
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
ARTICLE

Assessment of 2q23.1 Microdeletion Syndrome Implicates
MBD5 as a Single Causal Locus of Intellectual
Disability, Epilepsy, and Autism Spectrum Disorder

Michael E. Talkowski,1,2,3,31 Sureni V. Mullegama,4,31 Jill A. Rosenfeld,5 Bregje W.M. van Bon,6

Yiping Shen,1,7,8 Elena A. Repnikova,9 Julie Gastier-Foster,9,10,11 Devon Lamb Thrush,9,11

Sekar Kathiresan,1,3,12,13 Douglas M. Ruderfer,1,14,15 Colby Chiang,1 Carrie Hanscom,1 Carl Ernst,1

Amelia M. Lindgren,16 Cynthia C. Morton,3,16 Yu An,17 Caroline Astbury,9,10 Louise A. Brueton,18

Klaske D. Lichtenbelt,19 Lesley C. Ades,20 Marco Fichera,21 Corrado Romano,22 Jeffrey W. Innis,23

Charles A. Williams,24 Dennis Bartholomew,25 Margot I. Van Allen,26 Aditi Parikh,27,28 Lilei Zhang,27,28

Bai-Lin Wu,8,17 Robert E. Pyatt,9,10 Stuart Schwartz,29 Lisa G. Shaffer,5 Bert B.A. de Vries,6

James F. Gusella,1,2,3 and Sarah H. Elsea4,30,*

Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the indi-

vidual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diag-

nostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65

subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical

region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single

gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5

was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations,

including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, dis-

ruptedMBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable betweenMBD5-specific alteration and

deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alter-

ations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects

analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense

variant, p.79Gly>Glu (c.236G>A) (p ¼ 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microde-

letion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and

clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders.
Introduction

Recent widespread implementation of chromosomal mi-

croarrays in research and clinical diagnostic testing of

copy-number variations (CNVs) has catalyzed an explo-
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sion in the identification of genomic disorders, including

microdeletion and microduplication syndromes. Among

those recently discovered is the 2q23.1 region in whichmi-

crodeletions result in a neurodevelopmental disorder (ND)

previously described as pseudo-Angelman syndrome or
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autosomal-dominant mental retardation type 1 (MRD1

[MIM 156200]). The region was initially identified in

2003 from one of the first comparative genomic hybridiza-

tion (CGH) surveys of developmental disorders,1 and 18

cases with the 2q23.1 microdeletion have since been

described; the phenotypic features include intellectual

disability, severe speech impairment, seizures, behavioral

problems, microcephaly, mild craniofacial dysmorphism,

small hands and feet, short stature, and broad-based ataxic

gait.1–9

Advances in the resolution of genomic microarray tech-

nology and the power of next-generation sequencing now

offer a route to more detailed definition of microdeletion

syndrome regions. In some cases, such as deletion 2q33.1

(SATB2 [MIM 608148]), deletion 22q13.3 (Phelan-McDer-

mid syndrome [MIM 606232]; SHANK3 [MIM 606230]),

deletion 13q12.3 (Peters Plus syndrome [MIM 261540];

and B3GALTL [MIM 610308]), and others,10–13 individual

genes have been implicated in generating the character-

istic phenotype. Such findings might signify an important

paradigm shift in the required resolution of diagnostic

assessment, because small gene-specific microdeletions

could result in a similar phenotype to that seen in the

larger deletion syndrome, suggesting that diagnostic arrays

should include not only coding regions but also noncod-

ing exons in the assessment, particularly for dosage-sensi-

tive genes. Consequently, we assembled a collaborative

team of clinical diagnostic laboratories and research

facilities in the United States, Canada, and Europe to

characterize the genetic content and phenotypic outcomes

associated with a spectrum of genetic alterations within

the 2q23.1 deletion syndrome region. We demonstrate

that MBD5 (MIM 611472), encoding the methyl-CpG-

binding domain 5 protein, is a clear causal locus within

the 2q23.1 deletion region and represents a previously

unrecognized contributor to the genetic etiology of autism

spectrum disorder (ASD).
Material and Methods

Subjects
We established an international collaboration to identify a cohort

of individuals with deletion or translocation involving chromo-

some band 2q23.1 from chromosome analysis ormicroarray-based

CGH at referring centers and collaborating institutions. When

available, peripheral blood was collected, and DNA, RNA, and

lymphoblastoid cell lines were prepared according to standard

methods. Phenotypic information was obtained from diagnostic

referral data, medical records, clinical reports, genetics clinic eval-

uations, neurodevelopmental and/or psychological evaluations,

parent surveys, photos, previously published articles, and/or

a clinical checklist sent to the referring physician. All samples

and information were collected after informed consent was ob-

tained and in accordance with local institutional review board

approved protocols from Virginia Commonwealth University,

Harvard Medical School, Children’s Hospital of Boston, Case

Western Reserve University, Partners HealthCare System, Istituto

Di Ricovero e Cura a Carattere Scientifico (IRCCS) Associazione
552 The American Journal of Human Genetics 89, 551–563, October
Oasi Maria Santissima, or Radboud University Medical Centre. In

follow-up analyses, we sequenced 747 subjects whomet diagnostic

criteria for ASD from the Simon’s Simplex Collection and the

Autism Consortium of Boston. All subjects were assessed by

structured clinical interview with the Autism Diagnostic Inter-

view-Revised (ADI-R) or Autism Diagnostic Observation Schedule

(ADOS).14–16 We surveyed CNV and exome data from large collab-

orative studies as comparison groups. The CNV data were obtained

frommultiple data sets of the International Schizophrenia Consor-

tium (ISC). Rare CNVs were combined and cleaned to account for

time and technology used according to the same procedure

described previously.17–22 After filtering with a variant resolution

of >100 kb, 7878 controls remained in the data set. Exome-

sequencing data were obtained from the ongoing National Heart,

Lung, and Blood Institute (NHLBI) Grand Opportunity (GO)

Exome Sequencing Project (2043 individuals deeply phenotyped

for disorders of the heart, lungs, and blood were sequenced for

theMBD5 variant of interest). Data from this project were obtained

from the Exome Variant Server in July 2011 (see Web Resources).
Phenotype Analysis
Data were collected for up to 70 characteristics related to subjects’

medical and developmental history and neurological, behavioral,

and physical characteristics (data not shown, Table 1). Short

stature was defined by clinicians as height less than the 5th percen-

tile or significantly shorter than siblings. Characteristics that were

age dependent (behavior, sleep patterns, and craniofacial and skel-

etal abnormalities) were scored accordingly on the basis of devel-

opment. Autistic-like symptoms were defined as either having re-

ported autistic-like behaviors or were specifically evaluated with

the ADOS, ADI-R, or given a diagnosis of Pervasive Developmental

Disorder (PDD-NOS). Eye abnormalities and outer ear abnormali-

ties varied among subjects and were grouped in the above broad

categories. Data were analyzed from 65 patients (males and

females). We compared 48 characteristics that were frequently

reported to be associated with 2q23.1 deletion syndrome in

51 individuals with 2q23.1 deletions to 14 individuals with partial

deletion and/or MBD5-specific alterations. All features were

compared and scored as present, absent, or data not available.

The frequency of each feature reflects the information reported

by specialists in this study.
Genetic Studies
All subjects were analyzed for the purpose of clinical diagnostics

with different oligonucleotide or bacterial artificial chromosome

(BAC) array platforms available in academic or commercial

diagnostic laboratories. All genomic positions are provided for

human genome build NCBI36/hg18 because this was the common

reference from the clinical diagnostic laboratories (UCSC Genome

Browser, see Web Resources). Two translocation cases were ana-

lyzed by massively parallel paired-end sequencing on Illumina

sequencing platforms (Illumina). DNA from DGAP142 was previ-

ously sequenced by a DNA capture method (CapBP) on the basis

of cytogenetic analyses that had narrowed the breakpoint region

to <1 Mb.23 DNA from SMS373 was sequenced with a customized

whole-genome large insert jumping library. This method

sequences the ends of fragments that were manipulated by molec-

ular techniques to be separated by 3.5 kb inserts and yields very

high physical coverage of the genome by the inserts between

paired-end reads at minimal sequencing costs. In brief, 20 mg

of DNA was sheared by a Covaris S2 and size selected around
7, 2011



3.5 kb. Cap adaptors with EcoP15I restriction sites were ligated to

the ends, and fragments were circularized with an internal oligo-

nucleotide adaptor containing a subject-specific barcode and

a single biotinylated thymine. Restriction enzyme digestion was

then performed, and biotinylated fragments containing the circu-

larization junction were bound to streptavidin beads followed by

standard library preparationwith NEBnext reagents (New England

Biolabs) and Illumina paired-end adaptors (see Talkowski et al.23

for a detailed description of all protocols and reagents).

To assess further the observed association between microdele-

tion of MBD5 (RefSeq NM_018328.4) and ASD, we performed

a low-cost, high-throughput pooled PCR next-generation

sequencing analysis of all MBD5 exons as previously described.24

In brief, we designed PCR amplicons spanning all coding and non-

coding MBD5 exons, and we designed primers with a NotI restric-

tion site (Table S1, available online). Samples were quantified by

PicoGreen (Quant-iT) and normalized to equimolar concentra-

tion. PCR amplification was then performed for all MBD5 exons

in all individuals and the products were again quantified by Pico-

Green and normalized. Failed PCRs were repeated. As described by

Calvo et al.,24 products were then concatemerized, size selected,

randomly sheared by a Covaris S2, and size selected again, fol-

lowed by Illumina paired-end library preparation of the sheared

products (Illumina). Pooled libraries were quantified by qPCR

with a serially diluted Illumina PhiX sample as a standard curve

and sequencing was performed on two lanes of an Illumina Hi-

Seq2000 with a targeted minimum read depth of 1003 per exonic

base (see Calvo et al.24 for complete details). The methodology

was designed to be sensitive to detect variants withmultiple occur-

rences in the case pools but was unlikely to have power to identify

mutations in a single individual, though one such variant

(p.1048Thr>Ile [c.3143C>T]) was discovered and validated.

Following analysis (see below), confirmatory genotyping of all

putative variants was performed with Sequenom iPLEX chemistry

(Sequenom) on the 600 individuals in the pooled sequencing anal-

ysis as well as 147 additional samples available from the same

resources (Simon’s Foundation and Autism Consortium of

Boston). To exclude any possible artifacts from pooled sequencing

and genotypes, all mutations validated by Sequenom were again

confirmed by capillary sequencing of both forward and reverse

strands in the ASD case, both parents, and any available siblings.

In all sequencing experiments (breakpoint detection or muta-

tion screening), reads were aligned with BWA25 or Novoalign (No-

vocraft). For translocations, BAM files were processed to identify

rearrangement breakpoints by a freely available Cþþ program,

BamStat (see Web Resources), developed to tabulate mapping

statistics and output lists of anomalous read-pairs (defined as

having ends thatmap to two different chromosomes, an abnormal

insert size, or unexpected strand orientations).23 Mutation anal-

ysis was performed with the Genome Analysis Toolkit26,27 and

Syzygy.28 Because the study design involved a case-only analysis,

no association tests were performed in Syzygy, instead Syzygy

was used exclusively to identify putative mutations for further

analysis.

Expression Analyses
Samples available for expression analyses are highlighted in green

in Figures 1 and 2. Lymphoblastoid cell lines (LCLs; human

lymphocytes transformed with Epstein-Barr virus) from 2q23.1

deletion syndrome patients and controls were cultured according

to standard methods. RNAwas isolated from LCLs or lymphocytes

collected from fresh blood and cDNA was prepared according to
The Americ
published methods.29 Quantitative RT-PCR was performed for

mRNA expression of MBD5 and EPC2 as previously described.2

Briefly, predesigned assays on Demand Gene Expression Products

(Fermentus, Glen Burnie, MD) Taqman minor groove binder

(MGB) probes forMBD5 and EPC2were used (Applied Biosystems).

GAPDH (MIM 138400) was used as the endogenous control. All

samples of cDNA were run in triplicate in 10 ml reaction volumes.

TaqmanUniversalPCRMasterMix (AppliedBiosystems), theprobe,

and deionized water were mixed together in a fixed ratio, and

diluted cDNA (1:5) was then added to each well. PCR conditions

were the Standard 7500 Run mode of the ABI Prism 7900 HT

Sequence Detection System (Applied Biosystems). Cycle threshold

(CT) was determined during the geometric phase of the PCR ampli-

fication plots, as recommended by the manufacturer. Relative

differences in transcript levels were quantified according to the

DDCt method and normalized to GAPDH. Acquired data were

analyzedwith 7500Fast SystemSDSSoftware (AppliedBiosystems).

Standard error was generated for each sample as previously

described, and significance (p < 0.05) was determined by a one-

sample t test compared to theoretical mean of 1.0 (p < 0.001 for

all deletion cases). Results are expressed as fold-change relative to

1.0 (normal control). EPC2 expression was evaluated to rule out

positional effects because of singular deletion ofMBD5 (Figure S1).

Statistical Analyses
For the phenotype data, comparison of proportions in two-way

contingency tables was performed with the Fisher’s exact test as

previously described.30,31 All reported p values are two-tailed.

Given the known correlation between clinical variables, it is

often difficult to assess the true number of independent tests per-

formed. Though conservative, we performed Bonferroni correc-

tion for all pair-wise comparisons (Table 1). Statistical analysis

for gene-expression data was performed with Prism 4 version

4.0b (GraphPad Software). A simple Fisher’s exact test for allelic

association was performed for the lone mutation tested.
Results

Analyses presented here sought to characterize genetic and

phenotypic heterogeneity associated with the 2q23.1 mi-

crodeletion syndrome region and particularly to determine

whether one gene or multiple genes in the region

contribute to the abnormal phenotypes. Our analyses

progressively focused on a single gene, MBD5, which we

implicated as a single causal locus for the bulk of the char-

acteristic phenotypic manifestations of the 2q23.1 micro-

deletion syndrome.

Refinement of the 2q23.1 Deletion Syndrome Critical

Region

We identified 65 cases, including the 19 previously re-

ported cases and 46 new cases, with microdeletions or

translocation of 2q23.1 ranging from small deletions of

38 kb to >19 Mb, (Figure 1). Remarkably, after aligning

the deletion regions, the smallest region of overlap (SRO)

was defined to one gene, MBD5, that was within 2q23.1

and was common in all deletions and disrupted in both

translocations (Figure 1). No other genes were included

in the SRO for all deletions or were present in deletions
an Journal of Human Genetics 89, 551–563, October 7, 2011 553



Table 1. Phenotypic Comparison of MBD5 Alterations and 2q23.1 Deletions

Common Features

MBD5-Specific Disruption 2q23.1 Deletion

p ValueaFrequency Percentage Frequency Percentage

Neurological and/or behavioral

Developmental delay 14/14 100 51/51 100 1

Motor delay 6/6 100 25/25 100 1

Language impairment 5/7 71.4 24/24 100 0.427

Ataxia 0/3 0 15/21 71.4 0.042

Infantile hypotonia 3/4 75.0 14/15 93.3 0.386

Infantile feeding difficulties 2/3 66.6 14/14 100 1

Seizures 6/7 85.7 22/27 81.5 1

Behavioral problems 7/7 100.0 24/24 100 1

Sleep disturbances 3/6 50 11/15 73.3 0.354

Short attention span 4/4 100 11/11 100 1

Self-injurious behavior 1/3 50.0 14/23 60.8 1

Stereotypic repetitive behavior 3/5 60.0 15/17 88.2 0.210

Aggression 1/2 50 6/6 100 1

Hyperphagia 0/4 0 7/9 77.8 0.021

Autistic-like symptoms 14/14 100 51/51 100 1

Growth abnormalities

Postnatal growth retardation 2/5 40.0 21/23 91.3 0.027

Short stature 2/5 40.0 19/22 86.4 0.056

Craniofacial abnormalities

Craniofacial manifestations 4/6 66.6 26/26 100 0.030

Microcephaly 0/5 0 18/20 90.0 0.004

Brachycephaly 0/5 0 8/22 36.4 0.280

Broad forehead 2/5 40.0 14/16 87.5 0.063

Synophrys 1/5 20.0 8/17 47.1 0.360

Thick/arched eyebrows 1/1 100 15/20 75.0 1

Eye abnormalities 3/5 60.0 11/15 73.3 0.621

Hypotelorism 0/5 0 7/21 33.0 0.278

Midface retrusion (hypoplasia) 1/6 16.6 9/18 50.0 0.341

Nasal abnormalities 4/4 100 25/25 100 1

Outer ear abnormalities 2/5 20.0 14/16 87.5 0.025

Wide mouth 0/5 0 12/15 80.0 0.037

Open mouth 2/6 33.3 20/22 90.9 0.010

Vermillion, thin upper lip 2/2 100 15/20 75.0 1

Vermillion, tented upper lip 1/5 20.0 13/20 65.0 0.133

Thick or everted lower lip 1/3 33.3 12/18 66.6 0.530

Downturned corners of the mouth 0/3 0 13/18 72.2 0.042

Dental abnormalities 3/6 50.0 11/21 52.3 1

Widely-spaced teeth 1/2 50.0 8/17 47.1 1

Large tongue, macroglossia 0/5 0 4/21 19.0 0.552
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Table 1. Continued

Common Features

MBD5-Specific Disruption 2q23.1 Deletion

p ValueaFrequency Percentage Frequency Percentage

Short chin/micrognathia/retrognathia 3/5 60.0 12/20 60.0 1

Skeletal abnormalities

Hand/foot anomalies 4/6 66.6 23/24 95.8 0.094

Small hands and feet 1/5 20.0 18/24 75.0 0.036

Clinodactyly, 5th finger 1/5 20.0 15/22 68.2 1

Brachydactyly 0/4 0 9/22 40.9 0.263

Short fifth digit of hands/feet 0/4 0 7/17 41.2 0.090

Sandal gap 3/6 50 5/20 25.0 0.330

Other Abnormalities

Cardiovascular abnormalities 0/5 0 2/18 11.1 1

Urogenital abnormalities 0/4 0 6/21 28.6 0.540

Constipation 5/5 100 9/10 90 1

Localized hirsutism 0/5 0 4/18 22.2 0.539

a Uncorrected p value from Fisher’s exact test. No results were significant following Bonferroni correction for multiple testing.
that did not also involveMBD5. Fourteen (21.5%) of the 65

microdeletions and translocations were exclusively local-

ized to the MBD5 locus, including several deletions that

did not alter the MBD5 protein coding sequence because

they were restricted to portions of the large noncoding

region that contains multiple exons 50 to the exon 6 trans-

lational start site (Figure 2, top).

The breakpoint capture sequencing previously per-

formed for DGAP142, 46,XY,t(2;22)(q23.1;q13.31), identi-

fied a near perfectly balanced translocation between the

long arms of chromosomes 2 and 22 that directly disrupted

the 50-noncoding region of MBD5 and did not impact any

annotated genes, functional elements, or conserved

sequences on 22q (Figure 2, bottom). Whole-genome

sequencing of SMS373, 46,XY,t(2;10)(q23.1;q25.3), re-

vealed an unbalanced translocation between the long

arms of chromosomes 2 and 10 that also directly disrupted

the 50-noncoding region ofMBD5 (Figure 2, bottom). Dele-

tions were detected at the breakpoints of both chromo-

some partners; a 192,277 bp loss at the MBD5 breakpoint

with insertion of 7 bp of foreign sequence that could not

be uniquely aligned elsewhere in the genome (Figure 2,

bottom) and a 106,412 bp deletion on chromosome 10

that included disruption of attractin-like 1 (ATRNL1 [MIM

612869]). Breakpoints in both cases were confirmed by

PCR and Sanger sequencing.

Phenotype Analysis Indicates that Most Features of

2q23.1 Deletion Syndrome Are Associated with MBD5

Given thepower of our sample and the commondeletionof

MBD5 in all cases (Figure 1), wewere able to conduct amore

comprehensive clinical characterization of 2q23.1 micro-
The Americ
deletion syndrome, comparing 48 characteristic pheno-

types between individuals with MBD5-specific deletions

and those with broader 2q23.1 deletions to discriminate

those phenotypes associated exclusively with MBD5 dele-

tion (Table 1 and Figure 3). Results indicate that most

(39/48 ¼ 81.2%) phenotypic features of 2q23.1 deletion

syndrome are consistent between both MBD5-specific

alterations and larger 2q23.1 deletions. The frequently

reported neurological, neurobehavioral, and craniofacial

features associated with this syndrome were collectively

observed in both cohorts. We report 13 out of 15 specific

neurological and/or neurobehavioral features that were

not significantly different between2q23.1 deletion subjects

and MBD5-specific disruption subjects, including develop-

mental delay, motor delay, seizures, language impairment,

and various behavioral problems (Table 1). In previous liter-

ature on 2q23.1, seizures and severe language impairment

emerged as the two primary features associated with this

disorder. In our assessment of severe language impairment

in both cohorts, it is apparent that this feature is a common

finding; 100%of 2q23.1 deletion cases and71.4%ofMBD5-

specific disruption cases exhibit this phenotype. Seizures

were also commonly reported in both groups at rates

greater than >80%. We also set apart several craniofacial

features, including thickor arched eyebrows, eye abnormal-

ities, nasal abnormalities, thin upper lip, widely spaced

teeth, and small chin, micrognathia, or retrognathia,

present in statistically similar frequencies in both cohorts

(Table 1). In addition, eye abnormalities that included eso-

tropia, myopia, astigmatism, hypermetropia, and poor

vision were observed in both cohorts. Individuals in both

cohorts also exhibited either large prominent noses (older
an Journal of Human Genetics 89, 551–563, October 7, 2011 555



Figure 1. Delineation of the 2q23.1 Critical Region
Schematic representation ofMBD5-containing deletions and translocation breakpoints in this report and those previously reported in the
literature, arranged from largest to smallest. Boxes represent the minimum size of the deletions, and the horizontal lines extend through
gaps in coverage to show the maximum deletion sizes. Green boxes represent individuals with MBD5 expression studies reported here.
Single asterisks indicate cases known to be de novo; a double asterisk indicates a single inherited case in the cohort. Inheritance regarding
all other cases is unknown. Genes within the region are represented by blue boxes, and the shaded region shows the location ofMBD5.
individuals) or small bulbous shaped noses (younger indi-

viduals) (see Figure 3). Note the thin upper lip observed in

all 2q23.1 deletion subjects (Figure 3).
556 The American Journal of Human Genetics 89, 551–563, October
Although it is apparent that amajority of theneurological

and neurobehavioral features were consistent among

2q23.1 deletion and MBD5-specific disruption cases, key
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Figure 2. Deletions and Translocations Disrupting MBD5
(Top) Schematic representation of intragenic and partial deletions of MBD5.MBD5 genomic organization andmRNA (RefSeq Accession:
NM_018328) are provided, including the large noncoding region (in green) between exon 1 and the coding sequence start site (in blue).
Above the gene are the 18microdeletions that partially and/or exclusively disruptMBD5. These subjects had similar phenotypic features
to individuals with deletions of the full 2q23.1 region (Table 1). Green bars represent those cases with expression data shown in Figure 4.
Single asterisks indicate cases known to be de novo; the double asterisk indicates a single inherited case in the cohort. Inheritance
regarding all other cases is unknown.
(Bottom) Translocation breakpoints in MBD5. Below the gene are paired-end sequencing data from two translocations found to disrupt
MBD5. The arrows represent the orientation of sequence reads (inward facing for CapBP, outward facing for jumping libraries). The
breakpoint on chromosome 2 in SMS373 was localized to the MBD5 noncoding region but determined to be an unbalanced rearrange-
ment with derivative breakpoints separated by 193 kb on chromosome 2 and 106 kb on chromosome 10. DGAP142 yielded read pairs
that localized the junction fragment to the same noncoding region23 with the loss of a single base at the chromosome 22 breakpoint in a
region without annotated genes or functional sequences. Breakpoint sequences are given below the reads. The blue sequence represents
the chromosome 2 breakpoint; the red sequence represents the chromosomal partner sequence, and the sequence at the breakpoint
that does not map to either chromosome partner is inserted in gray. Breakpoints for both derivatives resulting in the 193 kb deletion
of chromosome 2 are shown for SMS373. The second derivative of DGAP142 was balanced and identical to the reference.
differences exist between the two cohorts; these include the

presence in the 2q23.1 deletion cohort of ataxia, hyper-

phagia, postnatal growth retardation, a variety of craniofa-

cial manifestations, and small hands and feet (Table 1).

Hyperphagia is observed in 2q23.1 deletion cases (77.8%)

and is not reported in any of theMBD5-specific disruptions

(0%) (p ¼ 0.021). Craniofacial manifestations overall also

appear to be more frequent in 2q23.1 deletion patients

(100%) than in MBD5-specific disruptions (71.4%) (p ¼
0.030). Specifically, five distinct craniofacial manifesta-

tions, microcephaly, external ear abnormalities, wide

mouth, open mouth, and downturned corners of the

mouth, appeared more commonly in 2q23.1 deletion sub-

jects compared toMBD5-specific disruption subjects (Table

1), suggesting other genes could be involved in the etiology

of these features. Further, external ear abnormalities such as

prominent ears, small ears with large lobules, large simple

cupped ears, low-set ears, or abnormal ears were observed

at a higher frequency in patients with 2q23.1 deletions
The Americ
than in MBD5-specific disruptions (Table 1). The single

feature that is significantly more prevalent in the 2q23.1

deletion cohort (75%) than in theMBD5-specific disruption

cohort (20%) is small hands and feet (p ¼ 0.036).

No patients with MBD5-specific disruptions were

described as having brachycephaly, hypertelorism, macro-

glossia, short fifth digit of hand or feet, cardiovascular

abnormalities, urogenital abnormalities, or localized

hirsutism; however, the tests lack power because of the

low number of cases observed. Some unique features that

are reported in a few of the 2q23.1 deletion subjects are

a high, narrow palate (5), genital abnormalities (5), a lower

anterior hairline (4), pes planovalgus (3), long palpebral

fissures (3) and mild metopic ridging (2).

Haploinsufficiency of MBD5

Prior to this study, we established haploinsufficiency of

MBD5 in two larger 2q23.1 deletion cases (individuals

SMS185 and SMS361);2 however, those cases had deletions
an Journal of Human Genetics 89, 551–563, October 7, 2011 557



Figure 3. Clinical Features of Patients with Haploinsufficiency of MBD5
(A–D) The individuals presented have different 2q23.1 deletions (Figure 1). (A) SMS375, age 19 months. Note the microcephaly
(45.8 cm, < 3rd percentile), broad forehead, bulbous nose, simple protruding ear lobes, and thin upper lip. (B) SMS373, age 2. Note
the broad forehead, midface hypoplasia, high and broad nasal root, bulbous nose, fleshy ear lobes with bilateral Darwinian tubercle,
and thin upper lip. (C) SMS367, age 7. Note low anterior hairline,midface retrusion (hypoplasia), large pronounced nose, and prominent
columella. Note the space between the incisors. (D) SMS368, age 20. Note the bitemporal narrowing, synophrys, large pronounced nose,
prominent ears, prominent columella, protruding upper teeth, and short neck.
(E) Hands of SMS373. Note the small plump hands, brachydactyly, and fifth finger clinodactyly.
(F) Feet of SMS373. Note the small feet and sandal gap between first and second toes.
(G) Feet of SMS368 illustrating small size and slight sandal gap between first and second toes.
(H) Hands of SMS368. Note the small hands with tapered fingers and the fifth finger clinodactyly.
involving other genes and also exhibited haploinsuffi-

ciency of EPC2 (Figure 1). Here, we assessed the impact

of MBD5 promoter, 50-noncoding exon, or coding exon

deletions in 2q23.1 deletion subjects on MBD5 expression

(Figure 4). We discovered that MBD5 mRNA expression

levels were significantly reduced (22.5%–55.4%; p <

0.0001) across all 2q23.1 deletions studied when compared

with the levels in normal controls (Figure 4). Because Wil-

liams et al.2 reported that EPC2 was haploinsufficient in

the two large deletion cases, we also studied EPC2 mRNA

levels in cell lines with MBD5-specific intragenic deletions

and found normal levels of expression, indicating absence

of positional effects from these events on EPC2 expression

compared to controls (Figure S1). These data support

haploinsufficiency of MBD5 as the only shared etiological

finding among all cases evaluated, including those with

alterations affecting the 50-noncoding regions of the gene.

Association of MBD5 with Autism

The genetic and phenotypic analyses suggested that the

majority of 2q23.1 deletion cases exhibited autistic-like

behaviors, some of which were referred with a clinical indi-

cation of ASD. As MBD5 has not been implicated previ-

ously in autism, we explored this hypothesis further. We

estimated the frequency of the MBD5 microdeletion in

ASD from a subset of the total clinical data for which we

had clear evidence of the total number of subjects with
558 The American Journal of Human Genetics 89, 551–563, October
ASD. From the Children’s Hospital Boston data set, we

identified three independent microdeletions in cases

with ASD (a fourth case was a sibling who also carried

the same microdeletion) from a total sample of 1786 ASD

subjects (0.17%), and from a subset of the Signature Geno-

mics data set with definitive phenotypic information and

identical diagnostic array data, we observed a highly

similar rate of four microdeletions of MBD5 from 2275

ASD cases (0.18%). A comparison to the 7878 controls

screened for absence of psychiatric diagnosis found no

deletions of the 2q23.1 segment, the full MBD5 locus, or

any MBD5 coding exons, suggesting that haploinsuffi-

ciency of MBD5 is highly penetrant. A survey of the Data-

base of Genomic Variants (DGV) found a very large dupli-

cation spanningmany genes in the region but no deletions

greater than 3 kb, all of which were confined to intronic

sequences in the 50-noncoding region.

Pooled sequencing of the MBD5 coding region and

confirmatory individual sample genotyping in 747 cases

diagnosed with ASD identified a previously described

missense variant in the highly conserved and functionally

critical methyl-binding domain (MBD), p.79Gly>Glu

(rs34995577). Capillary sequencing confirmed an inherited

mutation in six ASD cases (0.8% heterozygote frequency;

0.4% minor allele frequency; four of maternal inheri-

tance, two of paternal inheritance). A second variant,

p.1048Thr>Ile, was confirmed to be inherited in a single
7, 2011



Figure 4. Reduced MBD5 Expression with
MBD5 Deletions or Disruptions
Quantitative RT-PCR mRNA expression analysis
of MBD5 is shown in lymphoblastoid cell lines
or peripheral blood lymphocytes from individ-
uals with MBD5 deletions (partial or complete)
or disruptions of MBD5 and nine unaffected (no
MBD5 deletion) subjects that were used as normal
controls. Results were normalized to GAPDH
expression. Relative expression values are based
on the DDCt value. Expression of all controls
was normalized to one. Each bar represents
mean (5standard error of the mean) of values
from three to ten independent experiments.
The error bars are present for each sample, but

in some cases the error bars are too small to be seen. The data show a normal range of expression, 0.94- to 1.23-fold MBD5 expression,
in lymphocytes (BC1-2) and lymphoblastoid cell lines (LCL1-7). Samples from cases described herein show 22%–55% expression of
MBD5 (p < 0.0001 for all cases). aSMS185 and SMS361 were previously reported.2
ASD case, but no other variants were observed more than

once. The frequency of the p.79Gly>Glu variant in ASD

subjects was significantly higher than the minor allele

frequency in the ESP exome sequencing (3/2043 individ-

uals sequenced, MAF ¼ 0.07%), suggesting increased risk

conferred to ASD cases by the mutant allele (p ¼ 0.012,

OR ¼ 5.47, 95% confidence interval ¼ 1.37–21.9). The

G79 residue is conserved in human and mouse and highly

conserved across MBD proteins, including MECP2 (MIM

300005), MBD1 (MIM 156535), MBD2 (MIM 603547),

and MBD3 (MIM 603573).
Discussion

Our large-scale characterization of a microdeletion

syndrome previously implicated in neurodevelopmental

abnormalities revealed that a spectrum of genetic alter-

ations results in highly similar phenotypic presentations,

including small alterations localized to noncoding ge-

nomic regions. We identified 65 structural rearrangements

spanning the 2q23.1 region, all of which disrupted a single

gene in the critical region, MBD5, and included 14 inde-

pendent structural variants (SVs) that solely interrupt

MBD5. Extensive analysis of phenotypic features shows

that partial or complete deletion of MBD5 leads to the

core phenotype of intellectual disability, seizures, signifi-

cant speech impairment, and behavioral problems

observed in 2q23.1 deletion syndrome. Haploinsufficiency

of MBD5 mRNA, including deletions of only the 50-non-
coding region, was confirmed in all cases evaluated and

supports MBD5 as the major causative gene for 2q23.1

deletion syndrome and the core phenotype observed.

Many of the 2q23.1 deletion cases exhibited ASD features,

and we empirically estimated the frequency of MBD5 mi-

crodeletion and mutation of a highly conserved domain

in MBD5 in ASD cases as well as comparison groups

without ASD and found substantial risk conferred by

MBD5 alteration. Our best estimates are that MBD5 dele-

tion could impact one out of 500 to one out of 1000 ASD

cases, and collectively, we find that up to 1% of ASD cases
The Americ
could have an alteration of MBD5 that confers genetic risk

on the basis of the samples studied here.

MBD5 encodes a protein of the methyl-CpG-binding

domain (MBD) family that also includes MECP2, a causa-

tive locus in Rett syndrome (RTT [MIM 312750])32 and

is highly expressed in the brain, fetal testes, and fetal

ovaries.32 As a member of the MBD protein family, the

MBD5 protein has a 71 amino acid MBD from positions

11–81 of the protein. The p.79Gly>Glu variant, which is

overrepresented in ASD in our study, changes amino acid

79 in the MBD from glycine to glutamate and is predicted

by PolyPhen-2 (score ¼ 0.995)33 to be damaging to the

function of this highly conserved domain known to be

involved in binding DNA at methylated CpGs. Specific

cellular functions of other MBD family members have

been well-described, but the function of MBD5 is currently

not understood. A recent study suggested that MBD5 is

unlikely to bind directly to methylated DNA but could

contribute to the formation or function of heterochro-

matin.32 MBD5 could bind to DNA in a complex because

it has been shown to interact directly with myocyte

enhancer-binding factor 2C,34 encoded by MEF2C (MIM

600662), a gene known to play a crucial role in develop-

ment and neurogenesis35 and to regulate expression of

neuronal genes involved in formation of neuronal circuits

and synaptic functions.10 Haploinsufficiency of MEF2C is

associated with a microdeletion in 5q14.3 that results in

an ASD phenotype, intellectual disability, seizures, and

hypotonia,36 strikingly similar to the phenotype described

here for haploinsufficiency of MBD5. Thus, MBD5 and

MEF2C might function in a common pathway in neuro-

genesis, which, when disrupted, reveals characteristic neu-

rodevelopmental phenotypes.

This analysis is the first comparative clinical study of

this magnitude to define the role of a single gene in the

clinical manifestations of 2q23.1 microdeletion syndrome

and ASD and/or autism. Overall, ~84% of phenotypic

features evaluated were consistently observed in both

MBD5-specific deletion and 2q23.1 deletion cases, suggest-

ing that the overall syndrome phenotype is primarily due

to MBD5 deletion. Developmental delay, motor delay,
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language impairment, seizures, behavioral problems,

several craniofacial manifestations (see Table 1), and con-

stipation were present in all or a majority ofMBD5-specific

disruptions and 2q23.1 deletions involving MBD5, sup-

porting a significant role for MBD5 in these features. We

also report that, unlike larger 2q23.1 deletion cases,

MBD5-specific disruptions did not show microcephaly,

certain neurological, growth, and craniofacial manifesta-

tions, or small hands and feet (Table 1). These findings

suggest that altered gene dosage of other 2q23.1 genes

probably modifies and contributes to the variable features

in 2q23.1 deletion syndrome.

Our study specifically supports a role for MBD5 in ASD.

Data from numerous autism CNV studies suggest that

genetic etiology in at least 10% of autism patients can be

attributed to genetic syndromes and known chromosomal

anomalies, and estimates will increase as the resolution of

screening tools improves.37 Further, both deletions and

duplications, particularly involving chromosomal regions

16p13.11, 15q13.3, and 15q11.2, have been productive

in identifying genomic architectural changes that are

clearly associated with epilepsy and other developmental

conditions; there are similar findings in both autism and

schizophrenia cohorts, demonstrating enrichment of

these and other copy-number regions compared to appro-

priate controls.38–41 Because ~5%–15% of neurodevelop-

mental disorders, such as fragile X syndrome (MIM

300624; FMR1 [MIM 309550]), RTT (MECP2), Angelman

syndrome (MIM 105830; UBE3A [MIM 601623]), Smith-

Magenis syndrome (MIM 182290; RAI1 [MIM 607642])

and Potocki-Lupski syndrome (MIM 601883; RAI1),

tuberous sclerosis complex (MIM 191100; 613254; TSC1

[MIM 605284], TSC2 [MIM 191092]), neurofibromatosis

type 1 (MIM 162200; NF1 [MIM 613113]), and PTEN ha-

martoma syndrome (PTEN [MIM 601728]),42,43 are associ-

ated with a high prevalence of autism and are caused by

single genes, they can offer tremendous insight into the

pathogenesis of autism through the investigation of

protein and gene pathway interactions. Adding MBD5 to

the list of highly penetrant single genes that can

contribute to ASD provides additional support for genes

important in DNAmethylation and chromatin remodeling

in autism etiology. Other members of the MBD protein

family have also been implicated in ASD and/or autism,

most particularly MECP2, whose mutation or deletion

can lead to RTT, seizures, intellectual disabilities, and/or

autism.44,45 In support of these findings, existing mouse

models for inactivation of many of the MBD family genes

display autistic-like behavioral phenotypes that could be

valuable for investigating the pathophysiology of autism-

predisposing mutations and for identifying treat-

ments.45,46 The data presented here further support a role

for the MBD family in the etiology of ASD.

These analyses could represent a lower limit for the over-

all involvement ofMBD5 in ASD because clinical data were

limited for many individuals with detected microdele-

tions, the array resolution was too low on some platforms
560 The American Journal of Human Genetics 89, 551–563, October
to adequately detect small alterations, and our sequencing

screen for mutation was limited to alleles observed

multiple times in the patient pools, meaning it was insen-

sitive to any potential accumulation of single private

mutations at a higher burden than in controls. The com-

parison of our data set to the available controls suggests

large deletions of MBD5 are highly deleterious and pene-

trant, as no variations were observed from 7878 controls.

Notably, the resolution of the CNV calls from the microar-

ray studies was low, and only variants >100 kb could be

confidently called. A higher resolution analysis could

reveal smaller variants in controls, such as those seen in

the 50-noncoding region of the gene from DGV, which

are intronic and less than 3 kb in size. Similarly, the

p.79Gly>Glu variant is present in control populations at

a significantly lower frequency than our cases. These data

could suggest amixedmodel of deleterious, fully penetrant

deletions of MBD5 causing the syndromic disorder

described here and reduced penetrance variants that signif-

icantly increase risk for ASD. A critical assessment of the

allele frequency reported in additional ASD subjects and

yet more controls will be required to determine the true

effect size of the association reported here, which was

limited to a relatively modest ASD cohort, but all variants

were confirmed by multiple methods including capillary

sequencing. It will also be of interest to evaluate ongoing

autism exome sequencing to determine the total spectrum

of MBD5 coding mutation burden, including those rare

events that our methods were insensitive to detect, and to

perform haplotype analyses of the region to determine if

associated mutations are recurrent or identical by descent

in the patient populations such as for the p.79Gly>Glu

variant. Importantly, our clinical detection of ASD cases

with these small alterations in the noncoding regions of

MBD5 points to the need for greater sensitivity and analysis

of current clinical diagnostic screening and proposes an

alternative to the yet unexplained heritability in ASD

from studies targeting large dosage changes or strictly de

novo mutations identified from exome sequencing.

Our large-scale characterization of a microdeletion

syndrome previously implicated in neurodevelopmental

abnormalities reveals that a complex spectrum of genetic

alterations, from point mutations and small deletions in

noncoding regions through to larger chromosomal rear-

rangements, can result in highly similar phenotypic

presentations, including ASD, because of effects on the

same critical gene. These results suggest that the impact

of both gross and quite subtlemutations at select loci could

account for a significant portion of the overall disease risk

in ASD and other neurodevelopmental disorders and that

microdeletion syndrome regions provide a potential route

to identifying these loci. Given similar findings supporting

the importance of single genes in smaller studies of

other recurrent microdeletion syndromes,10,12,47,48 small

gene-specific SVs can result in a similar phenotype to that

seen in the larger deletion syndrome. In addition to

revealing the need for specific consideration of MBD5 in
7, 2011



the molecular diagnosis of certain neurodevelopmental

disorders, including ASD, our findings argue strongly for

similar collaborative experimental approaches to screening

of additional microdeletion syndromes for specific genetic

factors contributing to neurodevelopmental abnormalities.
Supplemental Data

Supplemental Data include one figure and one table and can be

found with this article online at http://www.cell.com/AJHG/.
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