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Abstract

We show that for any metric spaceM satisfying certain natural conditions, there is a finitely generated group
G, an ultrafilter�, and an isometric embedding� of M to the asymptotic coneCone�(G) such that the induced
homomorphism�∗ : �1(M) → �1(Cone�(G)) is injective. In particular, we prove that any countable group can be
embedded into a fundamental group of an asymptotic cone of a finitely generated group.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

To any metric spaceXwith a distance functiondist, one can associate a new metric spaceCone�(X),
the so-calledasymptotic coneof X, by taking the ultralimit of scaled spaces(X, (1/n)dist) with respect
to an ultrafilter�. Informally speakingCone�(X) shows whatX looks like if the observer is placed at
‘infinity’ (see the next section for a precise definition). This notion appears in the proof of Gromov’s
theorem about groups of polynomial growth (it is defined in[3], though in the polynomial growth case,
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where for the convergence to the limit one does not need ultralimits, the corresponding limit space is
considered already in[6]).
It is known that a group is hyperbolic if and only if any of its asymptotic cones is anR-tree[8] (Misha

Kapovich pointed out to the first author that if one of the cones of a finitely presented group is anR-tree,
then this group is hyperbolic).
The application of asymptotic cones to the study of algebraic and geometric properties of hyperbolic

groupsappears in adifferent language in[12] and in[18]. For recent progress see[20,19,21]and references
therein. Asymptotic cones can be used for proving rigidity theorems for symmetric spaces[9]. For other
results about asymptotic cones we refer to[1,2,4,5,15–17,22,10].
The case whenX is a finitely generated groupG endowed with a word metric is of particular interest.

In [8], Gromov pointed out a connection between homotopical properties ofCone�(G) and asymptotic
invariants ofG. Namely, if Cone�(G) is simply connected with respect to all ultrafilters, thenG is
finitely presented and the Dehn function is polynomial. A partial converse result was obtained in[15].
However almost nothing was known about algebraic structure of the fundamental group�1(Cone�(G))
in case�1(Cone�(G)) is nontrivial. In particular, no examples of non-free finitely generated subgroups
of such fundamental groups were known until now. (It was observed in[2] that the asymptotic cones of
Baumslag–Solitar groups

BSp,q = 〈a, b | b−1apb = aq〉,
where|p| 	= |q|, contain non-free infinitely generated groups.)
The following question is stated in[8].

Problem 1.1.Which groups can appear as(finitely generated) subgroups in fundamental groups of
asymptotic cones of finitely generated groups?

In the present paper we answer this question (for finitely generated groups) by proving the following
theorem.

Theorem 1.2. Let M be a metric space such that

(M1) M is geodesic, that is for any two pointsx, y ∈ M there is a path joining x and y of length
distM(x, y);

(M2) there is a sequence of compact subsetsM1 ⊆ M2 ⊆ · · · of M such that

M =
∞⋃
i=1

Mi .

Then there exists a group G generated by2 elements, an ultrafilter�, and an isometric embedding
� of M into the asymptotic cone Cone�(G). If, in addition,M is uniformly locally simply-connected,
i.e.,

(M3) there existsε >0such that any loop in any ball of radiusε is contractible, thenGand the embedding
of M into the asymptotic cone of G can be chosen in such a way that the induced homomorphism
of the fundamental groups

�∗ : �1(M) → �1(Cone�(G))

is injective.
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Obviously any combinatorial complexM with countable number of cells in each dimension admits
a (natural) metric which induces the standard topology onM and with respect to whichM satisfies
(M1)–(M3). Since any countable group is a fundamental group of a countable combinatorial 2-complex,
we obtain

Corollary 1.3. For any countable group H, there exists a finitely generated group G and an ultrafilter�
such that�1(Cone�(G)) contains a subgroup isomorphic to H.

The construction in the proof of Theorem 1.2 is similar to that in[14] and can be intuitively understood
as follows. Given a metric spaceM with metricdistM satisfying (M1)–(M3), we first approximateM by
finite εi-netsNeti , whereεi → 0 asi → ∞. Then we choose a rapidly growing sequence of natural
numbers{ni} and use a construction similar to that from[14] to produce embeddings�i of Neti into a
finitely generated groupG endowed with a word metricdistG such that�i , being considered as a map
from a metric space(Neti ,distM) to (G, (1/ni)distG), is a (�i , ci)-quasi-isometry, where�i → 1 and
ci → 0 asi → ∞. This gives an isometric embedding� : M → Cone�(G) for any ultrafilter� satisfying
�{ni} = 1. Then condition (M3) allows one to show that� induces an injective map on the fundamental
group�1(M).
The paper is organized as follows. In the next section we collect main definitions and results which are

used in what follows. Some auxiliary results about words with small cancellation properties are proved
in Section 3. In Section 4 we construct the groupGand the injective map� : M → Cone�(G)mentioned
in Theorem 1 and show that� is an isometry. In Section 5 we conclude the proof of the main theorem by
proving injectivity of�∗ : �1(M) → �1(Cone�(G)).

2. Preliminaries

2.1. Asymptotic cones

Recall that anon-principal ultrafilter� is a finitely additive non-zero measure on the set of all subsets
ofN such that each subset hasmeasure either 0 or 1 and all finite subsets havemeasure 0. For any bounded
functionh : N → R its limit h(�) with respect to a non-principal ultrafilter� is uniquely defined by the
following condition: for every�>0

�({i ∈ N : |h(i)− h(�)|< �})= 1.

Definition 2.1. Let X be a metric space with a distance functiondist . We fix a basepointO ∈ X and
consider the set of all sequencesg : N → X such that

dist(O, g(i))�constg · i
(here the constantconstg depends ong). To any pair of such sequencesg1, g2 one may assign a function

hg1,g2(i)= dist(g1(i), g2(i))

i
.

We say that the sequencesg1, g2 are equivalent if the limithg1,g2(�) = 0. The setCone�(G) of all
equivalence classes of sequences with the distance

distCone(g1, g2)= hg1,g2(�)
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is called anasymptotic coneof X with respect to the non-principal ultrafilter�. Clearly this space does
not depend of the basepoint chosen.

If G is a group generated by a finite setS, we can regardG as a metric space assuming the distance
between two elementsa, b ∈ G to be equal to the length of the shortest word in the alphabetS±1

representinga−1b. Such a distance function is called theword metric associated to S. Given an ultrafilter
�, this leads to the asymptotic coneCone�(G). It is worth noting that in some examplesCone�(G)
strongly depends on the choice of the ultrafilter[22].

2.2. Cayley graphs and van Kampen diagrams

Recall that aCayley graph Cay(G) of a groupGgenerated by a setSis an oriented labelled 1-complex
with the vertex setV (Cay(G))=G and the edge setE(Cay(G))=G×S.An edgee=(g, s) ∈ E(Cay(G))
goes from the vertexg to the vertexgsand has the labelLab(e)= s. As usual, we denote the origin and
the terminus of the edgee, i.e., the verticesg andgs, by e− ande+, respectively. The word metric onG
associated toScan be extended toCay(G) by assuming the length of every edge to be equal to one. Also,
it is easy to see that a wordW in S±1 represents 1 inG if and only if some (or, equivalently, any) pathp
in Cay(G) labelledW is a cycle.
A planarmap� over a group presentation

G= 〈S |P〉 (1)

is a finite oriented connected simply-connected 2-complex endowed with a labelling functionLab :
E(�) → S±1 (we use the same notation as for Cayley graphs) such thatLab(e−1)= (Lab(e))−1.
Given a combinatorial pathp= e1e2 . . . ek in � (respectively inCay(G)), wheree1, e2, . . . , ek ∈ E(�)

(respectivelye1, e2, . . . , ek ∈ E(Cay(G))), we denote byLab(p) its label. By definition,Lab(p) =
Lab(e1)Lab(e2) . . . Lab(ek).We also denote byp− = (e1)− andp+ = (ek)+ the origin and the terminus
of p, respectively. A pathp is calledirreducible if it contains no subpaths of typeee−1 for e ∈ E(�)
(respectivelye ∈ E(Cay(G))). The length|p| of p is, by definition, the numberk of edges ofp.
Given a cell� of �, we denote by�� the boundary of�; similarly, �� denotes the boundary of�.

The label of�� or �� is defined up to a cyclic permutation. A map� over a presentation (1) is called a
van Kampen diagramover (1) if the following holds. For any cell� of �, the boundary labelLab(��) is
equal to a cyclic permutation of a wordP±1, whereP ∈ P. Sometimes it is convenient to use the notion
of 0-refinement in order to assume diagrams to be homeomorphic to a disc.We do not explain this notion
here and refer the interested reader to[13].
The van Kampen lemma states that a wordWover the alphabetS±1 represents the identity in the group

given by (1) if and only if there exists a simply-connected planar diagram� over (1) such thatLab(��)
coincides withW [11,13]. A van Kampen diagram is calledminimal, if it contains the minimal number
of cells among all diagrams with the same boundary labels.

2.3. Approximations of metric spaces by graphs

We recall that a subsetZ is called a�-net in a metric spaceY, if for all y ∈ Y there existsz ∈ Z such
that the distance betweeny andz is less than�. We say that a subsetZ of a metric spaceY is a(�1, �2)-net
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if Z is a�1-net and the distance between any two points ofZ is greater than�2. The following lemma will
be used in Section 4.

Lemma 2.2. Suppose that M is a metric space satisfying conditions(M1) and (M2). There exists a
sequence of finite subsets Net1 ⊆ Net2 ⊆ · · · of M such that for alli ∈ N, Neti is a (2/i,1/i)-net
inMi .

Proof. We proceed by induction oni. Suppose thatNeti−1 is a(2/(i−1),1/(i−1))-net inMi−1 if i >1,
andNeti−1 = ∅ if i = 1. We consider an arbitrary finite 1/i-netN inMi that containsNeti−1 as a subset.
Let N denote the set of all subsetsL such thatNeti−1 ⊆ L ⊆ N and for any two different elements
x, y ∈ L we havedistM(x, y)>1/i. Note that the setN is non-empty as it containsNeti−1.
Consider a partial order onN which corresponds to inclusion, i.e., for anyA,B ∈ N, A � B if and

only if A ⊆ B. SinceN is finite, we can take a maximal subsetB with respect to this order. Note that
for any t ∈ N , we havedistM(t, B)�1/i. Indeed, otherwiseB ∪ {t} ∈ N and thusB is not maximal.
Therefore, for anyx ∈ Mi , we havedistM(x, B)�2/i. ThusB is a(2/i,1/i)-net inMi . �

3. Words with small cancellations

To prove the main result of our paper we will need an infinite set of words satisfying certain small
cancellation conditions. We begin with definitions.
LetXbe an alphabet andF a free group with the basisX. Throughout the following discussion we write

U ≡ V to express the letter-by-letter equality of the wordsU andV. Given a wordWover the alphabet
X, by a cyclic wordWwe mean the set of all cyclic shifts ofW. Two cyclic wordsW1 andW2 are equal
if and only there exist cyclic shiftsU1, U2 ofW1 andW2 respectively such thatU1 ≡ U2. A subword of
a cyclic wordW is a subword of a cyclic shift ofW. By ‖W‖ we denote the length of a (cyclic) wordW.
Finally, for a real numberr, [r] means the greatest integer which is less than or equal tor.

Definition 3.1. A setT of cyclic words inX satisfies the conditionC∗(�) if for all common subwordsA
of any two different cyclic wordsB,C ∈ T±1, we have‖A‖< �min{‖B‖, ‖C‖} and for all cyclic words
B ∈ T±1, all subwordsA of B of length‖A‖��‖B‖ occur inB only once.
Definition 3.2. Given a setT of words inX, we define agrowth functionof T by the formula

	T(n)= ,T(n),

whereT(n) is the set of all words fromT having length exactlyn, i.e.,

T(n)= {W ∈ T : ‖W‖ = n}.
The main result of this section is the following.

Proposition 3.3. There exists a setT of words in the alphabetX={a, b} and a non-increasing function
� : N → (0,1) satisfying the following conditions.

(i) The function	T is non-decreasing andlimn→∞	T(n)= ∞.
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(ii) lim n→∞�(n)= 0.
(iii) T satisfiesC∗(1/50) condition and for alln ∈ N, the set

⋃∞
k=nT(k) satisfiesC∗(�(n)).

The proof of Proposition 3.3 is based on four auxiliary lemmas. Recall that for anyl�2, a wordW is
calledl-aperiodic if it has no non-empty subwords of the formV l . The following lemma can be found in
the book[13, Theorem 4.6]

Lemma 3.4. Denote byf (n) the number of all6-aperiodic words of lengthn>0 over the alphabet
X = {a, b}. Then we have

f (n)> (3/2)n.

LetX(k)= {Xk,1, . . . , Xk,f (k)} be the set of all different 6-aperiodic words of lengthk in the alphabet
{a, b}. For everyk >8 and everyi = 0,1 . . . , ([f (k)/k] − 1), consider the (cyclic) word

Wk,i = (a6bXk−8,ik+1b)(a
6bXk−8,ik+2b) . . . (a

6bXk−8,ik+kb). (2)

Set

Ak =
{
Wk,i : i = 0,1, . . . ,

([
f (k)

k

]
− 1

)}
.

The next lemma is an immediate consequence of (2) and Lemma 3.4.

Lemma 3.5. For anyk >8 and anyW ∈ Ak, we have

(a) ‖W‖ = k2;
(b) #Ak�(3/2)k/k − 1.

Lemma 3.6. For anyk >8, the set
⋃∞
j=kAj satisfiesC∗(3/k).

Proof. Suppose thatU ∈ Aj , j�k, is a cyclic word andV is a subword ofU such that‖V ‖�(3/k)‖U‖.
Then we have‖V ‖�(3/j)‖U‖ = 3j >2j + 8. Note that any subword ofU of length greater than 2j + 8
contains a subword of type

a6bXj−8,iba
6, (3)

whereXj−8,i ∈ X(j − 8). Since all words fromX(j − 8) are aperiodic and different, such a subword
occurs inU only once. Therefore,V occurs inU once.
Further, letU1, U2 be two cyclic words from

⋃∞
j=kAj andV a common subword ofU1, U2 such

that‖V ‖>(3/k)min{‖U1‖, ‖U2‖}. Arguing as above, we can show thatV contains a subword of type
(3) for j = min{‖U1‖, ‖U2‖}. It remains to observe that such a subword appears in a unique word
fromA. �
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For eachn ∈ N, n�81, we construct a setBn of words over{a, b} as follows. First we divide each set
Ak into (2k + 1) disjoint parts such that

Ak =
2k+1⊔
i=1

Ak,i (4)

and

,Ak,i�
[
,Ak

2k + 1

]
(5)

for anyi = 1, ...,2k + 1. We set

Bn = Ak,l , (6)

wherek=[√n] andl=n−[√n]2. Note that[√n]�[√81]>8 andl�n−(√n−1)2=2
√
n−1�2k+1.

ThusBn is well-defined forn�81. Furthermore, for anyW ∈ Bn, we haveW ∈ A[√n]. Hence

n� |W |�(√n− 1)2>n− 2
√
n (7)

by Lemma 3.5. Finally, given an arbitrary wordW ∈ Bn, we form a new word

W =Wbm, (8)

wherem= n− |W |. We callWacoreof the wordW . Inequality (7) yields

0�m<2
√
n. (9)

We set

T(n)= {W : W ∈ Bn}
for all n�81 andT(n)= ∅ for n<81.
The proof of the next lemma is straightforward. We leave it to the reader.

Lemma 3.7. LetA,B,C,D be arbitrary words in the alphabet X. Suppose thatmax{‖C‖, ‖D‖}�y
and any common subword of cyclic words A and B has length at most x. Then the length of any common
subword of the cyclic words AC and BD is at most3x + 2y.

Proof of Proposition 2.1. Let us takeT(n) as defined above and setT = ⋃∞
k=1T(k). Combining (5),

(6), and Lemma 3.5, we obtain

	(n)= ,T(n)= ,Bn�
[

,A[√n]
2[√n] + 1

]
�

[
(3/2)[

√
n] − [√n]

[√n](2[√n] + 1)

]
.

Evidently we have limn→∞	(n) = ∞. Moreover, passing to a subset ofT if necessary we can always
assume that	(n) is non-decreasing.
Let us show that the union

⋃∞
k=nT(k) satisfiesC∗(�(n)) for

�(n)= 9

[√n] + 2[√n]
n− 2

√
n
.
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Suppose thatU1, U2 are two different words from
⋃∞
k=nT(k), n�81, andV is a common subword of

U1, U2. Let U1 andU2 be the cores ofU1 andU2 respectively,l = min{‖U1‖, ‖U2‖}. Note that the
length of any common subword ofU1 andU2 is at most 3l/[√n] by Lemma 3.6. According to Lemma
3.7 and inequality (9) this yields

‖V ‖
min{‖U1‖, ‖U2‖}

�
(9/[√n])l + 2[√n]

l
��(n).

In caseU ∈ ⋃∞
k=nT(k) andV is a common subword of two different cyclic shifts ofU , we obtain the

inequality‖V ‖/‖U‖��(n) in an analogous way. Finally, letN be an integer such that�(N)� 1
50. Then

we setT(n)= ∅ for all n�N and redefine�(n) to be equal to 1/50 for alln�N . �

4. Main construction

Throughout the rest of the paper we fix a metric spaceM satisfying conditions (M1) and (M2). LetT
be the set of words provided by Proposition 3.3 and	=	T its growth function.Also, let us fix a sequence

Net1 ⊆ Net2 ⊆ · · ·
constructed in Lemma 2.2 such thatNeti is a(2/i,1/i)–net inMi , i ∈ N. By 
i we denote the complete
(abstract) graph with the vertex setNeti . Further, we endow
i with a metric in which the length of an
edgeewith endpointsx andy is distM(x, y). Thus there is a map
i → M that maps each vertex of
i
to the corresponding point ofNeti and maps edges of
i to geodesics inM. It is clear that the restriction
of this map to the set of vertices of
i is an embedding.
We consider a sequenceni , i ∈ N, satisfying the following three conditions:

(I) {ni/i} is an increasing sequence of natural numbers.
(II) For anyi ∈ N, 	(ni/i)�Ni(Ni − 1)/2, whereNi = ,Neti .
(III) ni/i >ni−1diamMi−1 for all i ∈ N, i�2.

Obviously we can always ensure (I)–(III), choosingni afterni−1. (Recall that	(n) → ∞ asn → ∞.)
For everyi ∈ N, we take an arbitrary orientation on edges of
i . LetE(
i) denote the set of all oriented

edges of
i . In the next lemma�x� means the smallest integery such thaty�x.

Lemma 4.1. There exists an injective labelling function� : ⋃∞
i=1E(
i) → T±1 such that for any edge

e ∈ E(
i) with endpointsx, y, we have
‖�(e)‖ = �nidistM(x, y)� (10)

and�(e−1)= �(e)−1. In particular, the set{�(e) | e ∈ E(
i)} of all edge labels of
i satisfiesC∗(�(i)).

Proof. Suppose thatx, y ∈ Neti andu, v ∈ Netj for somej > i. Then combining conditions (I)–(III)
and the fact thatNetj is a(2/j,1/j)-net, we obtain

�nidistM(x, y)���nidiamMi�< �ni+1/(i + 1)���nj/j���njdistM(u, v)�.
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Thus it suffices to show that the numberlik of unordered pairsx, y ∈ Neti such that[nidistM(x, y)] = k

is less than the number of words of lengthk inT for every possiblek. Obviously, we have

lik�
Ni(Ni − 1)

2

and

	(k)�	(ni/i)�
Ni(Ni − 1)

2

since	 is non-decreasing anddistM(x, y)>1/i for anyx, y ∈ Neti .
The assertion “in particular” can be derived as follows. Note thatni/i > i by the property (I). Since

for anye ∈ E(
i), we have
‖�(i)‖�nidistM(e−, e+)�ni/i > i,

�(e) belongs to the union
⋃∞
j=i T(j). It remains to apply Proposition 3.3.�

If p= e1e2 . . . en is a combinatorial path in
i , wheree1, e2, . . . , en ∈ E(
i), we define the label�(p)
to be the word�(e1)�(e2) . . .�(en). Let

Ri = {�(p) |p is an irreducible cycle in
i}
and

R =
∞⋃
i=1

Ri .

Finally, we define the groupG by the presentation

〈a, b |R〉. (11)

Let � be a van Kampen diagram over (11),� a cell of�. We say that� hasrank i if Lab(��) is a
word fromRi . Further, we call a wordW in the alphabet{a±1, b±1} a
i-word if W is a label of some
irreducible combinatorial pathp in 
i . (Evidently such a pathp is unique asT satisfiesC∗( 150) and� is
injective.)
Suppose thatp is a path in a van Kampen diagram� over (11). IfLab(p) is a
i-word corresponding

to the pathe1 . . . et in 
i , wheree1, . . . , et are edges of
i , thenp can be represented as a product

p = p1 . . . pt (12)

of its segmentsp1, . . . , pt with labelsLab(p1) = �(e1), . . . , Lab(pt ) = �(et ). In this case we call the
decomposition (12) acanonicaldecomposition ofp.
Note that for the boundaryp of a cell� in �, two edges (say,eandf) adjacent to the vertex(pi)+ =

(pi+1)− = e+ = f− for somei can have mutually inverse labels. This allows one to identifyewith f−1;
then we can pass to the next pair of edges adjacent toe− = f+ and so on. SinceT satisfiesC∗( 150),
not more than 1/50 of each segmentp1, . . . , pt can be cancelled by such reductions. The irreducible
pathp′

1 . . . p
′
t , wherep

′
i is a subpath ofpi , is called areduced boundaryof � and is denoted by�red�.
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Thus we have|p′
i |� 48

50|pi |.Also, to each pathq in �, we assign a pathqred which is obtained fromq by
eliminating edges that do not appear in reduced boundaries of cells in�.
It seems more natural to consider the reduced boundary. However, in the sequel, working with the

notion of the well-attached cells defined below, it is convenient, for technical reasons, to distinguish
between the notion of the boundary and that of the reduced boundary.
Given two cells�1, �2 of the same ranki in a van Kampen diagram� over (11), we say that�1

and�2 arewell-attached to each other, if the following is true. Up to a cyclic shift,��1 (respectively
(��2)

−1) admits a canonical decomposition��1=p1 . . . pt (respectively(��2)
−1=q1 . . . qs) associated

to a pathe1 . . . et (respectivelyf1 . . . fs) in 
i , wheree1 = f1 andp1 = q1. Let d be the reduced cycle
in 
i obtained frome2 . . . etf−1

s . . . f−1
2 . Then the label of the cyclec = p2 . . . ptq

−1
s . . . q−1

2 is freely
equal to the
i-word corresponding tod. Thus, by the definition ofRi ,Lab(c) is freely equal to a relator
and hence we can replace cells�1 and�2 with one cell (see[13] for details).
Now suppose that��=uw, whereLab(w) is a
i-word.We say that a cell� of ranki iswell-attached

to a segment w of boundary of� if, up to a cyclic shift,�� (respectivelyw−1) admits a canonical
decomposition�� = p1 . . . pt (respectivelyw−1 = q1 . . . qs) associated to a pathe1 . . . et (respectively
f1 . . . fs) in 
i , wheree1 = f1 andp1 = q1. In this case we denote byd the reduced cycle in
i obtained
from f−1

s . . . f−1
2 e2 . . . et . Then the label of the pathv = q−1

s . . . q−1
2 p2 . . . pt is freely equal to the
i-

word corresponding tod. Thus, by cutting the cell�, we obtain a subdiagram� of � such that�� = uv,
wherev is also a
i-word.
We can summarize these observations as follows.

Lemma 4.2. Let� be a van Kampen diagram over(11).

(1) Suppose that� is minimal, i.e., it has a minimal number of cells among all diagrams over(11)with
the same boundary label. Then no two cells of� are well attached to each other.

(2) Suppose thatLab(��) = VW , where W is a
i-word. Assume that a cell� is well-attached to the
subpath of�� labelled W. Then there exists a subdiagram� of � (which can be obtained from� by
cutting the cell�) such thatLab(��)= VU , where U is a
i-word.

The next lemma provides certain sufficient conditions for two cells (or a cell and a part of boundary of
a diagram) to be well-attached.

Lemma 4.3. Let� be a van Kampen diagram over(11).

(1) Suppose that�1,�2 are cells in� such that there exists a common subpath p of�red�1 and(�red�2)
−1

such that

|p|� 1

10
min{|�red�1|, |�red�2|}.

Then�1 and�2 are well-attached to each other.
(2) Suppose that�� = vw, whereLab(w) is a 
i-word. Assume that for a cell�, there is a common

subpath q ofwred and(�red�)
−1 of length

|q|� 1

10
|�red�|.

Then� is well-attached to the subpath w of��.
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Proof. Let us prove the first assertion of the lemma. Up to a cyclic shift,��1 admits canonical decom-
positionp1 . . . pt . Let p′

1 . . . p
′
t be the corresponding decomposition of�red�1, wherep′

i is a subpath
of pi . Thenp and a certainp′

i have a common subpathq of length at least( 120)|p′
i |�( 48

1000)|pi |. Let
q1 . . . qs be the canonical decomposition of��2, q ′

1 . . . q
′
s the corresponding decomposition of�red�2.

Let Z denote the set of endpoints of pathsq ′
1, . . . , q

′
s . If q is cut by vertices fromZ into at most two

parts, then one of these parts has length at least1
2|q|�( 24

1000)|pi |>( 150)|pi |.If q contains more than one
vertex fromZ, thenq ′

j is a subpath ofpi for somej (note that|q ′
j |�(4850)|qj |). In both cases we found a

common subpath ofpi andqj of length at least( 150)min{|pi |, |qj |}. Therefore the labels of edgesei and
fj of 
k and
l respectively corresponding topi andqj contain a common subword of length at least
( 150)min{‖�(ei)‖, ‖�(fj )‖}. SinceT satisfiesC∗( 150) and� is injective, we havepi = qj , k = l, and
ei = fj . The proof of the second assertion is similar and we leave it to the reader.�

From Lemmas 4.2 and 4.3, we immediately obtain

Corollary 4.4. Let� be a minimal van Kampen diagram over(11).Then for any common subpath p of
the reduced boundaries any two cells�1 and�2 of �, we have|p|< 1

10 min{|�red�1|, |�red�2|}.
Up to notation, the proof of the next lemma coincides with the proof of Lemma 8 in[14]. We provide

it for convenience of the reader.

Lemma 4.5. Suppose that W is a
i-word. Then there exists a word V such thatW = V in G,V is of the
minimal length among all of the words(not necessarily
i-words) representing the same element as W
in G, and V is freely equal to a
i-word.

Proof. LetV be a shortest word representing the same element asW in G. We consider a van Kampen
diagram� over (11) corresponding to this equality. Without loss of generality we may assume that the
wordW and� are chosen in such a way that� has the minimal number of cells among all diagrams
corresponding to equalities ofV to 
i-words. We are going to show that� contains no cells at all, and
thusV is freely equal to a
i-word.
Assume that there is at least one cell in�. Denote by�′ the map obtained from� by eliminating all

edges that do not appear in reduced boundaries of cells of�. Then�′, as a map, satisfiesC′( 110) small
cancellation condition (see[11, Chapter 5]) by Corollary 4.4. By Greendlinger’s Lemma, this means that
� contains a cell� such that there is a common subpath of�red� and(��)red of length|p|>0.7|�red�|.
(We substitute� = 0.1 in the Greendlinger’s constant 1− 3� from [11]).
The boundary of� consists of two partsv andw corresponding to wordsV andW. If the pathp has

a common subpath withw±1
red of length at least 0.1|��|, then� is well-attached to the subpathw of ��

by Lemma 4.3. However, by the second assertion of Lemma 4.2 this contradicts the choice ofWand�.
Hence there is a common subpathq of �red� andv±1

red such that|q|>(0.7− 0.2)|�red�| = 0.5|�red�|.
Thus�red� = qq1, |q|> |q1|, and the wordsLab(q), Lab(q1) represent the same element in the group
G. ButLab(q) is a subword ofV and we arrive at a contradiction to our choice ofV as a shortest word
representing the same element asW in G. �

Definition 4.6. For eachi ∈ N, we construct an embedding

�i : Neti → G
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as follows. Let us fix a pointO in Net1 (and thusO ∈ Neti for all i). Then for anyx ∈ Neti there is a
combinatorial pathp in 
i such thatp− = O, p+ = x. We define�i(x) to be equal to the element ofG
represented by�(p). Note that�i(x) is independent of the choice ofp. Indeed, ifq is another path in
i
with the originO and terminusx, thenpq−1 is a cycle and thus�(p)�(q−1) is a relator fromRi , i.e.,
�(p) and�(q) represent the same element ofG.

Lemma 4.7. Let distG denote the word metric on G corresponding to the generating set{a, b}. Then for
anyi ∈ N and anyx, y ∈ Neti , we have

(1− 2�(i))distM(x, y)�
1

ni
distG(�i(x), �i(y))�distM(x, y)+ 1

ni
. (13)

Proof. If e is an edge in
i such thate− = x, e+ = y, anda, b are edges in
i such thata− = b+ =O,
a+ =x, b− =y, thenaebis a cycle in
i . Therefore�(a)�(e)�(b) labels a cyclec inCay(G) beginning at
1. Letc=psq, whereLab(p) ≡ �(a),Lab(s) ≡ �(e),Lab(q) ≡ �(b). Since by definitionp+ = �i(x)
andq− = �i(y), the elements�i(x) and�i(y) are connected by the paths in Cay(G). Therefore,

distG(�i(x), �i(y))� |s| = ‖�(e)‖ = �nidistM(x, y)��nidistM(x, y)+ 1.

This gives the right-hand side inequality in (13).
Further, by Lemma 4.5, there exists a wordV representing the element(�i(x))−1�i(y)) and a
i-word

U freely equal toV such that

‖V ‖ = distG(1, �i(x))
−1�i(y))= distG(�i(x), �i(y)). (14)

Obviously we have

‖V ‖�(1− 2�(i))‖U‖ (15)

since the set of edge labels of
i satisfiesC∗(�(i)) by Lemma 4.1. Letr = e1 . . . et be the path in
i
corresponding toU. Then, arguing as in the first case, we can show thatr− = x, r+ = y and thus

‖U‖ =
t∑

j=1

‖�(ej )‖ =
t∑

j=1

nidistM((ej )−, (ej )+)�nidistM(x, y). (16)

Combining (14), (15), and (16) we obtain the left-hand inequality in (13).�

Definition 4.8. We take a non-principal ultrafilter� such that�({ni}) = 1 and consider the asymptotic
coneCone�(G) of G with respect to this ultrafilter. Our next goal is to define an embedding� of M to
Cone�(G).
Let x be a point ofM. Then there is a sequence of pointsxi ∈ Neti such thatxi → x asi → ∞. We

define�(x) to be the point ofCone�(G) represented by an arbitrary sequence{gi}, wheregni = �i(xi) for
anyi ∈ N. Obviously� is well-defined as the point ofCone�(G) representing the sequence{gi} depends
on the subsequence{gni } only.
Proposition 4.9. Suppose that M is a metric space satisfying(M1) and (M2). Then the map� is an
isometry.
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Proof. Let x, y be points ofM, {xi}, {yi} the sequences of elements of netsNeti such thatxi → x as
i → ∞ andyi → y as i → ∞. Let {gi} and{hi} be the corresponding sequences of elements ofG
representing�(x) and�(y). Then applying Lemma 4.7, we have

distM(x, y)= lim
i→∞ distM(xi, yi)= lim

i→∞
1

ni
distG(�i(xi), �i(yi))

= lim
�

1

i
distG(gi, hi)= distCone(�(x), �(y)). �

5. Embedding of the fundamental group

All assumptions and notation from the previous section remain in force here. In particular,� denotes
the isometryM → Cone�(G) constructed in the previous section. In addition we suppose thatM satisfies
(M3). Also, let �∗ denote the homomorphism�1(M) → �1(Cone�(G)) induced by�. We conclude the
proof of Theorem 1.2 by proving the following.

Proposition 5.1. Suppose that M satisfies(M1)–(M3). Then the map�∗ : �1(M) → �1(Cone�(G)) is
injective.

Proof. Let S = [0,1] × [0,1] be a unit square and
 : �S → M a loop inM such that�
 is contractible
in Cone�(G). We want to show that
 is contractible inM.
Since�
 is contractible inCone�(G), there exists a continuous mapr : S → Cone�(G) such that

the restriction ofr to �S coincides with�
. The unit squareS is compact, and thereforer is uniformly
continuous. Hence there exists� such that for anyy1, y2 ∈ B which lie at a distance at most� in B, we
have

distCone(r(x), r(y))< ε/20. (17)

We can also assume that 1/� ∈ N. ByGrid� we denote the standard�-net inSthat is the set

Grid� = {(a�, b�) | a, b ∈ Z, 0�a, b�1/�}.
By r(Grid�) we denote the image ofGrid� in Cone�(G).
For every pointx ∈ r(Grid�)∪ (⋃∞

i=1 �(Neti)) we fix an arbitrary sequence{xi} of elements ofG that
representsx in Cone�(G) (such a sequence will be called astandard representativeof x). Let ε be the
constant from (M3). We takeL ∈ N such that the following conditions hold:

(L0) r(Grid�) is contained in�(ML);
(L1) 1/L<ε/20; in particular, 1/nL < ε/20;
(L2) for any two pointsx, y ∈ r(Grid�) ∪ �(NetL), we have∣∣∣∣ 1nL distG(xnL, ynL)− distCone(x, y)

∣∣∣∣ �ε/20,

where{xi} and{yi} are standard representatives ofx andy respectively.

(Note that for anyl there existL> l such that (L0)–(L2) hold.)
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We say that two pointsx, y inGrid� are neighbors if they have the formx=(a�, b�), y=((a+1)�, b�)
orx=(a�, b�),y=(a�, (b+1)�). If x, y ∈ Grid� are neighbors and{xi} , {yi} are standard representatives
of r(x), r(y), we fix an arbitrary geodesic in the Cayley graphG going from the elementxnL to ynL and
denote this geodesic byg(xnL, ynL). Further for every pointx ∈ Grid� which lies on�S, we take a point
tx ∈ �(NetL) which is closest tor(x); in particular, we have

distCone(t
x, r(x))�2/L�0.1ε (18)

asr(x) ∈ �(ML) by (L0) and�(NetL) is a 2/L-net in �(ML) (recall that� is an isometry). Suppose that
{txi } is the standard representative oftx . Then we join elementsxnL andtxnL by a geodesich(xnL, txnL) in
Cay(G). Finally, if x, y ∈ �S are neighbors andtx, ty are the corresponding points of�(NetL), then we
denote byk(txnL, t

y
nL) a path inCay(G) joining t

x
nL

to tynL such that the label ofk is equal to�(e), wheree
is the edge of
L satisfying the conditions�(e−)= tx , �(e+)= ty . In particular, we have

|k(txnL, tynL)| = ‖�(e)‖ = �nLdistCone(tx, ty)�. (19)

Let x1, . . . , xm, wherem= 4/�, be subsequent points ofGrid� ∩ �S (i.e.,xi andxi+1 are neighbors,
where indices are modulom). Then the label of the cycle

p = k(tx
1

nL
, tx

2

nL
)k(tx

2

nL
, tx

3

nL
) . . . k(tx

m

nL
, tx

1

nL
) (20)

is a
i-word. We construct a van Kampen diagram� with boundary labelLab(��) ≡ �(p) as follows.
The netGrid� allows one to regardSas a union of 1/�2 small squares with sides of length�. For any such
square with verticesx, y, z, t in Grid�, we consider a minimal van Kampen diagram (homeomorphic to
a disk) with boundary label

Lab(g(xnL, ynL)g(ynL, znL)g(znL, tnL)g(tnL, xnL)). (21)

Also, if x, y ∈ �S ∩Grid� are neighbors, we consider a minimal van Kampen diagram (homeomorphic
to a disk) with boundary label

Lab(g(xnL, ynL)h(ynL, t
y
nL)k(t

y
nL, t

x
nL
)(h(xnL, t

x
nL
))−1). (22)

We call the constructed diagrams with boundary labels (21), (22)elementary. Gluing these elementary
diagrams together in the obvious way we obtain a diagram� over (11) such thatLab(��) is the
i-word
defined by (20).
We are going to show that the perimeter of each elementary diagram is less than 0.7nLε. Indeed,

inequality (17) and condition (L2) together yield

|g(xnL, ynL)| = distG(xnL, ynL)�nL (distCone(r(x), r(y))+ 0.05ε) �0.1nLε (23)

for any two neighborsx, y ∈ Grid�. If x ∈ Grid� ∩ �S, then (L1), (L2) and (18) imply

|h(xnL, txnL)| = distG(xnL, t
x
nL
)�nL(distCone(r(x), tx)+ 0.05ε)

�nL(2/L+ 0.05ε)�0.15nLε. (24)
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Finally, if x, y ∈ �S are neighbors, then combining (17), (18), and (19) we obtain

|k(txnL, tynL)| = �nLdistCone(tx, ty)�
��nL(distCone(tx, r(x))+ distCone(r(x), r(y))+ distCone(r(y), t

y))�
��0.25nLε��0.25nLε + 1�0.3nLε. (25)

Therefore, any word of type (21) or (22) has length at most 0.7nLε.

Lemma 5.2. Let� be a cell of rank L in�, l the loop in
L corresponding to the
L-wordLab(��).
Then l is contractible in M.

Proof. Note that� lies in some elementary diagram�. Since any elementary diagram is minimal, it
satisfiesC′(1/10) small cancellation condition as amap byCorollary 4.4. Hence the length of the reduced
boundary of any cell in� is not greater than|��|�0.7nLε. This means that

|��|� 50

48
|�red�|� 35

48
nLε <nLε.

Let l = e1 . . . et , wheree1, . . . , et are edges of
L. The length ofl satisfies

|l| =
t∑
i=1

|ei |�
t∑
i=1

1

nL
‖�(ei)‖ = 1

nL
|��|<ε.

Therefore,l is contractible inM by (M3). �

Lemma 5.3. Consider a van Kampen diagram� with boundary labelled by aGL-word. Suppose that
the boundary label of each cell of rank L in this diagram corresponds to a contractible loop in M. Then
the boundary label of the diagram also corresponds to a contractible loop in M.

Proof. We prove the statement of the lemma by induction on the numbers of cells in the diagram. If
s = 0 the statement is obvious, so we assume thats�1.
By Grindlinger’s lemma at least one of the following two statements holds:

(1) There exist two cells�1 and�2 and a common subpathp of �red�1 and�red�2 such that|p|� 1
10

min{|�red�1|, |�red�2|}.
(2) There exist a cell� and a common subpathp of �red� and�� such that|p|� 7

10 |�red�|.
In the first case�1 and�2 have the same rank and are well-attached to each other by Lemma 4.3.

Arguing as in the proof of Lemma 4.2, we can replace�1 and�2 by one cellΥ . If rank �1=rank �2 	=
L, the statement is true by the inductive hypothesis. To use the inductive hypothesis in caserank �1 =
rank �2 = L, we have to check that the cycles corresponding to the new cellΥ is contractible in
M. Indeed, ifp, q are cycles corresponding to�1 and�2 (we may assume thatp− = q−), thens is
homotopic to the product ofpandq−1. Sincepandqare contractible inM by the condition of the lemma,
s is contractible inM.
In the second case� has rankL by Lemma 4.2 and is well-attached to the boundary of�. We pass

to the subdiagram� of � obtained by cutting the cell�. Applying Lemma 4.2 again, we conclude that
Lab(��) is a
L-word. By the inductive assumption the cycleccorresponding toLab(��) is contractible
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in M. Let d be the cycle in
L corresponding toLab(��), f the cycle corresponding toLab(��). As in
the previous case,f is homotopic to the product ofc andd−1 and hence is contractible inM. �

Now we return to the proof of the proposition. The two previous lemmas imply that the loopq in 
L,
corresponding to the boundary label of the diagram� under consideration, is contractible.
As above, letx1, . . . , xm be subsequent neighbors inGrid� ∩ �S. For every two neighborsxi, xi+1

(indices are modulom), we denote byci, di, ei, fi the segment[r(xi), r(xi+1)] of �
, the geodesic path
from r(xi+1) to txi+1, the edgee of 
i such that�(e−) = txi+1, �(e+) = txi , and the geodesic path from
txi to r(xi), respectively. Note that for anyi = 1, . . . , m, the cycleai = cidieifi is contained in the ball
Bi=Bi(0.35ε, xi) of radius 0.35ε aroundr(xi) inCone�(G). Indeed any point ofci is contained inBi by
(17). Further sincedi andfi are geodesic,di andfi are contained in 0.1ε-neighborhoods ofr(xi+1) and
r(xi) respectively according to (18); together with (17) this implies thatdi andci lie in Bi . Finally, each
point ofei belongs toBi asei is geodesic, the distance betweenr(xi) and the end ofei is at most 0.1ε, and
the length ofei is atmost 0.25ε by the triangle inequality. Thusai is contained inBi . Since� is an isometry,
this means that the preimage ofai under� : M → Cone�(G) is contractible inM by (M3). Hence�(q)
is homotopic to�
 via a homotopy inM. Hence
 is contractible inM according to Lemma 5.3.�

6. Concluding remarks and questions

We have shown that any countable group can be embedded into a fundamental group of an asymptotic
cone of some finitely generated group. Note that our proof also shows that any recursively presentable
group can be embedded into a fundamental group of some finitely presentable group.
The construction of our group depends on a spaceM and a scaling sequencenk. Similarly we can

start with a countable set of spacesNj (satisfying (M1)–(M3)), take a countable set of non-intersecting

scaling sequencesnjk(Nj ) and construct a groupG, such that for eachj there is a scale on whichNj is
embedded into the asymptotic cone ofG. A natural task is to check that starting with the spaces with very
different fundamental groups (e.g.Z/pZ for differentp) one gets asymptotic cones (on different scales)
with infinitely many different fundamental groups. Then under certain conditions on the spaces the group
G is recursively presentable and we can embed it into a finitely presentable group.Again, a natural task is
to check that one can choose this embedding in such a way that this finitely presented group has different
fundamental groups on different scales.
Another natural question is: does there exist a finitely presented group such that the simple connectivity

of the asymptotic cone depends on the choice of the ultrafilter?
Finally let us mention that recently Kramer et al.[10] have shown that if continuum hypothesis fails,

then there exist finitely presented groups (which are uniform lattices in certain semisimple Lie groups)
that have infinitely many different asymptotic cones. However, if continuum hypothesis holds, then the
examples from[10] have unique asymptotic cones.
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