
I Computer Science 51 (1987) 341-348
land

Department of Computer Science, Coiumbia Uniuersity, Ne
ment of Computer Science, Tel-Auiv University, Tel-Avis 69978, Israel

and Depart-

Raffaele GIANCARLQ
Department of Computer Science, Columbia University, New York, NY 10027, U.S.A., and Depart-
ment of Computer S&rir;e, University of Salerno, 84160 Salerno, Italy

Communicated by G. Ausiello
Received September 1986

A ct. Two improved algorithms for string matching with k mismatches are presented. One
algorithm is based on fast integer multiplication algorithms whereas the other follows more closely
classic string-matching techniques.

Introdaction

Givea a text string tot, . . . tn-, , a pattern string pop1 . . . pm__, and an integer
k, k s m s n, we are interested in finding all occurrences of the pattern in the text
with at most k mismatches, i.e., with at most k locations in which the pattern and
the text have different symbols. We refer to this problem as string matching with k
mismatches.

Recently, an efficient sequential algorithm for this problem was devised by [6,7]
and an improvement of it was presented in [2]. oreover, Landau and Vishkin
have also considered both sequential and parallel algorithms for the more general
prob!em of string matching -with k differences [g]; that is, a total of at most k
mismatches between symbols, insertions and/or deletions of symbols are allowed in
order to obtain an occurrence of the pattern in any positio

rithm for string matching with k differ-e
rithm, can also handle the special case of string matching

1 improvement in its time bound of O(k+ log
und is optimal if k =

of using parallelism is lost.
ere we present two e

mismatches.

0304-3975/87/$3.50 @ 1987, Elsevier Science Publi:shers B.V. (North-Holland)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82519711?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

342 Z Gaiil, R Giancarlo

Schonhage and Strassen integer-multiplication algorithm adapted to compute the
amming distances between a binary pattern and its potential occurrences in a

binary text. Such an algorithm uses O(nt)l log m log 1

O(log n) time, where q = min(u, m) and u denotes
remark that the use of fast integer-multiplication algorithms to solve
wide class of string matching problems is not new [I] (see also Cd]), and we discuss
Al for the sake of completeness.

‘Ihe other algorithm, referred to as A2, assi ns 2k processors to each position of
the text and then locates (up to) k+ 1 mismatches between the pattern and such a
substring of the text. *t consists of two major steps:

(a) preprocessing of the pattern and the text and
(b) finding all occurrences of the pattern in the text with at most k mismatches.

Step (b) can be implemented in time O(log(m/k) log k/(log log m + log log k)) by
using O(nk) processors. The preprocessing step can be implemented by means of
two different algorithms. One algorithm, due to 183, takes O(log m) time by using
0(m2 i n) processors. The other algorithm, due to [1 I], takes O(log n) time by using
0(n + m) processors. Thus, A2 performs in time O(log(m/k) log k/(log log m +
log log k) +log m) with O(m’+ nk) processors or in time O(log(m/k) log kl
(log log m + log log k) + log n) with 0(m + nk) processors depending on which
implementation of the preprocessing is adopted.

An informal discussion of the main features of algorithms LV, Al and A2 is in
order. As it was pointed out earlier, LV is efficient only when k = O(log m j. Algorithm
Al guarantees a good time performance irrespective of the order of magnitude of
k. However, it has two major drawbacks: the number of processors depends linearly
on q, and thus on the alphabet size, and the constant hidden in the big-0 notation
is quite large. Moreover, its worst-case time bound is achieved by any instance of
the problem. This is also true for LV. As far as A2 is concerned, its worst-case time
bound is O(log m) whenever k = O(log’ m) or k 2 m/log’ m, c constant, and is never
worse than 0(log2 log log m). Moreover, its time performance depends on the
input strin may behave better than its worst-case time bound. The major
drawback is that if k = m, it uses essentiaiiy the same number of processors
as naive algorithm acEI: --l; L+. &ng the same time performance.

e model of tomputation that we assu cad/exclusive-write
(EREW) parallel random-access machine EW PRAM is com-
posed of t synchronous processors all having access tc a common memory. However,
processors are not allowed to read simultaneously or to write from the same memory
location.

Parallel string matching with k mismatches 343

computing the amming distance between pat an ti..*ti+~__*,OdiQ~-~nt.]tf

H(pat, ti.. . ti+m-l) s k, then i is an occurrence of the pattern in the text.
The Hamming distance between two strings a and 6 of ten th

H(a, b)=z,t_d aj@bj.

m is given by

Let reo(b) = b,_*. . . be Since ajQ 6j = (a&) + (gbj), (a, 6) can be rewritten as

H(a, 6) = mi’ (ajreu(6),-j) + mi’ (qreu(6),-j).
j=O j=O

H(a, 6) can be computed by first insertin log m o’s between each bit of a and
each bit of 6, thus obtaining two strings a’ and 6’ of length m(log m + 1) each. Then,
the products c = ai- and d = i?reu(6’) are computed. Finally, H(a, 6) is given
by the sum of the two binary numbers

qrn-l)(log m+l)+log m l l l c(m-l)(log m+l) and 4 m--1)(108 m+l)+iog m . l l 4 m-l)(log m+l)

extracted from c and d respectively. The role of the blocks of o’s is to separate the
result from the other carries.

The above method can be easily extended to compute concurrently
H(pat, ti l . . ti+m-*) for all i, 0s i S n - m. Indeed, both the text and the pattern are
transformed into strings text’ of length n(log m + I) and pat’ of length m(log m + I).
Then, the products

c = (text’)(reu(pat’)) and d = (text’)(reu(pat’))

are computed. NOW, H(pat, ti -. . ti+m-1) = ci + di, where

Ci = C(rn-l+i+l)(log m+l)-1 l l l qrn-l+i)(log m+f)

and

di=4m :+i+l)(log m+l)-I l l l
d (m-i+i)(log m+l)*

It has been shown in [3] that a parallel integer multiplication of two s-bit numbers
can be performed in time O(log s) with O(s log s) processors. Thus, parallel string
matching with k mismatches can be performed in time O(log(n log m)) with
O(n log m log log n log m) processors provided that the input alphabet is binary. If
the size u of the input alphabet is greater than two, then each character can be
represented by q = min(a, m) bits, i.e., the ith character is re esented by a bit vet

with the ith bit set to 1 and the remaining ones set to 0. Thus rallel string mim3-G

with k mismatches can be solved in O(log nq) time by 0(nq lo
cessors.

lgorit

osed of two major ste
(1) preprocessing of the pattern and the text;

2 Galil, R Giancarlo

(2) detection of all occurrences of the pattern in the text with at most k mis-

matches.

me first step is devoted to the characterization of all sub

terms of substrings of the pattern. This goal can be accomplis
different algorithms. One algorithm [S] constructs some tables, whereas the other
one [I I] uses the suffix tree of the pattern and the text [9,12]. In what follows we

efly describe the two al the details of their implementation.

en we present the string

The preprocessing step in [S] putes two arrays: MAX-LENGTH[O, . . . , M - 1;
0 9*=*9 m - l] and BEST-FIHO, . . . , n - 11. They are defined as follows. MAX-

LENGTH[i, j] = 1 if pi. . . &l-1 = p’ . . . pj+t-l and Pi+1 # #f”+lp, i.e ffixes pi. . . p,,, and

pj.__pm of the pattern have a maximal common prefix of lengt BEST-FIfiI’] = (j, I)

i* - a *+1-_1=pjm m a t* pi+]-* and j is the position in the pattern for which I is maximal.

t is, Pj . . . pj+l-l is the longest substring of the pattern starting at position i of

the text.

Table MAX-LENGTH can be easily computed in O(log m) tirAe by m2/log m pro-

cessors, whereas BEST-FIT can be computed in O(log m) time by m2+ n/log m

processors. The interested reader can find the details of such a construction in [S].

A basic operation in the pattern-matching algorithm is the detection of the leftmost

mismatch between a suffix of the text and one of the pattern. This operation can

be performed in constant time by making use of MAX-LENGTH and BEST-FIT. Indeed,

let FIND-MIsMATcH(& j) be a function that gives the text position of the leftmost

mismatch between suffixes ti . . . tn_, and pi. . . pm+. Now, FIND-MwavrcH(i, j) =
i + min(4, I) if BEST-FIeI’] = (s, q) and MAX-LENGTH[S, j] = 1. This result easily fol-

10~s by observing that BEST-FIT(CJ = (s, q) implies that ti. . . ti +q_1 = pS . . . P~+~._~ with

t i+q # Ps+q and MAX-LENGTH[S, j] = 1 implies that pS . . . P~+I_~ = pi. . . Pi+/-1 and

Ps+l # Pj+l- Thus9 ti+min(q.l) # pj+min(q,l) and such a mismatch must be the first one

between the given suffixes.

me function FIND-ndIsMxrcH(i, j) can also be computed as follows. Assume that

T is the suffix tree of the string to.. . t,,_,$po.. .P,,,-~ [9,12]. Then, FIND-

that set

e by using O(n) processors. e also presented parallel

ese data structures can be obtained in O(log n) time

US, FIND-MISMATcH(i, j) can be computed in Constant time

ParaNd string matching with k mismatches 349

such a substring and pj.. . ps (
that the strings assigned to the
as an active processor complete

A processor, assigned to ti+j . . . ti+s,

mismatch in a position q - 1 < i

yet and it must be tested for possible mismatches. Otherwise, a processor is in the
free state. A busy processor reports the endpoints (q, s) of the substrin
to be tested.

As soon as active processors finish their task, the 2k processors are a
to substrings of ti . . - ti+m-l that have not been processed yet and then each processor
performs its task on the given substring. We remark that, at this stage, some processors
may turn out to be idle. When such an assignment takes place we say that a new
iteration is started. Initially, ti . . . ti+m-l is divided into k conti s of
length at least [m/ kJ and at most [m/Q Then, k processor are assigned to each
one of such strings. Subsequently, processors are assigned to strings of almost the
same length as follows.

Assume that, at the end of iteration j, c processors report that substrings

Xl, x2, . . . , xc, with endpoints (qr , sl), . . . , (qc, s,), of ti . . . ti+m-l remain to be tested.
Notice that c < k/log k since each of these processors found log k mismatches. Let
Z=CL* Zi, Zi=Si- qi + 1. We assign pi = [kti/Zl processors to substrings Xi. The pi
processors can be assigned to substrinlgs Xi, for all 4 1 s is c s S by sorting the
triples (qi, Si, pi). Thus, at the beginning of iteration j + 1, k s 2k processors are
active and each active processor is assigned to a substring of length at most
[ti/pil G z/k. It is worth to point out that whenever z < 2s the string matching
process for position i of the text is concluded as soon as active processors complete
their task.

Procedures Occurrence(i) and Mism ch implement the algorithm outlined above
for the detection of an occurrence of i e pattern in the text at position i.

Cmplexity of Procedure Occurrence(i).

Each iteration of the while loop in Procedure Occurrence(i) takes O(log aC) time.
Indeed, a call to Procedure es O(log k) time since it finds up to log k
mismatches by using function 0 is a parallel

addition of all the mismatche nd thus it can
be performed in O(log k) time by 2k process0 . Finally, the assignment of process0
to substrings takes O(log k) since it essentially re

e number of iterations sufficient t
of the pattern with at most k

346 Z Galil, R. Giancarlo

i. en, at the completion Of such iteration, ki+l% k8 +
mismatches have been found and ii+, s cui

or k+ k Thus, the maximum number

Now, the maximal s is achieved hen all the aj’s are equal, that is aj = I/(s lo

us, we obtain that

log(mlk)
s=loglog(mjk)+loglogk8

Hence, Procedure Occurrence takes O(log(m/ kb log kf (log log(m/k)+
log log k)).

It follows from the analysis of Procedure Occurrence that the overall time corn-
plexity of the algorithm presented in this section is

0 (log log Iy1+ log log k
+ time preprocessing

)
,

where time preprocessing can be either O(log m) ([S] preprocessing algorithm)
or O(log n) ([111 preprocessing algorithm). The number of processors needed is
0(m2 + nk) or 0(nk) respectively.

Complexity for a random string

Consider the following restricted version of the algorithm. We define a processor
to be free iff it finds at most 1 mismatch in the string assigned to it. Obviously, at
any stage, there cannot be more than $k busy processors.

Letting ¶ S! be the probability of a mismatch we find that the probability of a
eing free after the first step is q(m/k’-’ . Thus, the average number of free

processors after the first step is k~$~/~)-’ which is less than ik for ks$m. Hence,
er the first step, the ber of busy processors is larger than ik on the average.
is immediately establishes an O(log k) time bound for the algorithm.

1 a tiiiirrpaabu &w L T A 3 ~~suc_+3Y.eA +n B \I is &a’: i

oreover, the consta
ize, so A2 compares favorabl

Parallel string mirtching with k mismatches 347

(* v is equal to the number of mis atches found so far

partition ti.. . fi+m-l into k contiguous strings of roughly the same length and
assign them to k processors
while v 6 k and (number of active processors) > 0

active processor q ismatch(q);

s k then assign substrings not processed io processors

else stop
end
if v s k then print “position i is an occurrence of the pattern in the text”

nd.

(* Assume that string ti+j . . . Zi+s has been assigned to processor q *)

in
w := 0; free := false; tp := i +j; pp := j; mp := 0;

(* tp and pp denote current text and pattern positions respectively *)
(* mp denotes a mismatching position in the text *)

ile w < log k or free = false do

beg in
II’Bp := FIND-MISMATCN(tP, pp)

begin-case
mp<i+s: w:=vv+l;

mp= i+s: vv:= + 1; free:= true;

mp> i+s: ffee:= true;

end-case
tp:= tp+mp+ 1; pp:= +mp+ 1

end
end.

eferences

[11 M.J. Fischer and MS. Paterson, String-matching and other products, in: =P
of Computation (SIAM-AA& Proceedings 7) (American Mathematical Society,
1974) 113-125.

[2] 2. Galil and R. Giancarlo, Improved string matching with k mismatches, Sigact News 17 (1986)
52-54.

[3] 2. Galil and W.J. Paul, An efficient general-purpose p~r~~~e~ computer, J.

13 (1984) 338-355.

(1973) l-1 1.

