > G
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as follows. Let us fix a poinD in Net; (and thusO € Net; for all i). Then for anyx € Net; there is a
combinatorial patip in I'; such thatp_ = O, p+ = x. We definey; (x) to be equal to the element &f
represented by(p). Note thaty; (x) is independent of the choice pfIndeed, ifg is another path ir;
with the originO and terminus, thenpg~1 is a cycle and thus(p)¢(g?1) is a relator fromz;, i.e.,
¢(p) andep(q) represent the same elemeniGaf

Lemma 4.7. Let dis; denote the word metric on G corresponding to the generatingusét. Then for
anyi € N and anyx, y € Net;, we have

1 1
(1 —24@))disty (x, y) < — distg (o (x), o; () <disty (x, y) + —. (13)
n; n;
Proof. If eis an edge in; such thakt_ = x, e, = y, anda, b are edges i’; such that_ =b, = O,
ar=x,b_=y,thenaebis a cycle inl’;. Thereforep(a)$(e)p(b) labels a cyclein Cay(G) beginning at
1. Letc = psq, whereLab(p) = ¢(a), Lab(s) = ¢(e), Lab(g) = ¢(b). Since by definitiorp, = o; (x)
andg_ = «;(y), the elements; (x) and; (y) are connected by the pastin Cay(G). Therefore,

distg (0 (x), 03 () <Is| = llp(e) || = [nidisty (x, y)] <nidisty (x, y) + 1.

This gives the right-hand side inequality in (13).
Further, by Lemma 4.5, there exists a wdftepresenting the eleme@t; (x)) Ly (y)) and ar’;-word
U freely equal td/ such that

IV = distg (1, o5 (x)) "1 () = distg (2 (x). @ (¥)). (14)
Obviously we have
IVIIZ@—=226)1UI (15)

since the set of edge labels Bf satisfiesC*(A(i)) by Lemma 4.1. Let = e;...¢, be the path inT;
corresponding t&J. Then, arguing as in the first case, we can showthat x, r, = y and thus

t

t
WU =) llgtepl = nidist((ej)—, (ej)+) >ndisty (x, y). (16)

j=1 j=1
Combining (14), (15), and (16) we obtain the left-hand inequality in (138).

Definition 4.8. We take a non-principal ultrafiltes such thatw({n;}) = 1 and consider the asymptotic
coneCong,(G) of G with respect to this ultrafilter. Our next goal is to define an embeddofgM to
Cong,(G).

Let x be a point oM. Then there is a sequence of poiniss Net; such that; — x asi — oco. We
define:(x) to be the point oCone,(G) represented by an arbitrary seque(g:¢, whereg,, = o; (x;) for
anyi € N. Obviously: is well-defined as the point @one,(G) representing the sequenigg} depends
on the subsequenge,, } only.

Proposition 4.9. Suppose that M is a metric space satisfy{iMfl) and (M2). Then the map is an
isometry.
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Proof. Let x, y be points ofM, {x;}, {y;} the sequences of elements of nits; such thaty, — x as
i > ocoandy, — yasi — oo. Let{g;} and{h;} be the corresponding sequences of elements of
representing(x) and:(y). Then applying Lemma 4.7, we have

) ) ) ) 1 .
disty (x, y) = ileOO disty (x;, yi) = ileoo _ distg (o (x;), ;i (yi))

o1 .
= lim =distg(g;, hi) = distcond1(x), 1(y)). O
w 1

5. Embedding of the fundamental group

All assumptions and notation from the previous section remain in force here. In particigsotes
the isometryM — Cone,(G) constructed in the previous section. In addition we supposétlsatisfies
(M3). Also, let:* denote the homomorphism (M) — =1(Cong,(G)) induced by:. We conclude the
proof of Theorem 1.2 by proving the following.

Proposition 5.1. Suppose that M satisfi¢s11)—(M3). Then the map* : 71 (M) — =1(Cong,(G)) is
injective.

Proof. Let S =10, 1] x [0, 1] be a unit square and: S — M a loop inM such thaty is contractible
in Cone,(G). We want to show thatis contractible inM.

Sincey is contractible inCone,(G), there exists a continuous map: S — Cone,(G) such that
the restriction ofr to 8S coincides with:y. The unit squaré& is compact, and thereforeis uniformly
continuous. Hence there exigisuch that for any1, y2 € B which lie at a distance at moétin B, we
have

distcondr (x), r(y)) < &/20. (17)
We can also assume thatile N. By Grids we denote the standasenet inSthat is the set
Grids = {(ad,bd) | a,b € 7, 0<a, b<1/6}.

By r(Grids) we denote the image @rids in Cong,(G).

For every pointc € r(Grids) U (7=, 1(Net;)) we fix an arbitrary sequende; } of elements ofs that
represents in Cong,(G) (such a sequence will be calledsendard representativef x). Let ¢ be the
constant from (M3). We také € N such that the following conditions hold:

(LO) r(Gridy) is contained in(My);

(L1) 1/L <¢&/20;in particular, ¥ny <¢&/20;
(L2) for any two pointsy, y € r(Grids) U 1(Net ), we have

1 . .
E d|StG (.an, ynL) - dlStCOﬂ&x’ y) <8/20’
where{x;} and{y;} are standard representativexandy respectively.

(Note that for any there exist. > [ such that (L0O)—(L2) hold.)
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We say that two points, y in Grids are neighbors if they have the foom= (ad, b5), y = ((a+ 1)9, bd)
orx=(ad, bd),y=(ad, (b+1)5).If x, y € Grids are neighbors an;}, {y;} are standard representatives
of r(x), r(y), we fix an arbitrary geodesic in the Cayley graplgoing from the element,, to y,, and
denote this geodesic (x,, , y,, ). Further for every point e Grid; which lies onoS, we take a point
t* € i(Netr) which is closest t@ (x); in particular, we have

dlStCone(tx, r(x))§2/L<018 (18)

asr(x) € (M) by (LO) andi(Nety) is a 2/L-net ini(My) (recall that: is an isometry). Suppose that
{t]'} is the standard representativerdf Then we join elements,, andz;, by a geodesié(x,,, ;) in
Cay(G). Finally, if x, y € 85 are neighbors and, ¥ are the corresponding points @iVer ), then we
denote by(z), . 77, ) a path inCay(G) joining 7/, to#;, such that the label d€is equal tag(e), wheree

is the edge of ', satisfying the conditionge_) =t*, i(e+.) = ¢”. In particular, we have

lk(ty, ta )| = lp(e)]l = [nrdistconer”, *)]. (19)

Letx?, ..., x™, wherem = 4/, be subsequent points Gfrids N 95 (i.e.,x’ andx’*! are neighbors,
where indices are moduln). Then the label of the cycle

3 m

p:k(t,le, t,ff)k(t,ff,t,f )k (20)

nr’ny

is al';-word. We construct a van Kampen diagrawith boundary labelLab(0Z) = ¢(p) as follows.
The netGrid;s allows one to regarBas a union of 152 small squares with sides of lengthFor any such
square with vertices, y, z, t in Grids, we consider a minimal van Kampen diagram (homeomorphic to
a disk) with boundary label

Lab(g(an’ ynL)g()’nL, ZnL)g(ZnL, tnL)g(tnL, an))' (21)

Also, if x, y € 85 N Grids are neighbors, we consider a minimal van Kampen diagram (homeomorphic
to a disk) with boundary label

Lab(g(-an’ }’nL)h(ynL, f,%yL)k(l‘,%}L, tr);cL)(h(anv t')ch))—l). (22)

We call the constructed diagrams with boundary labels (21), éB2hentary Gluing these elementary
diagrams together in the obvious way we obtain a diagfaower (11) such thakab(0Z) is ther’;-word
defined by (20).

We are going to show that the perimeter of each elementary diagram is less.Than.Ondeed,
inequality (17) and condition (L2) together yield

|8 Xy » Ynp )| = distG (X, Yn, ) <np (disicone(r (x), 7(y)) 4 0.05¢) <0.1npe (23)
for any two neighbors, y € Grids. If x € Grids N 8§, then (L1), (L2) and (18) imply

7, o 1)) = distg (xn, , £,) <np (distcone(r (x), ) + 0.05¢)
<nr(2/L + 0.05)<0.15n  ¢. (24)
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Finally, if x, y € S are neighbors, then combining (17), (18), and (19) we obtain

lk(ty, , ta,)] = [nodistcondr™, )]
< [np(distcondt™, r(x)) + distcondr (x), () + distcone(r (¥), 7)1
<[0.251,61<0.25n,¢ + 1<0.3n . (25)

Therefore, any word of type (21) or (22) has length at mosi ge.

Lemma 5.2. Let IT be a cell of rank L inz, | the loop inI";, corresponding to thé'; -word Lab(0I1).
Then lis contractible in M

Proof. Note thatlT lies in some elementary diagraén Since any elementary diagram is minimal, it
satisfiea’(1/10) small cancellation condition as a map by Corollary 4.4. Hence the length of the reduced
boundary of any cell ir® is not greater thait®®| <0.7ne. This means that

50 35
|o1| <4_8 |6redH|<EnL8 <nre.
Letl =e1...¢, Whereey, ..., e, are edges of ;. The length of satisfies

t t
1 1
=) leil< )  —ll¢(e)ll =—I[ol] <e.

i=

Therefore] is contractible irM by (M3). O

Lemma 5.3. Consider a van Kampen diagramwith boundary labelled by & -word. Suppose that
the boundary label of each cell of rank L in this diagram corresponds to a contractible loopTiné&h
the boundary label of the diagram also corresponds to a contractible loop in M

Proof. We prove the statement of the lemma by induction on the numbércells in the diagram. If
s = 0 the statement is obvious, so we assumestbait.
By Grindlinger’s lemma at least one of the following two statements holds:

(1) There exist two cellgl; and Tz and a common subpafhof dreqlT1 andd,eqll2 such thap|> 1—10
mm{|arednlla |aredn2|}-
(2) There exist a celll and a common subpafhof 0,.4/7 andd4 such thafp|> % 10reql!-

In the first casdI; and I, have the same rank and are well-attached to each other by Lemma 4.3.
Arguing as in the proof of Lemma 4.2, we can replaeandIi» by one cellY". If rank I11=rank I #
L, the statement is true by the inductive hypothesis. To use the inductive hypothesisitnasé; =
rank ITo = L, we have to check that the cyctecorresponding to the new celf is contractible in
M. Indeed, ifp, g are cycles corresponding 1@, and I1> (we may assume that_ = ¢_), thensis
homotopic to the product gfandg 1. Sincep andq are contractible iM by the condition of the lemma,
sis contractible inM.

In the second casE has rankL by Lemma 4.2 and is well-attached to the boundaryl ofVe pass
to the subdiagram of 4 obtained by cutting the celll. Applying Lemma 4.2 again, we conclude that
Lab(02) is aI'y -word. By the inductive assumption the cycleorresponding td.ab(02) is contractible
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in M. Letd be the cycle in";, corresponding td.ab(aI1), f the cycle corresponding tbab(d4). As in
the previous caséjs homotopic to the product efandd—! and hence is contractible M. [

Now we return to the proof of the proposition. The two previous lemmas imply that thegloop; ,
corresponding to the boundary label of the diagaomder consideration, is contractible.

As above, letxy, ..., x,, be subsequent neighbors@rids N 8S. For every two neighbors;, x; 1
(indices are modulon), we denote by, d;, e;, f; the segmenlr(x;), r(x;+1)] of 1y, the geodesic path
from r(x;11) to +¥i+1, the edgee of I'; such thati(e—) = t*i+1, i1(e4) = t*, and the geodesic path from
Y to r(x;), respectively. Note that for any= 1, ..., m, the cycleq; = ¢;d;e; f; is contained in the ball
B; = B;(0.35¢, x;) of radius 035¢ aroundr (x;) in Cone,(G). Indeed any point of; is contained imB; by
(17). Further sincd; and f; are geodesic; and f; are contained in.Qs-neighborhoods of (x;5.1) and
r(x;) respectively according to (18); together with (17) this implies thandc; lie in B;. Finally, each
point ofe; belongs taB; ase; is geodesic, the distance betwe€r;) and the end of; is at most Ole, and
the length ok; is at most 25¢ by the triangle inequality. Thus is contained imB;. Since: is anisometry,
this means that the preimagegfunder: : M — Cong,(G) is contractible invi by (M3). Hencei(g)
is homotopic tay via a homotopy irfM. Hencey is contractible iVl according to Lemma 5.3.0J

6. Concluding remarks and questions

We have shown that any countable group can be embedded into a fundamental group of an asymptotic
cone of some finitely generated group. Note that our proof also shows that any recursively presentable
group can be embedded into a fundamental group of some finitely presentable group.

The construction of our group depends on a spgdcand a scaling sequenag. Similarly we can
start with a countable set of spac¥g (satisfying (M1)—(M3)), take a countable set of non-intersecting

scaling sequences,ﬁ(Nj) and construct a grou@, such that for eachthere is a scale on whicN; is
embedded into the asymptotic coné®fA natural task is to check that starting with the spaces with very
different fundamental groups (e g/ pZ for differentp) one gets asymptotic cones (on different scales)
with infinitely many different fundamental groups. Then under certain conditions on the spaces the group
Gis recursively presentable and we can embed it into a finitely presentable group. Again, a natural task is
to check that one can choose this embedding in such a way that this finitely presented group has different
fundamental groups on different scales.

Another natural question is: does there exist a finitely presented group such that the simple connectivity
of the asymptotic cone depends on the choice of the ultrafilter?

Finally let us mention that recently Kramer et [dl0] have shown that if continuum hypothesis fails,
then there exist finitely presented groups (which are uniform lattices in certain semisimple Lie groups)
that have infinitely many different asymptotic cones. However, if continuum hypothesis holds, then the
examples fronj10] have unique asymptotic cones.
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