
Information and Computation 205 (2007) 1235–1273

www.elsevier.com/locate/ic

Controlling information release in the �-calculus�

Silvia Crafa a,∗, Sabina Rossi b

aDipartimento di Matematica Pura e Applicata, Università di Padova, Italy
bDipartimento di Informatica, Università Ca’ Foscari di Venezia, Italy

Received 15 July 2005; revised 15 December 2006
Available online 21 January 2007

Abstract

We introduce a notion of controlled information release for a typed version of the �-calculus extended with declassification
primitives; this property scales to noninterference when downgrading is not allowed. We provide various characterizations of
controlled release, based on a typed behavioural equivalence relative to a security level �, which captures the idea of external
observers of level �. First, we define our security property through a universal quantification over all the possible active
attackers, i.e., malicious processes which interact with the system possibly leaking secret information. Then we characterize
the controlled release property in terms of an unwinding condition, which deals with so-called passive attackers trying to
infer confidential information just by observing the behaviour of the system. Furthermore, we express controlled information
release in terms of partial equivalence relations (per models, for short) in the style of a stream of similar studies for imperative
and multi-threaded languages. We show that the controlled release property is compositional with respect to most operators
of the language leading to efficient proof techniques for the verification and the construction of (compositional) secure
systems.
© 2007 Elsevier Inc. All rights reserved.

Keywords: Process Algebra; Noninterference; Downgrading

1. Introduction

A central challenge in information security of multilevel systems is the protection of sensitive data and
resources from undesired access while also permitting information release whenever appropriate. Indeed, real-
world applications often release bits of information as part of their intended behavior. For instance, when two
high level users communicate through an encrypted channel, as in the case of a purchase protocol, secret infor-
mation is revealed whenever a condition, such as “payment transferred”, has been fulfilled. Another example is
a password checking program: some information about the password is released even if a log-in attempt fails,

� Work partially supported by the MIUR project “Fondamenti Logici dei Sistemi Distribuiti e Codice Mobile” (Grant 2005015785) and
the FIRB project “Interpretazione Astratta e Model Checking per la Verifica di Sistemi Embedded” (Grant RBAU018RCZ).

∗ Corresponding author.
E-mail addresses: crafa@math.unipd.it (S. Crafa), srossi@dsi.unive.it (S. Rossi).

0890-5401/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.ic.2007.01.001

1236 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

since an attacker may learn whether the inserted sequence coincides or not with the password. (See Example 34
in Section 5 for a formalization of this example in the �-calculus framework.)

In order to permit systems to leak information by design, information flow controls often include some notion
of downgrading, which allows trusted entities to declassify information from a higher to a lower security level.
In the presence of downgrading, a satisfactory security policy should allow controlled forms of information
release that weaken the rigid restrictions of classical noninterference properties. A number of definitions and
analysis for different kinds of information release policies over a variety of languages and calculi have been
recently proposed. The reader is referred to the work of Sabelfeld and Sands presented in [1] for a road map of
the main directions of the research on this topic.

In this paper, we study the downgrading in the �-calculus framework: we develop a general theory of a
relaxed notion of noninterference for the �-calculus, which allows information to flow from a higher to a lower
security level through a downgrader. In the �-calculus a piece of information is just the name of a communica-
tion channel, and such a name can be used to access that channel (in read or write mode) and to communicate it
to other processes. According to this model, in the �-calculus the noninterference principle is centered around
the behavior of processes, i.e., on their (dynamic) abilities of reading and writing through channels, rather than
on the value of input or output variables as in the imperative framework.

There exists a quite extensive literature on type-based proof techniques for noninterference in the �-calculus
(see, e.g., [2–6]), but none of these works deals with downgrading. Their main result is a soundness theorem
stating that if a system is well-typed, then it is interference free. Moreover, a common feature of these works
is that type systems are actually part of the definition of noninterference, in that both the observation of the
system and the observed processes are constrained by types.

In the present paper, we follow a different approach where the security properties of a process are checked by
reasoning on its operational semantics (i.e., its behavior), rather than by imposing typing constraints. We study
the controlled information release property, which generalizes noninterference by allowing secure downgrading
of information through an explicit declassification operation. As discussed above, even in the case of down-
grading we part from the approaches followed by functional and imperative languages, where the objects of
declassifications are expressions built from the value of high variables. Instead, given a�-calculus process, we de-
classify part of its behavior, that is, some of its read/write actions. Such a new property scales to noninterference
when downgrading is not admitted.

More precisely, in order to deal with downgrading, we enrich the standard �-calculus with a family of de-
classified actions of the form dec� a(x:T) and dec� a〈b〉 with � belonging to a complete lattice 〈�, �〉 of security
annotations. We call the new language the Dec�-calculus. The intuition is that only programmers may enable
the downgrading of secret information, while external entities cannot synchronize on declassified actions. If a
is a channel of a security level � with � � � then dec� a(x:T) is an action declassified to the lower level � which
can be used by the programmer to specify an “escape hatch” for information release, i.e., to allow information
arising from this action to flow downwards up to level �. The same holds for the write action dec� a〈b〉.

It is worth noticing that we could have used the dec constructor to declassify names rather than actions.
However, since in the standard �-calculus a name represents a channel, a declassified name would be a channel
over which only declassified actions are allowed. Hence, by declassifying actions instead of names, we obtain
a more flexible, finer-grained, downgrading mechanism that allows programmers to interleave declassified and
non declassified actions over the same channel (e.g., see Example 11 in Section 4, and Example 34 in Section 5).

In our theory the use of types is much lighter than in the previous works on the security for the �-calculus.
In particular, the only typing constraint we impose is that values at a given security clearance cannot flow
through channels with a lower security level and that an action of a security level � can be downgraded only at
a lower level �. Such a typing discipline ensures that information does not directly flow from high to low in an
uncontrolled manner, however, intentional release is explicitly specified through the use of declassified actions.
Being so light-weight, the type system does not deal with implicit flows and thus we do not use it as a proof
technique for our security definition. On the contrary, we characterize the controlled release property in terms
of the actions that typed processes may perform.

Our approach generalizes previous ideas, mainly developed for CCS (see [7]), to the �-calculus, where new
difficulties arise due to the presence of scope extrusion. The contribution of this paper is twofold: (i) we develop
a rich and elegant theory of controlled information release for the �-calculus enriched with a downgrading

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1237

primitive and (ii) we provide a number of sound and complete characterizations of secure processes, which can
be exploited in the design of efficient verification techniques.

The controlled release property we are going to study is based on the notion of process behavior relative to a
security level �. In particular, we define a family of typed equivalences for the Dec�-calculus indexed by an ob-
servation level �, namely �-reduction barbed congruences (see [8]). Two processes P andQ are �-equivalent in the
type environment �, written � � P∼=�Q, if they exhibit the same �-level behavior, i.e., they are indistinguishable
for a �-level observer.

A �-level observer is formalized as a �-context, i.e., a well typed context which can interact with the ob-
served process only through channels of level at most �, independently of downgrading. We require ∼=� to be a
congruence for all �-level contexts.

We also develop a proof technique for ∼=� in terms of a quite natural bisimilarity on �-actions defined on

typed labeled transition systems. A typed LTS is built around typed actions of the form � � P �−−→� �
′ � P ′

indicating that in the type environment �, the process P performs the action � of level � and evolves to P ′ in the
possibly modified environment �′. We prove that two processes are �-barbed congruent if and only if they are
bisimilar on typed actions of level �.

Relying on this equational theory for the Dec�-calculus, we introduce the �-controlled information release
property CR(∼=�) for typed processes, which is inspired by the DP_BNDC property defined in [7] for CCS. As
stated above, the controlled release property is built upon a declassification model that allows programmers to
intentionally release sensitive information in a controlled way. In particular, only internal system components
are allowed to downgrade sensitive information, therefore we model external attackers as high level processes
which cannot enable the declassification, i.e., cannot perform downgraded actions. We say that a process P in
a type environment � satisfies the property CR(∼=�), written � � P ∈ CR(∼=�), if for every configuration �′ � P ′
reachable from � � P in the typed LTS, and for every �-high level sourceH (that is a process which can perform
only non downgraded actions over channels of level higher than �) it holds

�′ � P ′ ∼=� �′ � P ′|H.
This definition involves a universal quantification over all the possible active attackers, i.e., high level mali-

cious processes H which interact with the system possibly leaking secret information. Moreover, it is persistent
in the sense that if a configuration � � P satisfies CR(∼=�) then also all the configurations reachable from it in
the typed LTS satisfy CR(∼=�). As discussed in [9], persistence is technically useful since it allows us to apply
inductive reasoning when proving security results (e.g., compositionality), but it is also intuitively motivated by
the need for mobile processes to be secure at any computation step.

Perhaps interestingly, we show that CR(∼=�) can be rephrased in terms of name restriction and the standard
bisimilarity (i.e., bisimilarity on �-actions,1 ≈�), obtaining a definition of controlled release which is reminiscent
of the noninterference property called BNDC and defined by Focardi and Gorrieri in [10] for CCS processes.

We provide a characterization of CR(∼=�) in terms of an unwinding condition in the style of [11]. An unwinding
condition aims at specifying local constraints on process transitions which imply some global property. More
precisely, our unwinding condition requires that whenever a configuration C performs a non declassified typed
action of level higher than � moving to C ′, then a configuration C ′′ can also be reached through an internal
computation such that C ′ and C ′′ are indistinguishable for a �-level observer. In other words, the unwinding
condition ensures that all the non declassified actions over channels of level higher than � are always simulated
by internal computations, thus becoming invisible for the low level observers. Nevertheless, intentional infor-
mation release is still admitted, since the unwinding condition does not prevent flows arising from high level
declassified actions.

It is interesting to observe that the unwinding condition characterizes security with respect to the so-called
passive attackers, which try to infer information about the classified behavior (�-high actions) only by observing
the �-level behaviour of the system.

We also provide a quantifier-free characterization of controlled release in terms of partial equivalence rela-
tions (per models, for short). More precisely, we introduce a partial equivalence relation

.≈� over configurations

1 Where � is the top-element in the security lattice �.

1238 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

Table 1
Syntax

Prefixes Processes

� ::= a〈b〉 Output P ::= �.P Prefix

| a(x:T) Input | if a = b then P else P Matching

| dec� a〈b〉 Declassified output | P |P Parallel

| dec� a(x:T) Declassified input | (�n : T)P Restriction

Types | !P Replication

T ::= �[] | �[T] | 0 Inactive

and, inspired by the definitions in [12] for imperative and multi-threaded languages, we prove that
.≈� is reflex-

ive only on the set of secure processes. Hence, we obtain that a typed process P is secure if and only if P is
.≈�-equivalent to itself.

Thanks to the last two characterizations one can immediately prove that the �-controlled release property
CR(∼=�) is decidable for the recursion-free calculus and even for the finite-control �-calculus where the number
of parallel components in any process is bounded by a constant. Furthermore, we show that CR(∼=�) is compo-
sitional with respect to most operators of the Dec�-calculus. In particular, if P and Q satisfy CR(∼=�) and they
do not synchronize on declassified actions, then P |Q satisfies CR(∼=�). Similarly, if P satisfies CR(∼=�) and it does
not contain declassified actions, then !P satisfies CR(∼=�).

The rest of the paper is organized as follows. In Section 2, we present the Dec�-calculus, its semantics and
the type system. In Section 3, we study typed observation equivalences relative to a security level. In Section
4, we introduce the notion of �-controlled release and provide a number of characterizations based on typed
actions. In Section 5, we illustrate the expressivity of our approach through a number of examples of secure
systems. In Sections 6 and 7, we discuss some extension and related work. Section 8 concludes the paper. Two
appendixes contain the proofs omitted from the main text.

2. The Dec π -calculus

In this section, we introduce the Dec�-calculus, which extends the typed �-calculus with a construct for
declassifying actions. We presuppose a countably infinite set of names and a countably infinite set of variables
ranged over by n, .., q and by x, .., z, respectively.2 We often use a, b, c to range over both names and variables.
We also assume a complete lattice 〈�, �〉 of security annotations, ranged over by �, �, where � and ⊥ represent
the top and the bottom elements of the lattice.

The syntax of processes and types is shown in Table 1. The calculus is synchronous and monadic, and it
includes the match/mismatch operator. The choice of a synchronous model is motivated by the fact that it gives
rise to more interferences with respect to an asynchronous one. Nevertheless, our results can be adapted to
the asynchronous, polyadic calculus. For the sake of readability, we often write examples using channels that
carry (possibly empty) tuples of names. Moreover, similarly to [8], the matching construct is essential for the
coinductive characterization of the reduction barbed congruence3 introduced in Section 3. More interestingly,
the standard �-calculus is enriched with a family of declassified actions of the form dec� a(x:T) and dec� a〈b〉
with � ∈ �, which allow information to flow from a higher to a lower security level through a downgrader. The

2 We distinguish between names and variables since in a calculus with communication it is natural to handle variables as place-holders
for values. In our framework values are simply names and thus the distinction is not needed. However, we could extend the calculus by
adding basic values such as integers and boolean; in this case it would be necessary to distinguish the two categories.

3 The explanation of this point is inherently technical and outside the scope of this work. However, one can refer to Proposition 4.4
(Contextuality of LTS) in [8].

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1239

intuition is that only programmers may enable the downgrading of secret information, while external entities
cannot synchronize on declassified actions. If a is a �-level channel, then a(x:T) is a �-level read action which
is intended to be observable by users of level higher than or equal to �. On the contrary, dec� a(x:T) is an
action declassified to the lower level � which can be used by the programmer to specify an “escape hatch” for
information release, i.e., to allow information arising from this action to flow downwards up to level �. The same
holds for the write action dec� a〈b〉.

It is worth noticing that we could equivalently rely on two distinct sets of names for “declassified” and
“non-declassified” high channels. However, instead of partitioning names, we prefer to extend the syntax of the
�-calculus with an explicit dec� constructor which enhances the clarity of programs and allows programmers
to interleave declassified and non declassified actions over the same channel. Moreover, as discussed in Section
1, we use the dec� constructor to declassify actions instead of names; indeed, a process like n〈dec� m〉.P is not
admitted in the Dec�-calculus.

The input constructs a(x:T).P and dec� a(x:T).P act as binders for the variable x in P , while the restriction
(�n : T)P acts as a binder for the name n in P . We identify processes up to �-conversion. We use fn(P) and fv(P)
to denote the set of free names and free variables, respectively, in P , which are defined as in the �-calculus,
independently of the dec operator. We write P {x := n} to denote the substitution of all free occurrences of x in
P with n, and we often write a(x:T), a〈b〉 omitting trailing 0 ’s. The theory developed in this paper is concerned
with closed processes, that are processes containing no free occurrences of variables; in Section 7 we discuss how
to extend our approach also to open terms.

Types assign security levels to channels. More precisely, if � ∈ �, then �[] is the type of channels of level �
which carry no values, while �[T] is the type of channels of level � which carry values of type T . We consider
the function � associating the corresponding level to types, that is �(�[]) = � = �(�[T]).

2.1. Semantics

The operational semantics of the Dec�-calculus is given in terms of a labelled transition system (LTS) defined
over processes. The set of labels, or actions, consists of the usual input, (bound) output, internal 	 actions, and
additional actions for declassified input and (bound) output:

Actions � ::= n(m)|dec� n(m)

| n〈m〉|dec� n〈m〉
| (�m:T) n〈m〉|(�m:T)dec� n〈m〉|	

We write fn(�) and bn(�) to denote the set of free and bound names occurring in the action �, where
bn(�) = {m} if � ∈ {(�m:T) n〈m〉, (�m:T)dec� n〈m〉}, and bn(�) = ∅ otherwise. The LTS is defined by the rules in
Tables 2 and 3 where we omitted the symmetric rules for (Sum), (Par), ((Dec)Comm) and ((Dec)Close) in which
the role of the left and right components are swapped. As for the downgrading, we allow a declassified action
over a channel n to synchronize only with the corresponding declassified co-action over n. For instance, the pro-
cess h〈
〉|dec� h(x).P has no 	-reductions, whereas dec� h〈
〉|dec� h(x).P reduces to P {x :=
}. In other words,
we require that both users of a channel (the reader and the writer) agree to downgrade the communication to
the same level.

2.2. Type system

The type system of Dec� extends the basic type system of the �-calculus (see, e.g., the Base-� typed calculus
presented in [13]). The main judgments take the form � � P , where � is a type environment, that is a finite
mapping from names and variables to types. Intuitively, � � P means that the process P uses all channels as
input/output devices in accordance with their types, as given in �. Furthermore, it guarantees that an action of a
certain level can be downgraded only to a lower level. The other, auxiliary, judgments are � � a : T stating that
the name/variable a has type T in �, and � � � stating that the type environment � is well formed. The typing
rules are collected in Table 4; they are based on the type formation rules (Empty Type) and (Channel Type),
which prevent a channel of level � from carrying values of level higher than �. Type formation rules guarantee

1240 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

Table 2

Labelled Transition System for Non Declassified Actions

(Out)

n〈m〉.P n〈m〉−−→ P

(In)

n(x : T).P n(m)−−→ P {x := m}
(Mismatch)

if n = m then P else Q
	−−→ Q

n /= m

(Match)

if n = n then P else Q
	−−→ P

(Par)

P
�−−→ P ′

P |Q �−−→ P ′|Q
bn(�) ∩ fn(Q) = ∅

(Comm)

P
n〈m〉−−→ P ′ Q

n(m)−−→ Q′

P |Q 	−−→ P ′|Q′

(Res)

P
�−−→ P ′

(�n:T)P �−−→ (�n:T)P ′
n /∈ fn(�)∪bn(�)

(Rep-Act)

P
�−−→ P ′

!P �−−→ P ′|!P
(Open)

P
n〈m〉−−→ P ′

(�m:T)P (�m:T) n〈m〉−−−−−−−→ P ′
m /= n

(Close)

P
(�m:T) n〈m〉−−−−−−−→ P ′ Q

n(m)−−→ Q′

P |Q 	−−→ (�m:T)(P ′|Q′)
m /∈ fn(Q)

the absence of any explicit flow of information from a higher to a lower security level: for instance, the process
pub〈passwd〉.0 where a secret password is forwarded along a public channel, is not well-typed.

The following subject-reduction property expresses the consistency between the operational semantics and
the typing rules (see [13]).

Proposition 1 (Subjectreduction). Let P be a process and � be a type environment such that � � P. The following
properties hold.

• If P
	−−→ P ′ then � � P ′.

• If P
n(m)−−→ P ′ then � � n : �[T]; moreover if � � m : T then � � P ′.

• If P
dec� n(m)−−−−−−→ P ′ then � � n : �1[T] and � ≺ �1; moreover if � � m : T then � � P ′.

• If P
n〈m〉−−→ P ′ then � � n : �[T], � � m : T and � � P ′.

• If P
dec� n〈m〉−−−−−−→ P ′ then � � n : �1[T], � ≺ �1,� � m : T and � � P ′.

• If P
(�m:T) n〈m〉−−−−−−−→ P ′ then � � n : �[T] and �,m : T � P ′.

• If P
(�m:T)dec� n〈m〉−−−−−−−−−−→ P ′ then � � n : �1[T], � ≺ �1 and �,m : T � P ′.

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1241

Table 3

Labelled transition system for declassified actions

(Dec Out)

dec� n〈m〉.P dec� n〈m〉−−−−−−→ P

(Dec In)

dec� n(x:T).P
dec� n(m)−−−−−−→ P {x := m}

(Dec Open)

P
dec� n〈m〉−−−−−−→ P ′

(�m:T)P (�m:T)dec� n〈m〉−−−−−−−−−−→ P ′
m/=n

(Dec Comm)

P
dec� n〈m〉−−−−−−→ P ′ Q

dec� n(m)−−−−−−→ Q′

P |Q 	−−→ P ′|Q′

(Dec Close)

P
(�m:T)dec� n〈m〉−−−−−−−−−−→ P ′ Q

dec� n(m)−−−−−−→ Q′

P |Q 	−−→ (�m:T)(P ′|Q′)
m /∈ fn(Q)

Table 4

Type system

(Empty Type)

� �[]

(Channel Type)
� T

� �[T] �(T) � �

(Empty)

∅ � �

(Env a)
� � � � T
�, a : T � � a /∈ Dom (�)

(Project)
�, a : T � �
�, a : T � a : T

(Output)
� � a : �[T] � � b : T � � P

� � a〈b〉.P

(Input)
� � a : �[T] �, x:T � P

� � a(x:T).P
(Match)
� � a : �[T] � � b : �[T] � � P � � Q

� � if a = b then P else Q

(Para)
� � P � � Q
� � P |Q

(Res)
�, n : T � P
� � (�n : T)P

(Repl)
� � P
� �!P

(Dead)
� � �
� � 0

(Dec Output)
� � a〈b〉.P � � a : �1[T]

� � dec� a〈b〉.P
� ≺ �1

(Dec Input)
� � a(x:T).P � � a : �1[T]

� � dec� a(x:T).P
� ≺ �1

Proof. By induction on the depth of the derivation of P
�−−→ P ′ and a case analysis on �. �

1242 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

3. Observation equivalences for the Dec π -calculus

In this section, we introduce the notion of �-level observation equivalence and we develop an equational
theory for the Dec�-calculus which is parametric on the security level (i.e., the observation power) of exter-
nal observers. The declassification construct provided by the Dec�-calculus has no significant impact on the
equational theory developed in this section. Actually, our observation equivalences are concerned only with the
level of channels, independently of downgrading. On the contrary, declassification is the core of the controlled
information release property studied in the next section.

Our equivalences are reminiscent of the typed behavioral equivalences for the �-calculus [8,3,13], that are
equivalences indexed by a type environment � ensuring that both the observed process and the observer asso-
ciate the same security levels to the same names. Our equivalences, however, are much simpler than those in [8,
3] since we do not consider subtyping nor linearity/affinity.

A type-indexed relation over processes is a family of binary relations between processes indexed by type
environments. We write � � P R Q to mean that P and Q are well typed processes in � and they are related by
R.

To define our �-level observation equivalences, we will ask for the largest type-indexed relation over processes
which satisfies the following properties.

Reduction closure. A type-indexed relation R over processes is reduction closed if� � P RQ and P
	−→ P ′ imply

that there exists Q′ such that Q �⇒ Q′ and � � P ′ RQ′, where �⇒ denotes the reflexive and transitive closure

of
	−−→ .

�-Barb preservation. Let � ∈ �, P be a process and � a type environment such that � � P . We write � � P ↓�n
if P

n〈m〉−−→ with �(�(n)) � �. Furthermore, we write � � P ⇓�n if there exists some P ′ such that P �⇒ P ′ and
� � P ′ ↓�n . Note for instance that dec� n〈m〉.P �↓ �n independently of the typing of n. However, when n is a low
channel, the low action dec� n〈m〉 can be indirectly observed thanks to the fact that low-contexts can synchronize
on low channels, even if declassified.
A type-indexed relation R over processes is �-barb preserving if � �P RQ and � �P ↓�n imply � �Q⇓�n .

�-Contextuality. Let a context be a process with at most one hole [·]. If C[·] is a context and P is a pro-
cess, then we write C[P] for the process obtained by replacing the hole in C[·] by P . Note that variables
and names that are free in P may become bound in C[·]; thus we do not identify contexts up to renaming
of bound variables and names. A (�′/�)-context is a context C[·�] such that, when filled with a process
well typed in �, it becomes a process well typed in �′. More formally, if P is a process, � is a type en-
vironments such that � � P and C[·�] is a (�′/�)-context, then �′ � C[P]. In order to type contexts, the
type system of Table 4 is extended with the following rule:

(Ctx)

�,�′ � [·�]
We are interested in �-contexts that capture the idea of �-level observers, which cannot interact with the

observed system through actions over channels of level higher than �, even if downgraded. Therefore we let a
�-context be an evaluation context which may interact with the process filling the hole just through channels of
level at most �.

Definition 2 (�-context). Let � ∈ � and �,�′ be two type environments. A (�′/�)-context C[·�] is a �-context if
it is generated by the following grammar

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1243

Table 5

Typed LTS

(Out)
� � n : �1[T]

� � n〈m〉.P n〈m〉−−→� � � P
�1��

(In)
� � n : �1[T] � � m : T

� � n(x:T).P n(m)−−→� � � P {x := m}
�1��

(Weak)

�,m : T � P n(m)−−→� �
′ � P ′

� � P (�m:T) n(m)−−−−−−→� �
′ � P ′

(Open)

�,m:T � P n〈m〉−−→� �
′ � P ′

� � (�m:T)P (�m:T) n〈m〉−−−−−−→� �
′ � P ′

m /= n

(Red)

P
	−−→ P ′

� � P 	−−→� � � P ′

(Rep-Act)

� � P �−−→� �
′ � P ′

��!P �−−→� �
′ � P ′|!P

(Res)

�, n:T � P �−−→� �
′, n:T � P ′

� � (�n:T)P �−−→� �
′ � (�n:T)P ′

n /∈ fn(�) ∪ bn(�)

(Par)

� � P �−−→� �
′ � P ′

� � P |Q �−−→� �
′ � P ′|Q

bn(�) ∩ fn(Q) = ∅

C[·�] ::= [·�] | (�n:T)C[·�] | C[·�]|P | P |C[·�]
where P is a process such that ∀n ∈ fn(P) it holds �(�′(n)) � �.

Example 3. Consider the typing h : �[⊥[]],
 : ⊥[] and � ≺ �. The contexts (�h)(h〈
〉|[·�]) and dec�h〈
〉|[·�] are
not �-contexts since the processes h〈
〉 and dec�h〈
〉 in parallel with the hole have a free occurrence of the high
name h. On the other hand, both (�h)(h〈
〉|h(x).x〈〉)|[·�] and (�h)(dec�h〈
〉|dec�h(x).x〈〉)|[·�] are �-contexts. As
another example of �-context, let be n : �[] and � ≺ �, then dec� n〈〉|[·�] is a �-context since n is an observable
channel, even without the downgrading. This example illustrates that the notion of observation deals only with
the level of channels, independently of downgrading.

We say that a type-indexed relation R over processes is �-contextual if � � P R Q �′�C[P] R C[Q] for all
(�′/�)-�-contexts C[·�].
Definition 4 (�-Reduction barbed congruence ∼=�). Let � ∈ �. The �-reduction barbed congruence, denoted by
∼=� , is the largest type-indexed relation over processes which is symmetric, �-contextual, reduction closed and
�-barb preserving.

The following proposition is immediate.

Proposition 5. Let � ∈ �,� be a type environment and P ,Q be two processes such that � � P ,Q. If � � P∼=�Q then
� � P∼=�′Q for all �′ � �. In particular, � � P∼=�Q implies � � P∼=�Q for all � ∈ �.

1244 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

Table 6

Typed LTS

(Dec Out)
� � n : �1[T]

� � dec�2n〈m〉.P
dec�2n〈m〉
−−−−−→� � � P

�1 � �

(Dec Open)

�,m:T � P
dec�1n〈m〉

−−−−−→� �
′ � P ′

� � (�m:T)P
(�m:T)dec�1n〈m〉

−−−−−−−−−−→� �
′ � P ′

m /= n

(Dec In)
� � n : �1[T] � � m : T

� � dec�2n(x:T).P
dec�2n(m)−−−−−→� � � P {x := m}

�1 � �

(Dec Weak)

�,m : T � P
dec�1n(m)−−−−−→� �

′ � P ′

� � P
(�m:T)dec�1n(m)−−−−−−−−−−→� �

′ � P ′

3.1. A bisimulation-based proof technique

In this section, we develop a proof technique for the �-reduction barbed congruence ∼=� . More precisely,
following [14,2,8], we define an LTS of typed actions (a typed LTS) over configurations, that are pairs � � P
where � is a type environment and P is a process such that � � P .4

As in [2], actions are parameterized over security levels and take the form

� � P �−−→� �
′ � P ′

indicating that the process P in the type environment � can perform the action � to interact with some �-
level observer. In this case, we say that � is a �-level action. Moreover, given a security level � ∈ �, whenever
� � P �−→� �

′ � P ′ with � ≺ � (resp. � � �) we say that � � P has performed a �-high (resp. �-low) level action.
The rules of the typed LTS are obtained from those in Tables 2 and 3 by taking into account the type envi-

ronment �, which records the security levels of the channels used by the process. Differently from [2], our typed
actions are built around just a single type environment � constraining the observed process P . This differs from
[2] where, due to the presence of subtyping, two distinct type environments are needed, one for the observer and
the other for the observed process.

The rules of the typed LTS are reported in Tables 5 and 6; note that there are two additional input actions
(�m:T) n(m) and (�m:T)dec� n(m), occurring when the process receives a new name m generated by the environ-
ment. Indeed, in order to take the type environment of the computing context into account, one must distinguish
the case where a process inputs a name already known by the environment (for more details the reader is refered
to [8]).

4 � � P and � � P are indeed equivalent. Nevertheless, we prefer to keep the notation � � P of [8] stressing the fact that a typed action
depends on both the process and its context.

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1245

As discussed above, �-contexts cannot perform downgraded �-high actions to observe sensitive information.
Therefore, if a �-high action h〈n〉 is declassified to an observable level �, then by rule (Dec Out) the resulting
action dec� h〈n〉 is still a �-high action. In the next section we show that in our theory of controlled information
release the actual impact of downgrading is on the admissible information flows.

A precise relationship between the untyped actions and the typed ones is established in the following propo-
sition, whose proof is immediate.

Proposition 6. Let P be a process and � be a type environment such that � � P is a configuration. Then

• � � P 	−−→� � � Q iff P
	−−→ Q.

• � � P �−−→� � � P ′ with � ∈ {n〈m〉, n(m)} iff P
�−−→ P ′, m ∈ Dom (�) and �(�(n)) � �.

• � � P �−−→� � � P ′ with � ∈ {dec�1n〈m〉, dec�1n(m)} iff P
�−−→ P ′, m ∈ Dom (�) and �1 ≺ �(�(n)) � �.

• � � P (�m:T) n〈m〉−−−−−−→� �
′ � P ′ iff P

(�m:T) n〈m〉−−−−−−−→ P ′ with �(n) = �1[T] and �1 � �.

• � � P
(�m:T)dec�2n〈m〉

−−−−−−−−−−→� �
′ � P ′ iff P

(�m:T)dec�2n〈m〉
−−−−−−−−−−−→ P ′ with �(n) = �1[T] and �2 ≺ �1 � �.

• � � P (�m:T) n(m)−−−−−−→� �
′ � P ′ iff P

n(m)−−→ P ′ with �(n) = �1[T], �1 � � and m /∈ Dom (�).

• � � P
(�m:T)dec�2n(m)−−−−−−−−−−→� �

′ � P ′ iff P
dec�2n(m)−−−−−−→ P ′ with �(n) = �1[T], �2 ≺ �1 � � and m /∈ Dom (�).

The next proposition shows how the type environment is modified after the execution of an action.

Proposition 7. Let P be a process and � be a type environment such that � � P is a configuration. Whenever

� � P �−−→� �
′ � P ′ :

• if � ∈ {	, n〈m〉, n(m), dec� n〈m〉, dec� n(m)} then �′ = �.

• if � ∈ {(�m:T) n〈m〉, (�m:T) n(m), (�m:T)dec� n〈m〉, (�m:T)dec� n(m)}
then �′ = �,m:T.

Proof. The proof follows by induction on the depth of the derivation of � � P �−−→� �
′ � P ′. �

Relying on the typed LTS, we now introduce the bisimilarity on �-actions which provides a coinductive charac-
terization of the �-reduction barbed congruence ∼=� .

With an abuse of notation, we write �⇒ for the reflexive and transitive closure of
	−−→� (regardless of

the levels of the 	-transitions). We also write �=�⇒� for �⇒ �−−→� �⇒, and �̂=�⇒� for �⇒ if � = 	 and
�=�⇒� otherwise.

Definition 8 (Bisimilarity on �-actions ≈�). Let � ∈ �. Bisimilarity on �-actions is the largest symmetric relation
≈� over configurations, such that whenever (� � P) ≈� (� � Q),

• if � � P �−−→� �
′ � P ′, then there exists Q′ such that � � Q �̂=�⇒� �

′ � Q′ and (�′ � Q′) ≈� (�′ � P ′).

According to the intuition about �-level observers, we have that whenever (� � P) ≈� (� � Q), only the �-low
actions of P are matched by corresponding actions of Q (and viceversa), whereas nothing is required about the
�-high actions, even if they are declassified to an observable level lower than or equal to �. Hereafter, for a given
relation R over configurations, we write

� � P R Q whenever (� � P)R (� � Q).
The next theorem states that the bisimilarity on �-actions coincides with the �-reduction barbed congruence.

Theorem 9. Let � ∈ �,� be a type environment and P ,Q be two processes such that � � P ,Q. Then � � P∼=�Q iff
� � P ≈� Q.

1246 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

Proof. See Appendix A. �

4. Controlled information release

In this section, we introduce a notion of controlled information release for processes of the typed Dec�-
calculus which uses the �-reduction barbed congruence ∼=� as observation equivalence. This property, called
�-controlled release (written CR(∼=�)) is parametric with respect to the security level � and it is inspired by the
persistent security property DP_BNDC defined in [7] for CCS processes. In fact, as DP_BNDC, CR(∼=�) requires
that no uncontrolled information flow occurs even in the presence of active malicious processes, e.g., Trojan
Horse programs, that run at the classified (higher than �) level. Moreover, CR(∼=�) is persistent in the sense that
whenever a process is secure, then each state reachable from it is also secure.

The �-controlled release property is built upon a declassification model that allows programmers to inten-
tionally release sensitive information in a controlled way. In particular, we assume that only internal, trusted,
system components can downgrade sensitive information, while external attackers cannot enable the declas-
sification. This justifies the following formalization of attackers as �-high level source processes. We use the
following notations.

• We say that a configuration �′ � P ′ is reachable from a configuration � � P , written � � P��′ � P ′, if there
exist n ≥ 0, �1, . . . ,�n and �1, . . . , �n such that � � P �1−→�1

�2−→�2 · · · �n−→�n �
′ � P ′.

(Notice that the concept of reachability is independent from the levels �i .)
• Given a type environment �, we say that a process P is a �-high level source in �, written P ∈ H�

�, if
� � P and either � � P � �−→� (i.e., � � P does not perform any action) or if � � P �−→� �

′ � P ′ then � ∈
{n〈m〉, n(m), (�m:T) n〈m〉, (�m:T) n(m)} with � ≺ � and P ′ is a �-high level source in �′. In other words, P can
only perform non declassified, �-high level actions. Notice that this definition does not prevent a �-high
level source from communicating �-low values (along �-high channels).

• Given a security level � ∈ �, whenever � � P performs a �-high level action � � P �−→� �
′ � P ′ with � ≺ �

we write � � P �−−→� �′ � P ′ (with a superscript �). We define
�̂=�⇒� accordingly.

A process P in a type environment � satisfies the property CR(∼=�) if for every configuration �′ � P ′ reachable
from � � P and for every �-high level source H , a �-context cannot distinguish, in the sense of ∼=� , �′ � P ′ from
�′ � P ′|H . The formal definition of CR(∼=�) is as follows.

Definition 10 (�-Controlled release). Let � ∈ �, P be a process and � be a type environment such that � � P .
The process P satisfies the �-controlled release property in �, written � � P ∈CR(∼=�), if

∀ �′ � P ′ such that � � P��′ � P ′ and ∀ H ∈ H�
�′

�′�P ′∼=�P ′|H .

Example 11. Let � be the type environment h, k : �[],
 : ⊥[] and � = ⊥. In the following, when channels do
not carry values, we simply write n and n instead of n() and n〈〉.

• Let us first consider the following simple insecure process: P1 = h.
|h. To show that � � P1 �∈ CR(∼=�) it is
sufficient to consider the configuration � � P ′

1 with P ′
1 = h.
 that is reachable from � � P1 after performing

the input actionh. The processP ′
1 is clearly insecure in the type environment� since the low level, observable,

action
 directly depends on the high level output h. Indeed, by choosing H = h one can easily observe
that � � P ′

1 � ∼=�P ′
1 |H .

• The previous example shows that the process � � h.
 is not secure. However, � � dec�h.
 ∈ CR(∼=�), i.e.,
� � dec�h.
 is secure; indeed it can be proved that � � dec�h.
∼=�0 . This captures the intuition that
declassification can be enabled only by internal system components.

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1247

• Let P = h.dec�k.
. Since the action dec�k in P will never synchronize with an external context, it can be
proved that P is secure, i.e., � � P ∈ CR(∼=�).

• As a further example, P = dec�h|dec�h.
 can be easily shown to be a secure process such that � � P∼=�
.
On the other hand, P1 = k.(dec�h|dec�h.
) is not secure since the observable action
 depends on the
execution of the high action k .

• Finally, consider the following process which uses the high level channel h alternatively as a secret and a
declassified channel:
P = dec�h. h.dec�h|dec�h.
. h.dec�h.
It can be proved that P is secure.

Further examples are going to be discussed in Section 5.

4.1. Controlled release through name restriction

Interestingly, the definition of �-controlled release can be equivalently expressed in terms of bisimilarity on
�-actions over well-typed processes whose �-high level names are restricted.

Definition 12. Let � ∈ �, P be a process and � be a type environment such that � � P . We denote by (��)P the
process (�m1:T1), . . . , (�mk :Tk)P where {m1, . . . ,mk} = fn(P) and �(mi) = Ti with �(Ti) � �.

The following proposition describes some useful behavioral properties of (��)P .

Proposition 13. Let � ∈ �, P be a process and � a type environment such that � � P , then

(1) � � (��)P � �−−→� , that is � � (��)P can only perform �-low transitions
�−−→�

(2) for all �′ � Q such that � � (��)P��′ � Q, Q is of the form (��)P ′ for some process P ′, and thus �′ �
(��)P ′ �−−→�

(3) � � (��)P �−−→� �
′ � (��)P ′ iff � � P �−−→� �

′ � P ′.

Proof. The proof follows by induction on the length of the derivation � � (��)P��′ � Q and the definition of
the typed LTS given in Table 5. �
The following proposition shows that the restriction of �-high free names does not affect the bisimilarity ≈� .

Proposition 14. Let � ∈ �, P ,Q be two processes such that � � P ,Q. If � � (��)P ≈� (��)Q then � � P ≈� Q.
Proof. It is sufficient to prove that

S = {(� � P , � � Q) | � � (��)P ≈� (��)Q}

is a bisimulation on �-actions, that is S ⊆≈� , which is not difficult using Proposition 13.

The next proposition establishes a precise relation between the relations ≈� and ≈� . �
Proposition 15. Let � ∈ �, P andQ be two processes and � be a type environment such that � � P ,Q.� � P ≈� Q
iff � � (��)P ≈� (��)Q.

Proof. (⇒) By Theorem 9 we know that ≈� is a congruence with respect to �-contexts. Hence, from� � P ≈� Q
we have� � (��)P ≈� (��)Q, and we conclude observing that, by Proposition 13, (��)P , (��)Q do never perform
actions of level higher than �.

(⇐) From � � (��)P ≈� (��)Q we have � � (��)P ≈� (��)Q since, by Proposition 5 and Theorem 9, ≈�⊆
≈� , and we conclude by Proposition 14. �

1248 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

The following corollary provides a characterization of CR(∼=�) in terms of bisimilarity on �-actions and
name restriction. Such a characterization of �-controlled release is reminiscent of the noninterference BNDC
property defined by Focardi and Gorrieri in [10] for CCS processes.

Corollary 16. Let � ∈ �, P be a process and � be a type environment such that � � P. It holds that � � P ∈ CR(∼=�)
iff for all �′ � P ′ such that � � P��′ � P ′ and for all H ∈ H�

�′ it holds �′�(��)P ′ ≈� (��)(P ′|H).

4.2. Controlled release through unwinding

Building on the ideas developed by Bossi et al. [11,7] for CCS processes, possibly dealing with downgrading,
we provide a characterization of CR(∼=�) in terms of unwinding conditions. Intuitively, an unwinding condition
specifies local constraints on the transitions of the system which imply some global security property. More
precisely, our unwinding condition ensures that no �-high action leading to a configuration C is observable by
a �-low context, as there always exists a configuration C ′, �-equivalent to C , that the system may reach through
internal transitions. In order to allow intentional information flows, the unwinding condition deals only with
non declassified �-high actions, requiring that only these actions are masked by internal transitions.

Definition 17 (�-Unwinding condition). Let � ∈ �, P be a process and � be a type environment such that � � P .
The process P satisfies the �-unwinding condition in �, written � � P ∈ W(∼=�), if for all �′ � P1 such that
� � P��′ � P1

• if �′ � P1
�−−→� �′ � P2 with � ∈ {n〈m〉, n(m)}, then ∃P3 such that �′ � P1 �⇒ �′ � P3 and �′�P2∼=�P3;

• if �′ � P1
�−−→� �′,m:T � P2 with � ∈ {(�m:T) n〈m〉, (�m:T) n(m)}, then ∃P3 such that �′ � P1 �⇒ �′ � P3

and �′�P3∼=�(�m:T)P2.

This unwinding-based characterization captures the idea of security against passive attacks which try to infer
information about the classified behavior of the system just by observing its �-level behavior.

The following proposition states that both properties CR(∼=�) and W(∼=�) are persistent.

Proposition 18 (Persistence). Let � ∈ �, P be a process and � be a type environment such that � � P. For all �′ � P ′
such that � � P��′ � P ′ it holds

• if � � P ∈ CR(∼=�) then �′ � P ′ ∈ CR(∼=�).
• if � � P ∈ W(∼=�) then �′ � P ′ ∈ W(∼=�).

Proof. Immediate. �
In Theorem 21, we prove that the properties CR(∼=�) and W(∼=�) are equivalent. The proof relies on the following
notion of bisimulation up to �-contexts and up to ≈� .

Definition 19 (Bisimulation up to �-contexts and up to ≈�). A symmetric relation R over configurations is a
bisimulation up to �-contexts and up to ≈� if (� � P)R (� � Q) implies:

• if � � P �−−→� �
′ � P ′, then there exists Q′ such that � � Q �̂=�⇒� �

′ � Q′ and there are two process-
es P ′′,Q′′, a type environment �′′ and a �-context C[·�′′] with �′ � C[·�′′], such that �′�P ′ ≈� C[P ′′],
�′�Q′ ≈� C[Q′′], and (�′′ � P ′′)R (�′′ � Q′′).

Proposition 20. If R is a bisimulation up to �-contexts and up to ≈� , then R ⊆ ≈� .
Proof. See Appendix B. �
Theorem 21. Let � ∈ �, P be a process and � be a type environment such that � � P.� � P ∈ CR(∼=�) iff � � P ∈
W(∼=�).

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1249

Proof. (⇐) Given � � P ∈ W(∼=�), we prove that ∀�′ � P ′ such that � � P��′ � P ′ and ∀H ∈ H�
�′ , it holds

�′�P ′∼=�P ′|H . Let S be the symmetric closure of

{(� � P , � � P |H) | � � P ∈ W(∼=�) and H ∈ H�
� }

We prove that S is a bisimulation on �-actions up to �-contexts and up to ≈� . The thesis follows by Proposition
20, the fact that ≈� is the largest bisimulation on �-actions, and Theorem 9.

First, let be � � P �−−→� �
′ � P ′, hence � � P |H �−−→� �

′ � P ′|H by rule (Par) of LTS. Since � � P��′ � P ′,
by persistence we have �′ � P ′ ∈ W(∼=�), then we conclude since �′�P ′ ≈� P ′, �′�P ′|H ≈� P ′|H and (�′ �
C[P ′]) S (�′ � C[P ′|H]) with C[·�′] = [·�′], which is a �-context.
Assume now that � � P |H �−−→� �

′ � Q, we distinguish the following cases:

• this comes by (Par) from � � H �−−→� �
′ � H ′ and Q = P |H ′. In this case, since H ∈ H�

�, we have that
� = 	, �′ = � andH ′ ∈ H�

�′ , hence (� � P , � � P |H ′) ∈ S , and we conclude by choosing the �-context [·�].
• this comes by (Par) from � � P �−−→� �

′ � P ′ andQ = P ′|H . Since � � P��′ � P ′, by persistence we have
�′ � P ′ ∈ W(∼=�), then (�′ � P ′, �′ � P ′|H) ∈ S and we conclude by choosing the �-context [·�′].

• this comes by (Comm) from � � P n〈m〉−−→� � � P ′, � � H n(m)−−→� � � H ′ and Q = P ′|H ′. Since H ∈ H�
�, we

have that � ≺ � and H ′ ∈ H�
�. From the hypothesis � � P ∈ W(∼=�) we have that there exists P ′′ such that

� � P �⇒ � � P ′′ and� � P ′∼=�P ′′, then also� � P ′ ≈� P ′′. Now, by persistence we have� � P ′ ∈ W(∼=�),
then (� � P ′, � � P ′|H ′) ∈ S , hence ��P ′′ ≈� P ′, ��P ′|H ′ ≈� P ′|H ′ and we conclude by choosing the �-
context [·�].

• this comes by (Comm) from � � P n(m)−−→� � � P ′, � � H n〈m〉−−→� � � H ′ and Q = P ′|H ′. This case is analo-
gous to the previous one.

• this comes by (Dec Comm) from P
dec� n(m)−−−−−−→ P ′, and H

dec� n〈m〉−−−−−−→ H ′ or viceversa. This case is vacuous
since H ∈ H�

�, i.e., H cannot interact with P through downgraded actions.

• this comes by (Close) from P
(�m:T) n〈m〉−−−−−−−→ P ′, H

n(m)−−→ H ′ and Q = (�m:T)(P ′|H ′). By Propositions 6

and 7, � � P (�m:T) n〈m〉−−−−−−→� �,m:T � P ′, and � � H (�m:T) n(m)−−−−−−→� �,m:T � H ′. Since H ∈ H�
�, we have � ≺ �.

From the hypothesis that � � P ∈ W(∼=�) we have that there exists P ′′ such that � � P �⇒ � � P ′′ and
� � P ′′∼=�(�m:T)P ′, then also it holds that � � P ′′ ≈� (�m:T)P ′. From � � P��,m:T � P ′, by persistence
we have �,m:T � P ′ ∈ W(∼=�), then (�,m:T � P ′) S (�,m:T � P ′|H ′). Summing up, let C[·�] be the �-con-
text (�m:T)[·�], then we have that ��P ′′ ≈� C[P ′] and ��Q = (�m:T)(P ′|H ′) ≈� C[P ′|H ′] that is what
we need since (�,m:T � P ′) S (�,m:T � P ′|H ′).

• this comes by (Close) from P
n(m)−−→ P ′, H

(�m:T) n〈m〉−−−−−−−→ H ′ and Q = (�m:T)(P ′|H ′). This case is similar to
the previous one.

• by (Dec Close) from P
dec� n(m)−−−−−−→ P ′, and H

(�m:T)dec� n〈m〉−−−−−−−−−−→ H ′ or viceversa. This case is vacuous since
H ∈ H�

�, i.e., H cannot interact with P through downgraded actions.

(⇒) Let be � � P ∈ CR(∼=�), we prove that ∀�′ � P ′ such that � � P��′ � P ′, it holds �′ � P ′ ∈ W(∼=�).
Let �′ � P ′ �−−→� �′ � P ′′ with � ∈ {n〈m〉, n(m)}. By persistence we have �′ � P ′∼=��′ � P ′|H for all H ∈ H�

�′ .
Let H be the process n(x:T).0 (resp. n〈m〉.0) if � = n〈m〉 (resp. n(m)); then H ∈ H�

�′ . Now, observe that �′ �
P ′|H 	−−→ �′ � P ′′, then from �′ � P ′∼=��′ � P ′|H we also have �′ � P ′ �⇒ �′ � P ′′′ such that �′�P ′′∼=�P ′′′ as
desired.
Let �′ � P ′ �−−→� �′,m:T � P ′′ with � ∈ {(�m:T) n〈m〉, (�m:T) n(m)}. By persistence we have �′ � P ′∼=��′ � P ′|H
for all H ∈ H�

�′ . Let H be the process n(x:T).0 (resp. (�m:T)n〈m〉.0) if � = (�m:T) n〈m〉 (resp. (�m:T) n(m));
then H ∈ H�

�′ . Now, observe that �′ � P ′|H 	−−→ �′ � (�m:T)P ′′, then from �′ � P ′∼=��′ � P ′|H we also have
�′ � P ′ �⇒ �′ � P ′′′ such that �′�(�m:T)P ′′∼=�P ′′′ as desired. �

1250 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

4.3. Controlled release through partial equivalence relations

In [15,16] the security of sequential and multi-threaded programs is expressed in terms of partial equivalence
relations (per models, for short) which capture the view of low-level observers. Intuitively, a configuration C ,
representing a program and the current state of the memory, is secure if C ∼
 C where ∼
 is a symmetric and
transitive relation modeling the low-level observation of program executions. The relation ∼
 is in general not
reflexive, but it becomes reflexive on the set of secure configurations.

Below we show how this approach can be adapted to the Dec�-calculus to characterize the class of processes
that satisfy the �-controlled release property. We first introduce the following notion of partial bisimilarity up to
�-high actions, denoted by

.≈� . Intuitively,
.≈� requires that �-high actions are simulated by internal transitions,

while on �-low actions it behaves as ≈� . Additional constraints on declassified actions make the bisimilarity
persistent, which is essential in order to characterize the CR(∼=�) property.

Definition 22 (Partial bisimilarity up to �-high actions
.≈�). Let � ∈ �. Partial bisimilarity up to �-high actions

is the largest symmetric relation
.≈� over configurations, such that whenever � � P .≈� Q

• if � � P �−−→� �
′ � P ′, then there exists Q′ such that � � Q �̂=�⇒ �′ � Q′ with �′�Q′ .≈� P ′.

• if� � P �−−→� � � P ′ with� ∈ {n〈m〉, n(m)}, then there existsQ′ such that� � Q �⇒ � � Q′ with� � Q′ .≈�
P ′.

• if � � P �−−→� �,m : T � P ′ with � ∈ {(�m:T) n〈m〉, (�m:T) n(m)}, then there exists Q′ such that � � Q �⇒
� � Q′ with � � Q′ .≈� (�m : T)P ′ and �,m : T�P ′ .≈� P ′.

• if � � P �−−→� �′ � P ′ where � is a declassified action, i.e., � ∈ {dec� n(m), (�m:T)dec� n(m), dec� n〈m〉,
(�m:T)dec� n〈m〉}, then �′�P ′ .≈� P ′.

The relation
.≈� is a partial equivalence relation, i.e., it is not reflexive. In fact, if we consider the process

P = h〈〉.
〈〉.0 and the type environment � = h : �[],
 : ⊥[] we get � � P � .≈� P when � = ⊥.
The next theorem states that

.≈� is reflexive on the set of well typed processes which satisfy the �-controlled
release property. The proof exploits the persistence property of

.≈� described by the following lemma.

Proposition 23 (Persistence of
.≈�). Let � ∈ �, P be a process and � be a type environment such that � � P. If

� � P .≈� P , then for all �′ � P ′ such that � � P��′ � P ′, it holds �′�P ′ .≈� P ′.

Proof. See Appendix B. �
The next lemma states that partial bisimilarity up to�-high actions implies bisimilarity on�-actions, i.e.,

.≈�⊆ ≈� .
The proof is immediate.

Lemma 24. Let � ∈ �, P ,Q be two processes and � be a type environment such that � � P ,Q. If � � P .≈� Q then
� � P ≈� Q.
The next lemma states that CR(∼=�) is preserved under restriction.

Lemma 25. Let � ∈ �, P be a process and �,m : T be a type environment such that �,m : T � P. If �,m : T � P ∈
CR(∼=�) then � � (�m : T)P ∈ CR(∼=�).
Proof. See Appendix B. �
We are now in position to prove that a process P in a type environment � is secure if and only if � � P .≈� P .

Theorem 26. Let� ∈ �, P be a process and� be a type environment such that� � P.� � P ∈ CR(∼=�) iff� � P .≈� P.
Proof. By Theorem 21 it is sufficient to prove that � � P ∈ W(∼=�) iff � � P .≈� P .
(⇐) From � � P .≈� P , by Proposition 23, we have that ∀ �′ � P ′ such that � � P��′ � P ′, �′�P ′ .≈� P ′.
Let then be � � P��′ � P ′, we distinguish two cases that correspond to the definition of
� � P ∈ W(∼=�):

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1251

• �′ � P ′ �−−→� �′ � P2 with � ∈ {n〈m〉, n(m)}. Then by definition of
.≈� there exists P3 such that �′ � P ′ �⇒

�′ � P3 and �′�P3
.≈� P2. By Lemma 24 and Theorem 9, we conclude �′�P3∼=�P2.

• �′ � P ′ �−−→� �′,m:T � P2 with � ∈ {(�m:T) n〈m〉, (�m:T) n(m)}. Then by definition of
.≈� , there exists a

process P3 such that �′ � P ′ �⇒ �′ � P3 and �′�P3
.≈� (�m:T)P2. By Lemma 24 and Theorem 9, we con-

clude �′�P3∼=�(�m:T)P2.

(⇒) Consider the following binary relation:

S = {(� � P , � � Q) | � � P ∈ W(∼=�), � � Q ∈ W(∼=�) and � � P ≈� Q }

by Theorem 21 and the fact that ≈� is reflexive, it is sufficient to prove that S is a partial bisimulation up to
�-high actions. Let us distinguish the following cases:

• � � P �−−→� �
′ � P ′. Fromthehypothesis� � P ≈� Qwehave that there existsQ′ such that� � Q �̂=�⇒�

� �′Q′ with �′�P ′ ≈� Q′. By Proposition 18 we have �′ � P ′ ∈ W(∼=�) and �′ � Q′ ∈ W(∼=�), hence, by
definition of S , (�′ � P ′, �′ � Q′) ∈ S as desired.

• � � P �−−→� � � P ′ with � ∈ {n〈m〉, n(m)}. From the hypothesis � � P ∈ W(∼=�), we have that there exists
P ′′ such that � � P �⇒ � � P ′′ and � � P ′∼=�P ′′, hence � � P ′ ≈� P ′′ by Theorem 9. Now, from � � P ≈�
Q, we have that there existsQ′ such that � � Q �⇒ � � Q′ and � � Q′ ≈� P ′′, then also � � P ′ ≈� Q′. By
Proposition 18 we have� � P ′ ∈ W(∼=�)and� � Q′ ∈ W(∼=�), hence, by definition ofS , (� � P ′, � � Q′) ∈ S
as desired.

• � � P �−−→� �,m:T � P ′ with � ∈ {(�m:T) n〈m〉, (�m:T) n(m)}. From the hypothesis � � P ∈ W(∼=�), we
have that there exists P ′′ such that � � P �⇒ � � P ′′ and � � (�m:T)P ′∼=�P ′′, hence � � (�m:T)P ′ ≈�
P ′′ by Theorem 9. Now, from � � P ≈� Q, we have that there exists Q′ such that � � Q �⇒ � � Q′
and � � Q′ ≈� P ′′, then also � � (�m:T)P ′ ≈� Q′. By Proposition 18, Theorem 21 and Lemma 25, we
have � � (�m:T)P ′ ∈ W(∼=�) and � � Q′ ∈ W(∼=�), hence, by definition of S , (� � (�m:T)P ′, � � Q′) ∈ S .
To conclude we also need (�,m:T � P ′, �,m:T � P ′) ∈ S , which comes from �,m:T � P ′ ∈ W(∼=�) and
�,m:T�P ′ ≈� P ′.

• � � P �−−→� �′ � P ′ where � is a declassified action.From the hypothesis � � P ∈ W(∼=�), by Proposition
18 we have �′ � P ′ ∈ W(∼=�). Now, since �′ � P ′ ≈� P ′, we conclude (�′ � P ′, �′ � P ′) ∈ S as desired. �

Corollary 27. Let � ∈ �, P be a process and � be a type environment such that � � P and ∀n ∈ fn(P),�(�(n)) � �

(i.e., P has no free �-high level names). Then � � P ∈ CR(∼=�).

Proof. The fact that the process P has no free �-high level names implies that � � P � �−−→� . From this fact,
together with � � P ≈� P , we have that � � P .≈� P , and we conclude by Theorem 26. �

Notice that a process whose free names have a security level higher than � is, in general, not secure.
For instance, let � be the type environment h : �[⊥[]],
 : ⊥[] and P be the process h(x : ⊥[]).x〈〉. As-
suming that � ≺ �, we have that the only free name h occurring in P has a security level higher than
�. It is easy to see that � � P �∈ CR(∼=�): in fact, by choosing H = h〈
〉, we have � � P � ∼=�P |H , that is P
is insecure.

The characterizations of �-controlled release presented above provide a better understanding of the operational
semantics of secure processes. Moreover, they allow one to define efficient proof techniques for �-controlled
release just by inspecting the typed LTS of processes.

Notice that, as in the case of standard bisimilarity, even if the LTS’s are not finite, our property is decidable for
the recursion-free calculus and even for the finite-control �-calculus where the number of parallel components
in any process is bounded by a constant.

1252 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

4.4. Compositionality of controlled information release

In this section, we prove some compositionality results of the controlled release property defined above. Such
results are useful to define methods, e.g., a proof system, both to check the security of complex systems and to
incrementally build processes which are secure by construction.

The next technical lemma is useful to reason on the derivatives of � � P |Q and � � P .

Lemma 28. Let P ,Q,R be processes and � and �′ be type environments.

(1) Let � � P |Q��′ � R, then R = (� n1 : T1, . . . , nk : Tk)(P ′|Q′) for some k such that k ≥ 0, � � P��1 � P ′ and
� � Q��2 � Q′ with �i ⊆ �′, n1 : T1, . . . , nk : Tk for i = 1, 2.

(2) Let ��!P��′ � R, then R = (� n1 : T1, . . . , nk : Tk)(P1| · · · |Ps|!P) for some k , s such that k , s ≥ 0 and � �
P��i � Pi with �i ⊆ �′, n1 : T1, . . . , nk : Tk for i = 1, . . . , s.

Proof. See Appendix B. �
We say that two processes P andQ do not synchronize on declassified actions if for all R such that� � P |Q��′ � R
and R = (� n1:T1, . . . , nk :Tk)(P ′|Q′) it holds that �′ � R � 	−−→ using the rules (Dec Comm) and (Dec Close) of
Table 3 applied to P ′ and Q′. Notice that in this case also P ′ and Q′ do not synchronize on declassified actions,
i.e., this property is preserved on derivatives.

Theorem 29 (Compositionality of CR(∼=�)). Let � ∈ �, P and Q be two processes and � be a type environment
such that � � P ,Q. If � � P ∈ CR(∼=�) and � � Q ∈ CR(∼=�) then

(1) �′ � a〈b〉.P ∈ CR(∼=�) where �′ = � ∪ {a : �[T]} ∪ {b : T } and � � �;
(2) �′ � a(x:T).P ∈ CR(∼=�) where �′ = � ∪ {a : �[T]} and � � �;
(3) �′ � if a = b then P else Q ∈ CR(∼=�) where �′ = � ∪ {a : T } ∪ {b : T };
(4) � � P |Q ∈ CR(∼=�) whenever P and Q do not synchronize on declassified actions.
(5) �′ � (�n : T)P ∈ CR(∼=�) where � = �′, n : T ;
(6) �� !P ∈ CR(∼=�) whenever P does not syntactically contain declassified actions.

Proof. See Appendix B. �
Example 30. Let P and Q be finite state processes and � be a type environment such that � � P ,Q. Even if
R =!P |Q might be an infinite state process, we can easily check whether � � R ∈ CR(∼=�) just by exploiting the
decidability of � � P ∈ CR(∼=�) and � � Q ∈ CR(∼=�) and the compositionality of CR(∼=�) with respect to the
parallel composition and replication operators.

5. Examples

In this section,weshowacoupleof examples that illustrate theexpressivenessofourapproach. In the following,
we use a CCS-style for channels that do not carry values, writing simply n and n instead of n() and n〈〉.
Example 31. Consider the process P = (�h:H[])(h|! h.k.h)|k.
 in the type environment � = k : H[],
 : L[]. Even
if in P the low action
 depends on the high action k , we can prove that P is secure by showing that � � P .≈� P .
Indeed, let S be the symmetric closure of the following relation:

{ (P , P), (P1, P1), (P2, P2), (P3, P3), (P4, P4), (P , P1), (P3, P4), (P2, P5) }
where

P1 = (�h)(k.h|! h.k.h)|k.
 P4 = (�h)(k.h|! h.k.h)
P2 = (�h)(h|! h.k.h)|
 P5 = (�h)(k.h|! h.k.h)|

P3 = (�h)(h|! h.k.h)

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1253

It is straightforward to prove that S is a bisimulation up to high actions, i.e., S ⊆ .≈� .

Example 32. Consider the insecure process

P = h(x:T). if x = n then
1〈〉 else
2〈〉 | h〈n〉 | h〈m〉
in the type environment � = h : H[T], n : T ,
i : L[] for i = 1, 2 (here the security level of n is irrelevant), where
the variable x can be nondeterministically substituted either with n or not. P is an insecure process since an
external attacker can destroy the nondeterminism causing an interference: to prove that � � P /∈ CR(∼=�), let
H = h(y).h(z).h〈n〉, then ��P � ∼=�P |H .

Anyway, it might be the case that a programmer wants to allow the flow of information resulting from a test
over the value communicated along a secret channel. In this case he simply has to declassify the communication
on the channel h, obtaining for instance the following process, which can be proved to be secure:

P ′ = dec�h(x:T). if x = n then
1〈〉 else
2〈〉 | dec�h〈n〉 | dec�h〈m〉
Notice that this does not prevent the channel h to be later used without declassification. For instance, let passwd
be a sensitive value which should not be tested at low level, then the process P ′ can safely run in parallel with a
thread h〈passwd〉|h(x:T).Q, which will not be involved in the declassification.

Example 33 (Job scheduler). Assume that there are n jobs P1, . . . , Pn whose execution must be scheduled. We
implement the scheduler as the parallel composition of two threads: the first one produces a numbered token,
assigns it to the next job and increments the counter. The second thread consumes a token from a job, checking
if it corresponds to the next scheduled number. In case of matching, the consumer acknowledges the job to start
its execution, waiting for its end to increment the internal counter. Let be

Scheduler = Producer|Consumer

where, with an abuse of notation, we use natural numbers as channels:

Producer = (�p :T)(p〈1〉|! p(x:T ′).enqueue(y:T ′′).(y〈x〉|p〈x + 1〉))
Consumer = (�c:T)(c〈1〉|! c(x:T ′).check(y:T ′).

if x = y then (y〈ok〉|ack.c〈x + 1〉) else (y〈no〉|c〈x〉))
where the channels enqueue and check are used by jobs respectively to get a token and to exhibit it to the
scheduler. Jobs are then written as follows5 :

Jobi = (�j:T ′′)(enqueue〈j〉.j(x:T ′).
(�l:L[])(l|! l.check〈x〉.x(y:L[]).if y = ok then Pi.ack else l))

First, a job asks for a token and waits for it along the private channel j. The job then starts a loop where it
repeatedly exhibits the token to the scheduler, waiting for its turn to be executed. The loop ends when the job
receives the ok message, so that it can run the process P , and signal its end using the ack channel.

The system scheduler, |Job1|, · · · |Jobn can be proved to be secure if we rely on the following type assignment,
where the two private channels c and p are high-level, while tokens are low level value (of suitable arity), and
the channels enqueue and check are low level as well.

c, p : T , enqueue : L[T ′′], check : T ′′, 1, 2, ... : T ′, ok, no, ack : L[]
where T = H[T ′] T ′′ = L[T ′] T ′ = L[L[]]

The fact that the system is secure comes easily by Corollary 27 since there are no free high level names.

5 With an abuse of notation we write Pi.ack; this can be rewritten using the correct syntax of the �-calculus assuming that every job signals
its termination.

1254 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

Example 34. A final example shows the use of downgrading to enhance the flexibility of secure programs.
Consider the following lattice of security levels:

H = Top Secret
|

� = Protected
|

L = Public

where L ≺ � ≺ H. We write a simple protocol where a server checks the client’s password. The protocol is built
upon the following channels, where we assume that Bool is the type of a public boolean value:

check : �[�[], �[]] carries the client’s id together with the inserted password
ack : L[Bool] acknowledges the result of the check
trans : H[Bool] forwards the result of the check

As detailed below, a client simply sends his id together with a password and waits for an acknowledgment. The
server spawns an instance of the (replicated) checker process, which matches the received password y against
the expected password which is stored in the system database as the image I(x) of client’s id. The result of this
matching is transmitted twice along a secret channel trans. The first, declassified, communication along trans
causes the sending of the acknowledgment back to the client, then the second secret communication along trans
controls the reconfiguration of the server which either restarts or enters a new, not specified, high-level state
Alert.

Client = check〈id, pwd〉.ack(x).P

Checker = (�n:�[]) (n〈〉
|!n().check(x, y).dec�trans〈y = I(x)〉.trans〈y = I(x)〉
|!dec�trans(z).ack〈z〉
|!trans(z).if z then n〈〉 else Alert)

We can prove that the process Client|Checker satisfies the controlled information release property with respect
to the observable level �.

6. Discussion

The theory developed in this paper applies to closed processes and does not explicitly consider recursive
types. In this section we discuss a couple of extensions, dealing with open terms and recursive types.

6.1. Open terms

When modeling reactive systems, that is, concurrent systems with interacting subsystems, it is useful to reason
on open terms, that is, processes which are only partially specified. In this paper we considered closed processes
only, however, our theory scales to open terms as described below.

• First introduce the open extension of ∼=� as the type-indexed relation ∼=o� over terms such that ��T ∼=o� U
if and only if �′�T� ∼=� U� for all closing substitution � which respects6 � with �′, and then

• say that a term T satisfies the �-controlled release property in �, written � � T ∈ CR(∼=o�), if for all closing
substitution � which respects � with �′, �′ � T� ∈ CR(∼=�).

In this way, we obtain that if � � T ∈ CR(∼=o�) then for all H ∈ H�
�′ , it holds ��T∼=o�T |H .

6 We say that � = {x1 := m1, . . . , xn := mn} is a substitution which respects � with �′ if � = �, x1:T1, . . . , xn:Tn and there exists�′ such that
�′ = �,�′ and �′ � mi : Ti for i = 1, . . . , n.

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1255

6.2. Recursive types

Recursive types are ubiquitous in modern programming languages, as they occur when typing constructs
such as datatype definitions.

Our theory smoothly scales to the �-calculus extended with recursive types, the main changes being in
the type system’s rules for type and environment formation. In the following we present the new rules, to-
gether with the generalization of the function � which assigns a level to each type. Moreover, we illustrate
that none of the results and theorems presented in the paper are affected by the presence of recursive types.
This is due to the fact that we assume type equality up to unfolding of recursive types and we assume that
the types assigned to names have no free type variables. We show that these two assumptions are suffi-
cient to state that all the results presented in the paper remain unchanged also in the presence of recursive
types.

In the Dec�-calculus with recursive types the syntax of types becomes the following:

T ::= X | X.�[T] | �[] | �[T]
where X is a type variable and is the recursion operator. As an example, in this calculus the process a〈a〉 can
be typed assuming for the name a the recursive type X.�[X].

As stated above, in the following

(∗) we assume type equality up to renaming of bound type variables and up to unfolding of recursive types
(i.e., X.�[T] = �[T {X := X.�[T]}]), and

(∗∗) we assume that in processes and type judgments the types assigned to names have no free (type) variables,
i.e., they are closed types.

We are going to illustrate that, thanks to these assumptions, the results of Section 3 and 4 smoothly scale to
the case of recursive types.

The type system with recursive types First, we have to extend type environments to let them list both (free) type
variables and type assignments to names. Type environments are now generated by the following
grammar:

� ::= ∅ | �,X | �, a : T
We also generalize to recursive types the level function � that associates to types the corresponding level.

In order to deal with type variables, the level function � must depend on an environment �, that is a function
from type variables to security levels in �:

��(�[]) = ��(�[T]) = ��(X.�[T]) = �

��(X) = �(X)

The environment � is needed in the rules for type formation only as illustrated below.
The type judgments used in the type system are of the following forms:

� �� T the type T is well formed in �

� � � the type environment � is well formed

� � a : T the name/variable a has type T in �

� � P the process P is well typed in �

Notice that only the judgment for type formation depends on the function �. This comes from the fact that
well formed types ensure that a channel of level � carries values of level lower or equal than �, hence the rules
of type formation depend on the (generalized) level function�� defined above. The rules for well formed types
are in the following:

1256 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

(WF Type Var)
� � �
� �� X

X ∈ �
(WF Empty Ch Type)
� � �
� �� �[]

(WF Ch Type)
� �� T
� �� �[T]

��(T) � �

(WF Ch Rec Type)
�,X ��∪{X→�} T

� �� X.�[T]
��∪{X→�}(T) � �

Type formation rules are used in the following rules for well formed type environments. In particular, the
second premise of rule (Name Var) states that well formed environments associate (well formed) closed types to
names and variables. As a consequence, in every derivable judgment of the form � � a : T , the type T is closed,
according to our assumption (∗∗).

(Empty)

∅ � �

(Type Var)
� � �
�,X � � X /∈ Dom (�)

(Name Var)
� � � ∅ �∅ T

�, a : T � � a /∈ Dom (�)

The remaining rules of the type system, that is the rules for the judgments � � a : T and � � P , are identical
to those in Section 2 (Table 4). It is worth noticing that the presence of recursive types does not affect the
typing rules. For instance, if the name a has a recursive type X.�[T] in �, then, whenever a judgment of the
form � � a : �[T] is needed in the premise of a rule (e.g., in rule (Output)), such a judgment is derivable by
the type equality up to unfolding that we assumed above (*), i.e., by the assumption that X.�[T] = �[T {X :=
X.�[T]}].

For the same reason, the Subject Reduction property is the same as in Section 2, and the typed LTS for
the calculus with recursive types is identical to that in Section 3. Furthermore, the notation �(�(n)) we used
throughout the paper can be safely thought of as�∅(�(n)) thanks to the assumption (**) about closed channel
types. For these reasons the results about observation equivalence and controlled release developed in Section
3 and Section 4 need not to be modified by the presence of recursive types.

6.3. Encoding of Dec� into �-calculus

It is worth noticing that the Dec�-calculus is a smooth extension of the �-calculus. Indeed, it can be encoded
into the standard �-calculus by simulating a declassified communication along h with a synchronization along
a fresh (session) channel h′, as exemplified by the following:

{| dec h〈m〉.P |dec h(x).Q |} = (�h′)(D〈h′〉.h′〈m〉.{| P |})|D(w).w(x).{|Q |}
where a specific name D is used as a port to transmit the name of the private session-channel used for the

declassified communication.
A ∼=�-preserving encoding of the Dec� into the �-calculus can then be defined along the lines of the previous

intuition, taking special care in handling the typing of encoded processes and the level of the downgrading
constructs. The notion of Noninterference for the �-calculus has been studied in [17], together with the corre-
sponding proof techniques based on name restriction, unwinding and per-models; it is then interesting to rely
on the previous encoding to compare Controlled Release and Noninterference.

Let P be a Dec�-process such that P ∈ CR(∼=�), then a declassified action performed by P is encoded
into a high action performed by {| P |} along the port D. According to [17], in the �-calculus a nonin-
terferent process is such that every high action is matched by a number of unobservable-	-steps, which
is not in general the case of {| P |}. In other words, if P ∈ CR(∼=�) then in general {| P |} is not interfer-
ence-free. This fact shows that in order to implement a downgrading mechanism in the �-calculus, it is
not sufficient to communicate using private names, but there must be also a mean to specify a set of
admissible information flows. The Dec�-calculus we propose uses the new construct dec to identify the

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1257

actions that determine an admissible flow, and studies a security property that precisely allows only the
intended information flows.

7. Related work

In the context of process calculi, the problem of detecting only uncontrolled information flows has
been studied for CSP and CCS, see, e.g., [7,18–21]. The work which is most related to ours is [7] by
Bossi, Piazza and the second author. They propose a general unwinding framework for formalizing
different noninterference properties of CCS processes permitting downgrading. Their calculus is not ex-
tended with any particular declassification operator but instead a distinct set D of downgrading actions
is considered.

As for the �-calculus, the only work we are aware of dealing with a form of downgrading is a recent work
by Gordon and Jeffrey about conditional secrecy [22]. They propose a system of secrecy types for the �-calcu-
lus which supports multiple, dynamically generated security levels, together with the controlled downgrading
of security levels. Differently from our approach, their system downgrades names instead of actions and is
based on trace semantics. Furthermore, their security notion deals with direct flows only and does not address
implicit flows nor noninterference. On the other hand, there exist a number of works about noninterference
in the �-calculus. Hennessy and Riely [23,2] consider a typed version of the asynchronous �-calculus where
types associate read/write capabilities to channels as well as security clearances. They study noninterference
properties based on may and must equivalences. Honda, Yoshida and Vasconcelos [3,4] consider advanced
type systems for processes of the linear/affine �-calculus where each action type is associated to a secrecy level.
Their noninterference results are expressed in terms of typed bisimulation equivalences. In [6] Pottier develops a
type theory which is, roughly, as expressive as the one of Hennessy and Riely [23] and proves a noninterference
result based on bisimulation equivalence. Kobayashi in [5] proposes a refinement of a previous type system
for deadlock/livelock-freedom and shows that well-typed processes enjoy a bisimulation-based noninterference
property.

In all these works types play an essential role in the proof of noninterference: the security of pro-
cesses is ensured by the strong constraints imposed by the type systems. On the contrary, our approach
relies on a much simpler typing discipline. Indeed, our type system does not deal with implicit infor-
mation flow. Instead, we characterize security in terms of the actions that may be performed by typed
processes.

In order to illustrate the difference between our approach and those discussed above, consider the pro-
cess P = (�h:H[])(h|! (h.(k|h))|k.
). We can prove that P satisfies the controlled release property. However
it cannot be deemed secure by using the type systems in the above mentioned works. The problem comes
from the insecure subterm k.
 where an observable action depends on a high one. One might think that our
approach is more general than the others, but it is not the case. For instance, the process ! h(x:T).
〈x〉 is
always insecure in our framework, whereas using the type system of [4] one can find a linear/affine typing
which deems it secure.

The type-based proof techniques for noninterference appearing in the literature are often associated
with subtyping. Subtyping is typically used to increase the flexibility by allowing more system interac-
tions. In this paper we do not deal with subtyping. However, we could extend our approach with a form
of subtyping to safely increase the secure upward information flows permitted in the Dec�-calculus.
This could be done by introducing a subtyping relation that allows a channel type �1[T] (resp. �1[]) to
be suptype of �2[T] (resp. �2[]) when �1 � �2. This form of subtyping would allow a low level channel to
be used in a place where a high level channel is expected, e.g., h(x : �[]).P |h〈
〉 where h : �[�[]],
 : ⊥[].
Clearly, adding this subtyping relation would complicate the observation equivalence of the Dec�-cal-
culus since, as explained in [8], typed actions would require reasoning about two different type envi-
ronments, one to type the observer and another one to type the observed process. We argue that our
approach could be extended with subtyping along the lines of [8]. We plan to investigate this topic for
future work.

1258 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

8. Conclusions

In this paper, we develop a theory of controlled information release for processes of the Dec�-calculus,
which is an extension of the �-calculus with a construct intended to be used by programmers for declassifying
information from a higher to a lower security level.

In [1] Sabelfeld and Sands suggest some principles which are intended to guide the definition of satisfactory
security policies for systems admitting declassification mechanisms. We conclude the paper with a discussion
showing that our notion of controlled information release satisfies the principles of semantic consistency, con-
servativity, monotonicity of release, and non-occlusion.

The semantic consistency principle is useful for modular design of secure complex systems. It allows one to
replace part of a system with a semantically equivalent process provided that it does not perform any declassi-
fication operation. More precisely, the semantic consistency principle states that “the (in)security of a program
is invariant under semantics-preserving transformations of declassification-free subprograms”. In the case of
controlled information release, we can prove that if P , Q and R are processes and � is a type environment such
that� � P ,Q,R and neitherQ orR contain any declassified action then the following holds: whenever� � Q∼=�R
and � � P |Q ∈ CR(∼=�) then also � � P |R ∈ CR(∼=�).

The conservativity principle deals with the natural intuition that a notion of security in the presence of down-
grading should be a conservative extension of a security definition for a language without downgrading. It simply
states that “the security for programs with no declassification is equivalent to noninterference”. In other words,
it requires that processes without declassified actions satisfy a strong noninterference property that forbids any
secret leaks. It is straightforward to show that our notion of controlled information release satisfies this principle.
Indeed, we can immediately prove that if P is a Dec�-process and � is a type environment such that � � P
and P does not syntactically contain any declassified action then � � P ∈ CR(∼=�) if and only if � � P ∈ N I (∼=�)
where N I (∼=�) is the strong noninterference property for processes of the �-calculus presented by the authors
in [17].

The principle named monotonicity of release says that “adding further declassifications to a secure program
cannot render it insecure, or, equivalently, an insecure program cannot be made secure by removing declas-
sification annotations”. Also this principle is easy to check for controlled information release just by looking
at its unwinding characterization. Monotonicity comes from the fact that adding a declassification reduces the
number of high actions and then the checks required by the unwinding condition.

Finally, the non-occlusion principle is intended to prevent the risk of laundering secrets not intended for
declassification. It formally states that “the presence of a declassification operation cannot mask other covert
information leaks”. In our framework, where we do not declassify expressions and an information is just the
fact that an action has occurred, this principle simply requires that a low level observer cannot infer any non
declassified sensitive information, which is exactly our controlled information release property.

Acknowledgments

Thanks are due to Nobuko Yoshida for the useful discussions on noninterference in the linear/affine �-cal-
culus.

Appendix

A. Proofs omitted from Section 3

In the following we write � �� P to state that � � P and P is a process of level at most � in �, i.e., ∀n ∈ fn(P),
�(�(n)) � �. Similarly, we write �′ �� C[·�] to state that C[·�′] is a (�′/�)-�-context.

We start with Propositions 36, 37, 38 proving that ≈� is an equivalence relation such that ≈� ⊆ ∼=� . The
next lemma is used in the proof of Proposition 36.

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1259

Lemma 35. Let � ∈ �,R be a process and � be a type environment such that � �� R and � � R �−→� �
′ � R′. Then

�′ �� R′.

Proof. Immediate. �
Proposition 36. Let � ∈ �. ≈� is a congruence with respect to �-contexts.

Proof. The proof that ≈� is an equivalence relation is standard.
We prove that ≈� is preserved by all �-contexts. We consider all the constructs simultaneously: let S be a

binary relation such that

• ≈� ⊆ S
• � � P S Q implies �,�′�(P |R) S (Q|R) for every process R such that �,�′ �� R.
• � � P S Q implies �′�(�n:T)P S (�n:T)Q where � = �′, n : T .

We show that S is a bisimulation on �-actions, hence S ⊆ ≈� . The proof is by induction on the formation
of S .

• The case where � � P S Q comes from � � P ≈� Q is trivial.

• Let �,�′�(P |R) S (Q|R) with � � P S Q and �,�′ �� R. Assume �,�′ � P |R �−−→� �
′′ � P ′, this comes

from one of following cases:

. �,�′ � P �−−→� �
′′ � P ′′, bn(�) ∩ fn(R) = ∅ and P ′ = P ′′|R. From � � P S Q, by inductive hypoth-

esis we have that ∃Q′ such that �,�′ � Q �̂=�⇒� �
′′ � Q′ and �′′�P ′′ S Q′. Then by rule (Par) of

the LTS, �,�′ � Q|R �̂=�⇒� �
′′ � Q′|R. Now, from �′′�P ′′ S Q′ by definition of S and the fact that

�′′ �� R we conclude �′′�(P ′′|R) S (Q′|R) as desired.

. �,�′ � R �−−→� �
′′ � R′ and P ′ = P |R′. By (Par) we have �,�′ � Q|R �−−→� �

′′ � Q|R′. By Lemma
35 we know that �′′ �� R′, then from � � P S Q we conclude �′′�P |R′ S Q|R′ as desired.

. � = 	, P
n〈m〉−−→ P ′′, R

n(m)−−→ R′ and P ′ = P ′′|R′. By Proposition 6 we have �,�′ � P n〈m〉−−→� �,�′ �
P ′′, and �,�′ � R n(m)−−→� �,�′ � R′ with �(�,�′(n)) � �. From �,�′ �� R, we have �(�,�′(n)) � �,
then we can choose � = �. Now, from � � P S Q, by inductive hypothesis we have that �,�′ �
Q

n〈m〉=�⇒� �,�′ � Q′ with �,�′�P ′′ S Q′. By rules (Comm) and (Par) of the LTS we have �,�′ �
Q|R �⇒ �,�′ � Q′|R′. From �,�′�P ′′ S Q′, by definition of S and Lemma 35 we conclude
�,�′�(P ′′|R′) S (Q′|R′).

. � = 	, R
n〈m〉−−→ R′′, P

n(m)−−→ P ′′. This case is analogous to the previous one.

. � = 	, R
dec�1n〈m〉

−−−−−−→ R′′, P
dec�1n(m)−−−−−−→ P ′′. By Proposition 6 we have that �,�′ � R

dec�1n〈m〉
−−−−−→� �,�′ �

R′′, and�,�′ � P
dec�1n(m)−−−−−→� �,�′ � P ′′ with �1 ≺ �(�,�′(n)) � �. From�,�′ �� R,wehave�(�,�′(n))

� �, then we can choose � = � and we conclude similarly to the previous case. The symmetric case
is similar.

. � = 	, �,�′ � P |R 	−→� �,�′ � (�m:T)(P ′|R′) since P
(�m:T) n〈m〉−−−−−−−→ P ′ and R

n(m)−−→ R′ with m /= fn(R).

By Propositions 6 and 7 we have�,�′ � P (�m:T) n〈m〉−−−−−−→� �,�′,m:T � P ′ and�,�′ � R (�m:T) n(m)−−−−−−→� �,�′,
m:T � R′ with �,�′(n) = �1[T] and �1 � �. From �,�′ �� R, we have �(�,�′(n)) � �, then we can
choose � = �. Now, from � � P S Q, by inductive hypothesis we have that �,�′ � Q �⇒ �,�′ �
Q1

(�m:T) n〈m〉−−−−−−→� �,�′,m:T � Q2 �⇒ �,�′,m:T � Q′ with �,�′,m:T�P ′ S Q′. Then we also have �,�′ �
Q|R �⇒ �,�′ � Q1|R 	−→ �,�′ � (�m:T)(Q2|R′) �⇒ �,�′ � (�m:T)(Q′|R′). From �,�′,m:T�P ′ S Q′,
by definition of S and Lemma 35 we conclude �,�′�(�m:T)(P ′|R′) S (�m:T)(Q′|R′). The symmetric
case is similar.

1260 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

. � = 	,�,�′ � P |R 	−→� �,�′ � (�m:T)(P ′|R′) sinceP
(�m:T)dec�1n〈m〉
−−−−−−−−−−→ P ′ andR

dec�1n(m)−−−−−−→ R′ withm /=
fn(R). By Propositions 6 and 7 we have �,�′ � P

(�m:T)dec�1n〈m〉
−−−−−−−−−−→� �,�′,m:T � P ′ and �,�′ � R

(�m:T)dec�1n(m)−−−−−−−−−−→� �,�′,m:T � R′ with �,�′(n) = �1[T] and �1 ≺ �1 � �. From �,�′ �� R, we have
�(�,�′(n)) � �, then we can choose � = � and we conclude as in the previous case. The symmetric
case is similar.

• Let�′�(�n:T)P S (�n:T)Qwith� � P S Q and� = �′, n:T . Assume�′ � (�n:T)P �−−→� �′′ � P ′, this comes
from one of the following cases:

. � = (�n:T) p〈n〉 and �′ � (�n:T)P (�n:T) p〈n〉−−−−−→� �
′, n:T � P ′, with �′, n:T � P p〈n〉−−→� �′, n:T � P ′. By in-

ductive hypothesis we have �′, n:T � Q p〈n〉=�⇒� �′, n:T � Q′ with �′, n:T�P ′ S Q′. We conclude �′ �
(�n:T)Q (�n:T) p〈n〉====�⇒� �′, n:T � Q′ by an application of the rule (Open).

. � = (�n:T)dec� p〈n〉 and �′ � (�n:T)P �−−→� �
′, n:T � P ′, which comes from �′,

n:T � P dec� p〈n〉−−−−→� �
′, n:T � P ′. From the hypothesis that �′ � (�n:T)P we have that � ≺ �. By in-

ductive hypothesis we have that �′, n:T � Q dec� p〈n〉====�⇒� �′, n:T � Q′ with �′, n:T�P ′ S Q′. We can

then conclude �′ � (�n:T)Q (�n:T)dec� p〈n〉========�⇒� �′, n:T � Q′ by an application of the rule (Dec Open).

. �′ � (�n:T)P �−−→� �
′′ � (�n:T)P ′, with�′, n:T � P �−−→� �

′′, n:T � P ′ and n /∈ fn(�) ∪ bn(�). By in-

ductivehypothesis�′, n:T � Q �̂=�⇒��
′′, n:T � Q′ with�′′, n:T�P ′ SQ′. Thenalso�′ � (�n:T)Q �̂=�⇒�

�′′ � (�n:T)Q′ by an application of the rule (Res) of the LTS, and we can conclude�′′�(�n:T)P ′ S (�n:T)
Q′ by definition of S and by �′′, n:T�P ′ S Q′. �

Proposition 37. Let � ∈ �. ≈� is reduction closed.

Proof. Let P ,Q be processes such that � � P ≈� Q and P
	−→ P ′. Then by rule (Red) of the LTS, � � P 	−→�

� � P ′. By definition of ≈� , � � Q �⇒ � � Q′ and � � P ′ ≈� Q′ as desired. �
Proposition 38. Let � ∈ �. ≈� is �-barb preserving.

Proof. Let P ,Q be processes such that � � P ≈� Q and � � P ↓�n , that is P
n〈m〉−−→ P ′. In this case, by Proposi-

tion 6 and the hypothesis �(�(n)) � �, we have � � P n〈m〉−−→� � � P ′. Now, by definition of ≈� we also have

� � Q n〈m〉=�⇒� � � Q′, then � � Q⇓�n as desired. �
Proposition 41 proves that ∼=� ⊆ ≈� , using the following Lemma 39 and 40.

Lemma 39. If �,ω:�[]�(ω〈〉 | P)∼=�(ω〈〉 |Q) with ω fresh in P ,Q, then � � P∼=�Q.
Proof. It is sufficient to prove that the following relation

R = {(� � P , � � Q) | �,ω:�[]�P |ω〈〉 ∼=� Q|ω〈〉 ω /∈ fn(P) ∪ fn(Q)}
is reduction closed, �-barb preserving and �-contextual. See [8] for details. �
Lemma 40. If �,ω:�[T]�(�m:T)(P |ω〈m〉)∼=�(�m:T)(Q|ω〈m〉) with ω fresh in P ,Q, then �,m:T�P∼=�Q.
Proof. Let R be the following relation:

{(�,m:T � P , �,m:T � Q) |
�,ω:�[T]�(�m:T)(P |ω〈m〉) ∼=� (�m:T)(Q|ω〈m〉)
ω /∈ fn(P) ∪ fn(Q) }

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1261

It is sufficient to prove that R is reduction closed, �-barb preserving and �-contextual. See [8] for details. �
Proposition 41. For any process P ,Q, if � � P∼=�Q then � � P ≈� Q.
Proof. Let S be the following relation

S = {(� � P , � � Q)|� � P∼=�Q }.
We prove that S is a bisimulation on � actions; then ∼=� ⊆ ≈� follows by the fact that ≈� is the largest bisim-
ulation on �-actions.
Assume � � P �−−→� �

′ � P ′, we distinguish the following cases:

• � � P 	−−→� � � P ′. From the hypothesis � � P∼=�Q, we have that � � Q �⇒ � � Q′ with ��P ′∼=�Q′, and
we conclude (� � P ′, � � Q′) ∈ S as desired.

• � � P n(m)−−→� � � P ′ with � � n : �1[T], � � m : T and �1 � �. Now, let be

Cω[·�] = n〈m〉.ω〈〉|[·�]
where ω is fresh and �,ω:�[] �� Cω[·�]. Let �′ = �,ω:�[]. Then Cω[·�] is a (�′/�)-�-context and �′ �
Cω[P] 	−−→ �′ � ω〈〉|P ′ with �′�(ω〈〉 | P ′)↓�ω . Now, from ��P∼=�Q and the fact that ∼=� is �-contextual,
we have that there exists Q′′ such that �′ � Cω[Q] �⇒ �′ � Q′′ with �′�ω〈〉|P ′∼=�Q′′ and �′�Q′′ ↓�ω . Then

Q′′ = ω〈〉|Q′, and by Lemma 39, ��P ′∼=�Q′. Since �′�Cω[Q]⇓�ω, we have that � � Q n(m)=�⇒� � � Q′ and
we conclude (� � P ′, � � Q′) ∈ S as desired.

• � � P dec� n(m)−−−−−→� � � P ′ with � � n : �1[T], � � m : T and � ≺ �1 � �. This case comes as the previous one
using Cω[·�] = dec� n〈m〉.ω〈〉|[·�], which still is a �-context since �(�(n)) � �.

• � � P n〈m〉−−→� � � P ′ with � � n : �1[T], � � m : T and �1 � �. Now, let be

Cω[·�] = [·�]|n(x:T).if x = m then ω1〈〉 else ω2〈〉
where ω1,ω2 are fresh names and �,ω1 : �[],ω2 : �[] �� Cω[·�]. Let us consider �′ = �,ω1:�[],ω2:�[].
Then Cω[·�] is a (�′/�)-�-context and we have �′ � Cω[P] �⇒ �′ � ω1〈〉|P ′ with �′�(ω1〈〉|P ′)↓�ω1

. Now,
from ��P∼=�Q and the fact that ∼=� is �-contextual, we have that there exists Q′′ such that �′ � Cω[Q] �⇒
�′ � Q′′ with �′�ω1〈〉|P ′∼=�Q′′ and �′�Q′′ ↓�ω1

. Then Q′′ = ω1〈〉|Q′, and by Lemma 39, ��P ′∼=�Q′. Since

�′�Cω[Q]⇓�ω1
, we have that � � Q n〈m〉=�⇒� � � Q′ and we conclude (� � P ′, � � Q′) ∈ S as desired.

• � � P dec� n〈m〉−−−−−→� � � P ′ with � � n : �1[T], � � m : T and � ≺ �1 � �. This case comes as the previous one
using Cω[·�] = [·�]|dec� n(x:T).if x = m then ω1〈〉 else ω2〈〉, which still is a �-context since �(�(n)) � �.

• � � P (�m:T) n〈m〉−−−−−−→� �,m:T � P ′ comes fromP = (�m:T)P1,� � n : �1[T]with�1 � �, and�,m:T � P1
n〈m〉−−→�

�,m:T � P ′. Let {p1, . . . , pk} = {p |p ∈ fn(P) ∪ fn(Q) and � � p : T }, and let

Cω[·�] = [·�]|n(x:T). if x = p1 then ω1〈〉 else
if x = p2 then ω1〈〉 else

. . .

if x = pk then ω1〈〉 else ω2〈x〉
with ω1,ω2 fresh and �,ω1:�[],ω2:�[T] �� Cω[·�]. Let �′ = �,ω1:�[],ω2:�[T]. Then Cω[·�] is a (�′/�)-
�-context and �′ � Cω[P] �⇒ �′ � (�m:T)(ω2〈m〉|P ′) with �′�(�m:T)(ω2〈m〉|P ′)↓�ω2

. Now, from ��P∼=�Q
and the fact that ∼=� is �-contextual, we have that there exists Q′′ such that �′ � Cω[Q] �⇒ �′ � Q′′ with

�′�(�m:T)(ω2〈m〉|P ′)∼=�Q′′ and �′�Q′′ ↓�ω2
. Since �′�Cω[Q]⇓�ω2

, we have that � � Q (�m:T) n〈m〉=====�⇒� �,m:T �
Q′ where Q′′ = (�m:T)(ω2〈m〉|Q′). Since �′�(�m:T)(ω2〈m〉|P ′)∼=�(�m:T)(ω2〈m〉|Q′), by Lemma 40 we have
�,m:T�P ′∼=�Q′ and we can conclude that (�,m:T � P ′, �,m:T � Q′) ∈ S as desired.

1262 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

• � � P (�m:T) n(m)−−−−−−→� �,m:T � P ′ where � � n : �1[T] and �1 � �. Now, let

Cω[·�] = [·�]|(�m : T) n〈m〉.ω〈m〉

where ω is fresh and �,ω:�[T] �� Cω[·�]. Let �′ = �,ω:�[T]. Then Cω[·�] is a (�′/�)-�-context and �′ �
Cω[P] 	−−→ �′ � (�m:T)(ω〈m〉|P ′)with �′�(�m:T)(ω〈m〉|P ′)↓�ω . Now, from ��P∼=�Q and the fact that ∼=�
is�-contextual,wehave that there existsQ′′ such that�′ � Cω[Q] �⇒ �′ � Q′′ with�′�(�m:T)(ω〈m〉|P ′)∼=�Q′′

and�′�Q′′ ↓�ω . Since�′�Cω[Q]⇓�ω,wehave that� � Q (�m:T) n(m)=====�⇒� �,m:T � Q′ whereQ′′ = (�m:T)(Q′|ω〈m〉).
Since �′�(�m:T)(ω〈m〉|P ′)∼=�(�m:T)(ω〈m〉|Q′), by Lemma 40 we have �,m:T�P ′∼=�Q′ and we conclude
(�,m:T � P ′, �,m:T � Q′) ∈ S as desired.

• The cases where � � P performs a declassified bound action are similar to the previous two cases; they rely
on corresponding contexts which use a declassified communication over the channel n. �

Proof of Theorem 9 Let� ∈ �,�be a type environment and P ,Q be processes such that� � P ,Q. Then� � P∼=�Q
iff � � P ≈� Q.

Proof. The proof of ≈� ⊆ ∼=� comes by Propositions 36, 37 and 38. The converse comes by Proposition 41. �

B. Proofs omitted from Section 4

Proof of Proposition 20 If R is a bisimulation up to �-contexts and up to ≈� , then R ⊆ ≈� .

Proof. We define the relation S as the smallest relation such that:

(1) � � P R Q implies � � P S Q.
(2) � � P ≈� R, � � R S U and � � U ≈� Q imply � � P S Q.
(3) ��P S Q implies �′�C[P] S C[Q] for every (�′/�)-�-context C[·�].

We prove by induction on its definition that S is a bisimulation on �-actions. This will assure the soundness of
R since R ⊆ S ⊆ ≈� . The symmetry of S comes by induction and the symmetry of R.

• Let � � P S Q because � � P RQ. Assume � � P �−−→� �
′ � P ′, then from � � P RQ we know that

∃Q′,Q′′, P ′′,C[·�′′] such that�′ �� C[·�′′]and� � Q �̂=�⇒� �
′ � Q′ with�′�P ′ ≈� C[P ′′],�′�Q′ ≈� C[Q′′],

and �′′�P ′′ RQ′′. Now, by definition of S (1) we have �′′�P ′′ S Q′′, then by (3) �′�C[P ′′] S C[Q′′], and by
(2) we conclude �′�P ′ S Q′.

• Let� � P S Q because� � P ≈� R,� � RS U and� � U ≈� Q. Assume� � P �−−→� �
′ � P ′, then from

� � P ≈� R we know that ∃R′ such that � � R �̂=�⇒� �
′ � R′ with �′�P ′ ≈� R′. Now, from � � RS U ,

by induction we have that � � U �̂=�⇒� �
′ � U ′ with �′�R′ S U ′, and from � � U ≈� Q we have � �

Q
�̂=�⇒� �

′ � Q′ with �′�U ′ ≈� Q′. Then, by definition of S (2) we conclude �′�P ′ S Q′.
• Let �′�C[P] S C[Q] because �′ �� C[·�] and � � P S Q. Assume that �′ � C[P] �−−→� �

′′ � U , we have

to show that �′ � C[Q] �̂=�⇒� �
′′ � V with �′′�U S V . The proof proceeds by induction on the definition

of �-contexts (Definition 2).

. C[·�] = [·�], with �′ = � and � � P �−−→� �
′′ � U . Then from � � P S Q, by induction hypothesis

on the definition of S , we have � � Q �̂=�⇒� �
′′ � V and �′′�U S V as desired.

. C[·�] = (�n:T)C ′[·�]. Note that from� � P S Q, by definition of S (3) we have�′, n:T�C ′[P] S C ′[Q].
The inductivehypothesis on�-contexts states that if�′, n:T � C ′[P] �−−→� �

′′, n:T � U ′ then�′, n:T �

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1263

C ′[Q] �̂=�⇒� �
′′, n:T � V ′ with �′′, n:T�U ′ S V ′.

Assume �′ � (�n:T)C ′[P] �−−→� �
′′ � U , this must have been derived in one of the following ways:

by (Res) from �′, n:T � C ′[P] �−−→� �
′′, n:T � U ′ with U = (�n:T)U ′ since n /∈ fn(�) ∪ bn(�).

Now, by induction on �-contexts we have that �′, n:T � C ′[Q] �̂=�⇒� �
′′, n:T � V ′ with �′′, n:

T�U ′ S V ′. Then by (Res) we also have�′ � (�n:T)C ′[Q] �̂=�⇒� �
′′ � (�n:T)V ′ and by definition

of S (3), from �′′, n:T�U ′ S V ′ we can conclude that �′′�(�n:T)U ′ S (�n:T)V ′ as desired.

by (Open) from �′, n:T � C ′[P] m〈n〉−−→� �
′, n:T � U with �′′ = �′, n:T , � = (�n:T)m〈n〉. Now, by

induction on �-contexts we have that �′, n:T � C ′[Q] m〈n〉=�⇒� �
′, n:T � V with �′, n:T�U S V ,

and we conclude �′ � (�n:T)C ′[Q] �=�⇒� �
′, n:T � V by (Open).

by (Dec Open) from �′, n:T � C ′[P] dec� m〈n〉−−−−−→� �
′, n:T � U where �′′ = �′, n:T and � =

(�n:T)dec� m〈n〉. Now, by induction on �-contexts we have that �′, n:T � C ′[Q] dec� m〈n〉====�⇒�

�′, n:T � V with �′, n:T�U S V . We conclude �′ � (�n:T)C ′[Q] �=�⇒� �
′, n:T � U by (Dec

Open).

• C[·�] = C ′[·�]|R or C[·�] = R|C ′[·�] where �′ �� R. The proof of the two cases is similar, therefore we
show only the first one. Note that from � � P S Q, by definition of S (3) we have �′�C ′[P] S C ′[Q]. The

inductive hypothesis on �-contexts states that if �′ � C ′[P] �−−→� �
′′ � U ′ then �′ � C ′[Q] �̂=�⇒� �

′′ �
V ′ with �′′�U ′ S V ′. Let �′ � C[P] �−−→� �

′′ � U , this must have been derived in one of the following
ways:

. � /= 	 In this case, the hypothesis must come by (Par) from either

�′ � C ′[P] �−−→� �
′′ � U ′ with U = U ′|R. By induction on �-contexts we have �′ � C ′[Q]

�̂=�⇒� �
′′ � V ′ with�′′�U ′ S V ′. By an application of the rule (Par) we have�′ � C[Q] �̂=�⇒�

� �′′V ′|R. Now, from�′′�U ′ S V ′ and�′′ �� R, which comes from�′ �� R and�′ ⊆ �′′, we con-
clude �′′�(U ′|R) S (V ′|R) by definition of S (3).

�′ � R �−−→� �
′′ � R′ withU = C ′[P]|R′. By Lemma 35 we have�′′ �� R′. By an application of

the rule (Par) we also have �′ � R|C ′[Q] �−−→� �
′′ � R′|C ′[Q]. Now, from �′′�C ′[P] S C ′[Q]

we conclude �′′�(C ′[P]|R′) S (C ′[Q]|R′) by definition of S (3).

. � = 	. In this case, the hypothesis must have been derived in one of the following ways:

by (Par). This case follows similarly to the previous one.

by (Comm) from C ′[P] n〈m〉−−→ U ′ and R
n(m)−−→ R′ (or viceversa, which follows similarly) with

U = U ′|R′. From�′ �� Rwehave�(�′(n)) � �, hencebyPropositions6and7�′ � C ′[P] n〈m〉−−→�

�′ � U ′ and�′ � R n(m)−−→� �
′ � U ′′. By induction on �-contexts we have that�′ � C ′[Q] n〈m〉=�⇒�

�′ � V ′ with �′�U ′ S V ′, hence �′ � C[Q] �⇒ �′ � V ′|R′. From �′�U ′ S V ′, since �′ �� R′, by
definition of S (3) we conclude �′�(U ′|R′) S (V ′|R′).
by (Close) from C ′[P] (�m:T) n〈m〉−−−−−−−→ U ′ and R

n(m)−−→ R′ (or viceversa, which follows similarly)
withU = (�m:T)(U ′|R′). From the fact that �′ �� Rwe have�(�′(n)) � � and by Propositions

6 and 7, we obtain �′ � C ′[P] (�m:T) n〈m〉−−−−−−→� �′,m:T � U ′ and �′ � R (�m:T) n(m)−−−−−−→� �′,m:T � R′.
By induction on �-contexts we obtain that it holds �′ � C ′[Q] (�m:T) n〈m〉=====�⇒� �

′,m:T � V ′ with
�′,m:T�U ′ S V ′, hence �′ � C[Q] �⇒ �′ � (�m:T)(V ′|R′). From �′m:T�U ′ S V ′, since �′ �� R′,
by definition of S (3) we conclude �′�(�m:T)(U ′|R′) S (�m:T)(V ′|R′).

1264 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

by (Dec Comm) from C ′[P] dec� n〈m〉−−−−−−→ U ′ and R
dec� n(m)−−−−−−→ R′ (or viceversa, that follows sim-

ilarly) with U = U ′|R′. From �′ �� R we have �(�′(n)) � �, hence by Propositions 6 and 7,

�′ � C ′[P] dec� n〈m〉−−−−−→� �′ � U ′ and �′ � R dec� n(m)−−−−−→� �
′ � R′. The proof then follows as above.

by (Dec Close) from C ′[P] (�m:T)dec� n〈m〉−−−−−−−−−−→ U ′ and R
dec� n(m)−−−−−−→R′ (or viceversa, which follows

similarly) with U = (�m:T)(U ′|R′). From �′ �� R we have �(�′(n)) � � and by Propositions

6 and 7, �′ � C ′[P] (�m:T)dec� n〈m〉−−−−−−−−−→� �′,m:T � U ′ and �′ � R (�m:T)dec� n(m)−−−−−−−−−→� �′,m:T � R′. The
proof then follows as above. �

Proof of Proposition 23 If � � P .≈� P , then for all �′ � P ′ such that � � P��′ � P ′, it holds �′�P ′ .≈� P ′.

Proof. By induction on the length of the derivation � � P��′ � P ′. The base case, where the length is 0 is
immediate. For the inductive case, assume � � P��1 � P1

�−→� �
′ � P ′; we distinguish the following cases:

• �1 � P1
�−−→� �

′ � P ′. By induction we know�1�P1
.≈� P1, then by definition of

.≈� we have�1 � P1
�=�⇒�

�′ � P2 and �′�P ′ .≈� P2. Then by symmetry of
.≈� we also have �′�P2

.≈� P ′, and by transitivity �′�P ′ .≈�
P ′.

• �1 � P1
�−−→� �′ � P ′ with � ∈ {n(m), n〈m〉} and �′ = �1. By induction we know �1�P1

.≈� P1, then by
definition of

.≈� we have �1 � P1 �⇒ �1 � P2 and �1�P ′ .≈� P2. Then by symmetry of
.≈� we also have

�1�P2
.≈� P ′, and by transitivity �1�P ′ .≈� P ′.

• �1 � P1
�−−→� �′ � P ′ with� ∈ {(�m:T) n(m), (�m:T) n〈m〉}and�′ = �,m:T . By inductionweknow�1�P1

.≈�
P1, then by definition of

.≈� we have �1 � P1 �⇒ �1 � P2, �1�P2
.≈� (�m:T)P ′ and �′�P ′ .≈� P ′ as

desired.
• �1 � P1

�−−→� �′ � P ′ where � is a declassified action. By induction we know �1�P1
.≈� P1, then by defini-

tion of
.≈� we have �′�P ′ .≈� P ′ as desired. �

The next lemma is used in the proof of of Lemma 25.

Lemma 42. Let P be a process and � be a type environment. Let � � (�m:T)P��′ � P ′, then one of the following
two cases hold:

(1) P ′ = (�m:T)P ′′ and �,m:T � P��′,m:T � P ′′
(2) �′ = �′′,m:T and �,m:T � P��′′,m:T � P ′

Proof. By induction on the length of � � (�m:T)P��′ � P ′. If the length is one, then � � (�m:T)P �−−→� �
′ � P ′

must have been derived in one of the following two ways:

• by rule (Res) from �,m:T � P �−−→� �
′,m:T � P ′′ where P ′ = (�m:T)P ′′, which is case 1.

• by rule (Open) from �,m:T � P n〈m〉−−→� �,m:T � P ′ where �′ = �,m:T and � = (�m:T) n〈m〉, which is case
2.

Let now consider the inductive case where� � (�m:T)P��1 � P1
�−−→� �

′ � P ′. By induction we have two cases:

• P1 = (�m:T)P2 and �,m:T � P��1,m:T � P2. We distinguish two subcases depending on the rule that gave

�1 � P1
�−−→� �

′ � P ′:

. it comes by (Res) from �1,m:T � P2
�−−→� �

′,m:T � P ′′ and P ′ = (�m:T)P ′′. Hence �,m:T � P�
� �′,m:T P ′′ which is case 1.

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1265

. it comes by (Open) from �1,m:T � P2
n〈m〉−−→� �1,m:T � P ′ with � = (�m:T) n〈m〉 and �′ = �1,m:T .

Hence �,m:T � P��1,m:T � P ′ which is case 2.

• �1 = �2,m:T and �,m:T � P��2,m:T � P1. In this case we have �,m:T � P� �−−→��
′ � P ′ with �′ =

�′′,m:T for some �′′, which is case 2. �

Proof of Lemma 25 Let � ∈ �, P be a process and �,m : T be a type environment such that �,m : T � P . If
�,m : T � P ∈ CR(∼=�) then � � (�m : T)P ∈ CR(∼=�).
Proof. By Theorem 21 it is sufficient to prove that if �,m : T � P ∈ W(∼=�) then � � (�m : T)P ∈ W(∼=�).

Let �′ � P ′ be a configuration such that � � (�m:T)P��′ � P ′, then we prove the following two items:

(1) if �′ � P ′ �−−→� �′ � P2 with � ∈ {p〈q〉, p(q)}, then ∃P3 s.t. �′ � P ′ �⇒ �′ � P3 and �′�P2∼=�P3.

(2) if �′ � P ′ �−−→� �′, q:T ′ � P2 with � ∈ {(�q:T ′) p〈q〉, (�q:T ′) p(q)}, then ∃P3 s.t. �′ � P ′ �⇒ �′ � P3 and
�′�P3∼=�(�q:T ′)P2.

By Lemma 42 we distinguish two cases:

• P ′ = (�m:T)P ′′ and �,m:T � P��′,m:T � P ′′. Let us prove the two items in the definition of W(∼=�):

(1) �′ � P ′ �−−→� �′ � P2 with � ∈ {p〈q〉, p(q)}. Since P ′ = (�m:T)P ′′, the action comes by (Res) from

�′,m:T � P ′′ �−−→� �′,m:T � P ′′′ whereP2 = (�m:T)P ′′′ andm /∈ fn(�) ∪ bn(�). From�,m:T � P��′,
m:T � P ′′ and �,m:T � P ∈ W(∼=�), there exists P ∗ such that �′,m:T � P ′′ �⇒ �′,m:T � P ∗ with �′,
m:T�P ∗∼=�P ′′′. Since ∼=� is a congruence, we also have �′�(�m:T)P ∗∼=�(�m:T)P ′′′, and we conclude
observing that by (Res) we have �′ � P ′ �⇒ �′ � (�m:T)P ∗.

(2) �′ � P ′ �−−→� �′, q:T ′ � P2 with � ∈ {(�q:T ′) p〈q〉, (�q:T ′) p(q)}. We distinguish two subcases:

. q : T ′ =m : T ,�=(�m:T) p〈m〉and�′,m:T � P ′′ p〈m〉
−−→� �′,m:T � P2. Since�,m:T � P��′,m:T �

P ′′ and �,m:T � P ∈ W(∼=�), we have that there exists P ∗ such that �′,m:T � P ′′ �⇒ �′,m:T �
P ∗ and �′,m:T�P ∗∼=�P2. Then by rule (Res) we also have �′ � P ′ �⇒ �′ � (�m:T)P ∗ and �′�
(�m:T)P ∗∼=�(�m:T)P2 since ∼=� is a congruence.

. q : T ′ /= m : T , then �′ � P ′ �−−→� �′, q:T ′ � P2 comes by (Res) from �′,m:T � P ′′ �−−→� �′,
q:T ′,m:T � P ′′′ withP2 =(�m:T)P ′′′.Nowfrom�,m:T � P��′,m:T � P ′′ and�,m:T � P ∈W(∼=�)
wehave that there existsP ∗ such that�′,m:T � P ′′ �⇒�′,m:T � P ∗ and�′,m:T�P ∗∼=�(�q:T ′)P ′′′.
Then by rule (Res) we also have �′ � (�m:T)P ′′ �⇒ �′ � (�m:T)P ∗ and �′�(�m:T)P ∗∼=�
(�m:T)(�q:T ′)P ′′′ = (�q:T ′)P2 since ∼=� is a congruence.

• �′ =�′′,m:T and�,m:T � P��′ � P ′. In this caseweconcludeusing thehypothesis�,m:T � P ∈W(∼=�). �

B.1. Proofs of compositionality of controlled information release

Lemma 43 (Strengthening). Let be� � P��′ � P ′ and�1 ⊆ � such that�1 � P.Then�1 � P��′
1 � P ′ with�′

1 ⊆ �′.

Proof. The proof proceeds by induction on the lenght of � � P��′ � P ′, and it is not difficult. �
Lemma 44 (Weakening). Let P ,Q be two processes and � and �′ type environments.

(1) � � P��1 � P ′, � ⊆ �′ imply �′ � P��′
1 � P ′ with �1 ⊆ �′

1.
(2) � � P ≈� Q and � ⊆ �′ imply �′�P ≈� Q.
(3) � � P ∈ W(∼=�) and � ⊆ �′ imply �′ � P ∈ W(∼=�).

1266 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

Proof. Proof of (1) proceeds by induction on the derivation of � � P��1 � P ′. Proof of (2). It is sufficient to
show that the relation

S = {(�′ � P , �′ � Q) | � ⊆ �′ such that � � P ≈� Q}

is a bisimulation on �-actions, which is not difficult using (1) and Lemma 43. Proof of (3) is not difficult, using
(1), (2) and Lemma 43.

Let � � P�0/1�
′ � P ′ mean that the configuration �′ � P ′ is reachable from � � P in zero or one step. �

Lemma 45. Let P ,Q be processes and let � be a type environment. If � � P |Q �−−→� �
′ � R, then one of the

following cases holds:

(1) � = 	,R = P ′|Q′ with � � P�0/1� � P ′ and � � Q�0/1� � Q′.
(2) � = 	,R = (�m:T)(P ′|Q′) with � � P�0/1�,m:T � P ′ and � � Q�0/1�,m:T � Q′.
(3) � /= 	,� � P �−−→� �

′ � P ′ and R = P ′|Q.
(4) � /= 	,� � Q �−−→� �

′ � Q′ and R = P |Q′.

Proof. We distinguish the cases in which the hypothesis � � P |Q �−−→� �
′ � R must have been derived.

• � = 	 and the hypothesis comes by an application of the rule (Comm) from P
n〈m〉−−→ P ′ and Q

n(m)−−→ Q′

(or viceversa, which follows similarly). By Propositions 6 and 7 we have � � P n〈m〉−−→�1 � � P ′ and � �
Q

n(m)−−→�1 � � Q′ for some �1, which corresponds to case 1.
• � = 	 and the hypothesis comes by an application of the rule (Dec Comm). This case is similar to the

previous one.

• � = 	 and thehypothesis comesbyanapplicationof the rule (Close) fromP
(�m:T) n〈m〉−−−−−−−→ P ′ andQ

n(m)−−→ Q′

(or viceversa, which follows similarly). By Propositions 6 and 7 we have� � P (�m:T) n〈m〉−−−−−→�1 �,m : T � P ′ and

� � Q (�m:T) n(m)−−−−−→�1 �,m : T � Q′, for some �1, which corresponds to case 2.
• � = 	 and the hypothesis comes by an application of the rule (Dec Close). This case is similar to the

previous one.
• � /= 	 and the hypothesis comes by an application of the rule (Par). Then one of the case 3. or 4. applies. �

Lemma 46. Let P ,Q be processes and � be a type environment.

If � � (� n1 : T1, . . . , nk : Tk)(P |Q) �−−→� �
′ � R, then one of the following cases holds, where � = n1 : T1, . . . , nk :

Tk .

(a) � = 	 and R = (� n1 : T1, . . . , nk : Tk)(P ′|Q′) with �,� � P�0/1�
′,� � P ′ and �,� � Q�0/1�

′,� � Q′.
(b) � = 	 andR = (� n1 : T1, . . . , nk : Tk)(� nk+1 : Tk+1)(P

′|Q′)with�,� � P�0/1�
′,�, nk+1:Tk+1 � P ′ and�,� �

Q�0/1 �
′,�, nk+1:Tk+1 � Q′.

(c) � /= 	, bn(�) ∩ {n1, . . . , nk} = ∅, �,� � P �−−→� �
′,� � P ′ and R = (�n1:T1, . . . , nk :Tk)(P ′|Q).

(d) � /= 	, bn(�) ∩ {n1, . . . , nk} = ∅, �,� � Q �−−→� �
′,� � Q′ and R = (�n1:T1, . . . , nk :Tk)(P |Q′).

(e) � = (�nj:Tj) m〈nj〉 with nj ∈ {n1, . . . , nk}, �′ = �, nj : Tj and �,� � P
m〈〉nj−−→� �,� � P ′, R =

(�n1 : T1, . . . , nj−1 : Tj−1, nj+1 : Tj+1, . . . , nk : Tk)(P ′|Q).
(f) � = (�nj:Tj) m〈nj〉 with nj ∈ {n1, . . . , nk}, �′ = �, nj : Tj and �,� � Q

m〈〉nj−−→� �,� � Q′, R =
(�n1 : T1, . . . , nj−1 : Tj−1, nj+1 : Tj+1, . . . , nk : Tk)(P |Q′).

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1267

Proof. The proof proceeds by induction on the number of restricted names k . When k = 0, the proof followed

by Lemma 45. Let be k > 0, then the hypothesis � � (� n1 : T1, . . . , nk : Tk)(P |Q) �−−→� �
′ � R must have been

derived using either the rule (Res) or the rule (Open). Let distinguish the two cases:

• by (Res) from �, n1 : T1 � (� n2 : T2, . . . , nk : Tk)(P |Q) �−−→� �
′, n1 : T1 � R1, with R = (�n1 : T1)R1 and n1 /∈

fn(�) ∪ bn(�). By induction we have the following cases, where � = n1 : T1, . . . , nk : Tk :
(a) � = 	 and R1 = (� n2 : T2, . . . , nk : Tk)(P ′|Q′) with �,� � P�0/1�

′,� � P ′ and �,� � Q�0/1�
′,� �

Q′. Then case (a) applies since R = (�n1 : T1)R1.
(b) � = 	 and R1 = (� n2 : T2, . . . , nk : Tk)(� nk+1 : Tk+1)(P

′|Q′) with �,� � P�0/1�
′,�, nk+1:Tk+1 � P ′

and �,� � Q�0/1�
′,�, nk+1:Tk+1 � Q′. Then case (b) applies since R = (�n1 : T1)R1.

(c) � /= 	, bn(�) ∩ {n1, . . . , nk} = ∅ with �,� � P �−−→� �
′,� � P ′ and R1 = (�n2:T2, . . . , nk :Tk)(P ′|Q).

Then case (c) applies since R = (�n1 : T1)R1 .
(d) This case is similar to the previous one.
(e) � = (�nj:Tj) m〈nj〉 with nj ∈ {n2, . . . , nk} and �′, n1 : T = �, n1 : T1, nj : Tj . Moreover we have �,� �

P
m〈nj〉−−→� �,� � P ′ and R1 = (�n2 : T2, . . . , nj−1 : Tj−1, nj+1 : Tj+1, . . . , nk : Tk)(P ′|Q). Then case (e)

applies since R = (�n1 : T1)R1 and �′ = �, nj : Tj .
(f) This case is similar to the previous one.

• by (Open) from � = (�n1:T1) a〈n1〉 and �, n1 : T1 � (� n2 : T2, . . . , nk : Tk)(P |Q) a〈n1〉−−→� �, n1 : T1 � R. By in-
duction we have a number of cases, most of which are vacuous due to the form of the action a〈n1〉. The
two remaining cases are:

(c) from�,� � P a〈n1〉−−→� �,� � P ′ withR = (� n2 : T2, . . . , nk : Tk)(P ′|Q). Then case (e) applies with nj =
n1 since �′ = �, nj : Tj and R = (� nj+1 : Tj+1, . . . , nk : Tk)(P ′|Q).

(d) This case is similar to the previous one. �

Proof of Lemma 28

Proof. Let P ,Q,R be processes and � and �′ be type environments.

(1) Let � � P |Q��′ � R, then R = (� n1 : T1, . . . , nk : Tk)(P ′|Q′) for some k such that k ≥ 0, � � P��1 � P ′ and
� � Q��2 � Q′ with �i ⊆ �′, n1 : T1, . . . , nk : Tk for i = 1, 2.

(2) Let ��!P��′ � R, then R = (� n1 : T1, . . . , nk : Tk)(P1| · · · |Ps|!P) for some k , s such that k , s ≥ 0 and � �
P��i � Pi with �i ⊆ �′, n1 : T1, . . . , nk : Tk for i = 1, . . . , s.

Proof of 1. We proceed by induction on the length of� � P |Q��′ � R. When the length is 0, the proof is immediate.

Let instead be � � P |Q��′ � R′ �−−→� �
′′ � R′′. By induction we know that R′ = (� n1 : T1, . . . , nk : Tk)(P ′|Q′)

with � � P��1 � P ′, � � Q��2 � Q′ and �i ⊆ �′, n1 : T1, . . . , nk : Tk for i = 1, 2. Now, by Lemma 46 we have to
distinguish the following cases where � = n1 : T1, . . . , nk : Tk :

(a) � = 	 and R′′ = (� n1 : T1, . . . , nk : Tk)(P ′′|Q′′) with �′,� � P ′�0/1�
′′,� � P ′′ and �′,� � Q′�0/1�

′′,� �
Q′′. Then by Lemma 43, since �i ⊆ �′,� for i = 1, 2, we have �1 � P ′�0/1�

′′
1 � P ′′ and �2 � Q′�0/1�

′′
2 � Q′′

with �′′
i ⊆ �′′,� for i = 1, 2. Hence � � P��′′

1 � P ′′ and � � Q��′′
2 � Q′′.

(b) � = 	 and R′′ = (� n1 : T1, . . . , nk : Tk)(� nk+1 : Tk+1)(P
′′|Q′′) with �′,� � P�0/1�

′′,�, nk+1:Tk+1 � P ′′
and �′,� � Q�0/1�

′′,�, nk+1:Tk+1 � Q′′. By Lemma 43, since �i ⊆ �′,� for i = 1, 2, we have �1 �
P ′�0/1�

′′
1 � P ′′ and �2 � Q′�0/1�

′′
2 � Q′′ with �′′

i ⊆ �′′,� for i = 1, 2. Hence � � P��′′
1 � P ′′ and

� � Q��′′
2 � Q′′.

(c) � /= 	, bn(�) ∩ {n1, . . . , nk} = ∅, �′,� � P ′ �−−→� �
′′,� � P ′′ and R′′ = (�n1 : T1, . . . , nk : Tk)(P ′′|Q′). By

Lemma 43, since �1 ⊆ �′,�, we have �1 � P ′�0/1�
′′
1 � P ′′ with �′′

1 ⊆ �′′,�. Hence � � P��′′
1 � P ′′ and

� � Q��2 � Q′.

1268 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

(d) This case is similar to the previous one.

(e) � = (�nj:Tj) m〈nj〉 with nj ∈ {n1, . . . , nk}, �′′ = �′, nj : Tj , �′,� � P ′ m〈nj〉−−→� �
′,� � P ′′ and R′′ = (�n1 : T1,

. . . , nj−1 : Tj−1, nj+1 : Tj+1, . . . , nk : Tk)(P ′′|Q′). ByLemma43, since�1 ⊆ �′,�,wehave�1 � P ′ m〈nj〉−−→� �
′′
1 �

P ′′ with �′′
1 ⊆ �′,�. Then � � P��′′

1 � P ′′ and we conclude since �′′
1 ⊆ �′′, nj−1 : Tj−1, nj+1 : Tj+1, . . . , nk :

Tk = �′,�.
(f) This case is similar to the previous one.

Proof of 2. We proceed by induction on the length of ��!P��′ � R. When the length is 0, the proof is immediate.

Let instead be��!P��′ � R′ �−−→� �
′′ � R′′. By induction we know thatR′ = (� n1 : T1, . . . , nk : Tk)(P1| · · · |Ps|!P)

with � � P��i � Pi and �i ⊆ �′, n1 : T1, . . . , nk : Tk for i = 1, . . . , s. The proof follows similarly to the previous
case, by Lemma 46 and Lemma 43. �
Lemma 47. Let � ∈ �, P1, P2,Q1,Q2 be processes and � a type environment such that � � Pi and � � Qi for i = 1, 2.
Let be � � P1∼=�P2,� � Q1∼=�Q2, � � Pi ∈ W(∼=�) and � � Qi ∈ W(∼=�) for i = 1, 2, and let Pi and Qi for i = 1, 2
do not synchronize on declassified actions. Therefore � � P1|Q1∼=�P2|Q2.

Proof. Consider the following relation S:

S = {(� � P1|Q1, � � P2|Q2) | � � Q1∼=�Q2 � � P1∼=�P2

� � Pi ∈ W(∼=�) and � � Qi ∈ W(∼=�) i = 1, 2

Pi and Qi do not synchronize on declassified actions i = 1, 2}
it is sufficient to show that S is a bisimulation up to �-contexts and up-to ≈� .

Assume � � P1|Q1
�−−→� �

′ � U , we show that � � P2|Q2
�̂=�⇒� �

′ � V with �′�U ≈� C[U ′] and �′�V ≈�
C[V ′] such that�′ �� C[·�′′], i.e. it is a�-context, and (�′′ � U ′)S (�′′ � V ′). Theassumption� � P1|Q1

�−−→� �
′ �

U must have been derived in one of the following cases:

• by (Par) from � � P1
�−−→� �

′ � P ′
1 withU = P ′

1 |Q1. Now, from � � P1 ≈� P2 we have � � P2
�̂=�⇒� �

′ �
P ′

2 with�′�P ′
1 ≈� P ′

2. Then we also have� � P2|Q2
�̂=�⇒� �

′ � P ′
2|Q2 The fact that�′�P ′

1 ≈� P ′
2, together

with �′ � P ′
i ∈ W(∼=�) for i = 1, 2, which follow by persistence, and the fact that P ′

i and Qi do not synchro-
nize on declassified actions being derivatives of Pi|Qi for i = 1, 2, imply (�′ � P ′

1 |Q1) S (�′ � P ′
2|Q2), which

is sufficient to conclude the proof since we can choose C[·�′′] = [·�′].
• by (Par) from � � Q1

�−−→� �
′ � Q′

1 with U = P1|Q′
1. This case follows as the previous one.

• by (Comm) from P1
n〈m〉−−→ P ′

1 and Q1
n(m)−−→ Q′

1 with U = P ′
1 |Q′

1 (or viceversa, which follows similarly). By

Propositions 6 and 7 we have � � P1
n〈m〉−−→� �

′ � P ′
1 and � � Q1

n(m)−−→� �
′ � Q′

1 for some �. Let distinguish
two cases:

. � � �. In this case, from � � P1 ≈� P2 we have � � P2
n〈m〉=�⇒� �

′ � P ′
2 with �′�P ′

1 ≈� P ′
2. More-

over, from � � Q1 ≈� Q2 we have � � Q2
n(m)=�⇒� �

′ � Q′
2 with �′�Q′

1 ≈� Q′
2. Then � � P2|Q2 �⇒

�′ � P ′
2|Q′

2. In order to conclude the proof it is sufficient to choose C[·�′′] = [·�′] and to show that
(�′ � P ′

1 |Q′
1) S (�′ � P ′

2|Q′
2). The last fact comes from (i) the fact that P ′

i and Q′
i , for i = 1, 2, do not

synchronize on declassified actions being derivatives of Pi|Qi for i = 1, 2 and , (ii) �′ � P ′
i ∈ W(∼=�)

and �′ � Q′
i ∈ W(∼=�) which follow by persistence and (iii) �′�P ′

1 ≈� P ′
2 and �′�Q′

1 ≈� Q′
2.

. � ≺ �. From � � Q1
n(m)−−→� � � Q′

1 and � � Q1 ∈ W(∼=�) we have � � Q1 �⇒ � � Q′′
1 with � � Q′

1 ≈�
Q′′

1 . From � � Q1 ≈� Q2 we have � � Q2 �⇒ � � Q′
2 with � � Q′

2 ≈� Q′′
1 , hence � � Q′

2 ≈� Q′
1, by

transitivity. Moreover, from � � P1
n〈m〉−−→� � � P ′

1 and � � P1 ∈ W(∼=�) we have � � P1 �⇒ � � P ′′
1

with � � P ′
1 ≈� P ′′

1 . From � � P1 ≈� P2 we have � � P2 �⇒ � � P ′
2 with � � P ′

2 ≈� P ′′
1 , hence, by

transitivity,� � P ′
2 ≈� P ′

1 . By (Par) we have� � P2|Q2 �⇒ � � P ′
2|Q′

2. In order to conclude the proof
it is sufficient to choose C[·�′′] = [·�] and to show that (� � P ′

1 |Q′
1) S (� � P ′

2|Q′
2). The last fact comes

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1269

from (i) the fact that P ′
i and Q′

i , for i = 1, 2, do not synchronize on declassified actions being deriva-
tives of Pi|Qi for i = 1, 2 and , (ii) �′ � P ′

i ∈ W(∼=�) and �′ � Q′
i ∈ W(∼=�)which follow by persistence

and (iii) � � P ′
2 ≈� P ′

1 and � � Q′
2 ≈� Q′

1.

• by (Dec Comm). This case is vacuous since, by the hypothesis, P1 andQ1 do not synchronize on declassified
actions.

• by (Close) from P1
(�m:T) n〈m〉−−−−−−−→ P ′

1 andQ1
n(m)−−→ Q′

1 withU = (�m : T)(P ′
1 |Q′

1) (or viceversa, which follows

similarly). By Propositions 6 and 7 we have � � P1
(�m:T) n〈m〉−−−−−−→� �,m : T � P ′

1 and � � Q1
(�m:T) n(m)−−−−−−→� �,m :

T � Q′
1 for some �. Let distinguish two cases, where �′ = �,m : T :

. � � �. In this case, from � � P1 ≈� P2 we have � � P2
(�m:T) n〈m〉=====�⇒� �

′ � P ′
2 with �′�P ′

1 ≈� P ′
2. More-

over, from� � Q1 ≈� Q2 wehave� � Q2
(�m:T) n(m)=====�⇒� �

′ � Q′
2 with�′�Q′

1 ≈� Q′
2.Then� � P2|Q2 �⇒

�′ � (�m : T)(P ′
2|Q′

2). In order to conclude the proof it is sufficient to choose C[·�′′] = (�m : T)[·�′]
and to show that (�′ � P ′

1 |Q′
1) S (�′ � P ′

2|Q′
2). The last fact comes from (i) the fact that P ′

i and Q′
i ,

for i = 1, 2, do not synchronize on declassified actions being derivatives of Pi|Qi for i = 1, 2 and
(ii) �′ � P ′

i ∈ W(∼=�) and �′ � Q′
i ∈ W(∼=�) which follow by persistence and (iii) �′�P ′

1 ≈� P ′
2 and

�′�Q′
1 ≈� Q′

2.

. � ≺ �. From � � Q1
(�m:T) n(m)−−−−−−→� �

′ � Q′
1, we know that �,m : T � Q1

n(m)−−→� �
′ � Q′

1 and, similarly,

we know �,m : T � P1
n〈m〉−−→� �

′ � P ′
1 . From � � Q1 ∈ W(∼=�) and � � P1 ∈ W(∼=�), by the weakening

Lemma 44 we have�′ � Q1 ∈ W(∼=�) and�′ � P1 ∈ W(∼=�), then�,m : T � Q1 �⇒ �,m : T � Q′′
1 with

�,m : T�Q′
1 ≈� Q′′

1 and �,m : T � P1 �⇒ �,m : T � P ′′
1 with �,m : T�P ′

1 ≈� P ′′
1 . From � � P1 ≈�

P2, by the weakening Lemma 44 we have �,m : T�P1 ≈� P2, hence �,m : T � P2 �⇒ �,m : T �
P ′′

2 with �,m : T�P ′′
2 ≈� P ′′

1 ≈� P ′
1 . Similarly, from � � Q1 ≈� Q2, �,m : T � Q2 �⇒ �,m : T � Q′′

2
with �,m : T�Q′′

2 ≈� Q′′
1 ≈� Q′

1. By (Par) we have �,m : T � P2|Q2 �⇒ �,m : T � P ′′
2 |Q′′

2 , and by
(Res)� � (�m : T)(P2|Q2) �⇒ � � (�m : T)(P ′′

2 |Q′′
2).Notice that� � (�m : T)(P2|Q2) ≈� (P2|Q2) since

m is not free in P2|Q2 being � � P2|Q2 the hypothesis, and m /∈ Dom �. In order to conclude the
proof it is sufficient to choose C[·�′′] = (�m : T)[·�′] and to show that (�′ � P ′

1 |Q′
1) S (�′ � P ′′

2 |Q′′
2).

The last fact comes from (i) the fact that P ′
1 and Q′

1, as well as P ′′
2 and Q′′

2 do not synchronize on
declassified actions being derivatives of Pi|Qi for i = 1, 2 and (ii) �′ � P ′

1 ∈ W(∼=�), �′ � P ′′
2 ∈ W(∼=�),

�′ � Q′
1 ∈ W(∼=�) and �′ � Q′′

2 ∈ W(∼=�) which follow by persistence and (iii) �′�P ′
1 ≈� P ′′

2 and
�′�Q′

1 ≈� Q′′
2 .

• by (Dec Close). This case is vacuous since, by the hypothesis, P1 andQ1 do not synchronize on declassified
actions. �

Proposition 48. Let � ∈ �, P and Q be two processes that do not synchronize on declassified actions. Let
� be a type environment such that � � P ,Q. If � � P ∈ W(∼=�) and � � Q ∈ W(∼=�), then � � P |Q ∈
W(∼=�).
Proof. Let be � � P |Q��′ � R, then by Lemma 28 (1) we have that R = (� n1:T1, . . . , nk :Tk)(P ′|Q′) where k ≥ 0,
� � P��1 � P ′ and � � Q��2 � Q′ with �i ⊆ �′, n1 : T1, . . . , nk : Tk for i = 1, 2.

• Assume �′ � R �−−→� �′′ � R′′ with � ∈ {a〈b〉, a(b)}. This must come either by case (c) or by case (d)
of Lemma 46. Let assume the case (c), the other one being similar. Let be � = n1:T1, . . . , nk :Tk , in this

case we know that �′,� � P ′ �−−→� �′′,� � P ′′ with �′′ = �′ and R′′ = (� n1:T1, . . . , nk :Tk)(P ′′|Q′). From
� � P ∈ W(∼=�) and � � P��1 � P ′, by persistence we have �1 � P ′ ∈ W(∼=�). Moreover, from �1 ⊆ �′,�,
by the weakening Lemma 44 we also have �′,� � P ′ ∈ W(∼=�), which implies �′,� � P ′ �⇒ �′,� � P ′′′
and �′,��P ′′′ ≈� P ′′, hence �′ � R �⇒ �′ � (� n1:T1, . . . , nk :Tk)(P ′′′|Q′). We can now apply Lemma 47
since �′,��P ′′′ ≈� P ′′, both P ′′ and Q′, and P ′′′ and Q′ do not synchronize on declassified actions be-
ing derivatives of P and Q, and �′,� � P ′′ ∈ W(∼=�), �′,� � P ′′′ ∈ W(∼=�) and �′,� � Q′ ∈ W(∼=�) which

1270 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

follow by persistence and the weakening Lemma 44. By Lemma 47 we then obtain�′,��P ′′′|Q′ ≈� P ′′|Q′,
and we can conclude �′�(� n1:T1, . . . , nk :Tk)(P ′′′|Q′) ≈� (� n1:T1, . . . , nk :Tk)(P ′′|Q′) by contextuality of
≈� , i.e. Proposition 36.

• Assume �′ � R �−−→� �′,m:T � R′′ with � ∈ {(�m:T) a〈m〉, (�m:T) a(m)}. Let distinguish two
subcases:

. m /∈ {n1, . . . , nk}. In this case the hypothesis comes either by case (c) or by case (d) of Lemma 46, and
follows similarly to the case shown above.

. m = nj with nj ∈ {n1, . . . , nk}, then the case (e) or (f) of Lemma 46 applies. Let assume the case (e),
the other one being similar. In this case we have
R′′ = (� n1:T1, . . . , nj−1:Tj−1, nj+1:Tj+1, . . . , nk :Tk)(P ′′|Q′),
and �′,� � P ′ �1−−→� �′,� � P ′′ with �1 ∈ {a〈m〉, a(m)}. From � � P ∈ W(∼=�) and � � P��1 � P ′,
by persistence we have�1 � P ′ ∈ W(∼=�). Moreover, from�1 ⊆ �′,�, by the weakening Lemma 44 we
also have�′,� � P ′ ∈ W(∼=�), which implies�′,� � P ′ �⇒ �′,� � P ′′′, with�′,��P ′′ ≈� P ′′′, hence
�′ � R �⇒ �′ � (� n1:T1, . . . , nk :Tk)(P ′′′|Q′)The fact that�′,��P ′′ ≈� P ′′′, together with�′,� � P ′′ ∈
W(∼=�), �′,� � P ′′′ ∈ W(∼=�), �′,� � Q′ ∈ W(∼=�), which follow by persistence and the weakening
Lemma 44, and the fact that both P ′′ andQ′ and P ′′′ andQ′ do not synchronize on declassified actions
being derivatives of P andQ, by Lemma 47 we have �′,��P ′′′|Q′ ≈� P ′′|Q′. By contextuality of ≈�
we conclude �′�(� n1:T1, . . . , nk :Tk)(P ′′′|Q′) ≈� (�nj:Tj)R′′ as desired. �

Lemma 49. Let � ∈ �, P , P1, P2 be processes and � a type environment such that � � P and � � Pi for i = 1, 2. Let
be � � P1∼=�P2, � � P ∈ W(∼=�) and � � Pi ∈ W(∼=�) for i = 1, 2, and let P do not contain declassified actions.Then
� � P1|!P∼=�P2|!P.
Proof. Consider the following relation S:

S = {(� � P1|!P , � � P2|!P) | � � P1∼=�P2

� � P ∈ W(∼=�) and � � Pi ∈ W(∼=�) i = 1, 2

P does not contain declassified actions}

it is sufficient to show that S is a bisimulation up to �-contexts and up-to ≈� .

Assume � � P1|!P
�−−→� �

′ � P ′, we show that � � P2|!P �̂=�⇒� �
′ � Q′ with �′�P ′ ≈� C[P ′′] and �′�Q′ ≈�

C[Q′′] such that�′ �� C[·�′′], i.e. it is a�-context, and (�′′ � P ′′)S (�′′ � Q′′). Theassumption� � P1|!P
�−−→� �

′ �
P ′ must have been derived in one of the following cases:

• by (Par) from � � P1
�−−→� �

′ � P ′
1 with P ′ = P ′

1 |!P . Now, from � � P1 ≈� P2 we have � � P2
�̂=�⇒� �

′ �
P ′

2 with �′�P ′
1 ≈� P ′

2. Then we also have � � P2|!P �̂=�⇒� �
′ � P ′

2|!P The fact that �′�P ′
1 ≈� P ′

2, together
with �′ � P ′

i ∈ W(∼=�) for i = 1, 2, which follow by persistence, implies (�′ � P ′
1 |!P) S (�′ � P ′

2|!P), which is
sufficient to conclude the proof since we can choose C[·�′′] = [·�′].

• by (Par) and (Rep-Act) from� � P �−−→� �
′ � P ′′ withP ′ = P1|P ′′|!P . Then� � P2|!P

�−−→� �
′ � P2|P ′′|!P .

In order to conclude the proof it is sufficient to chooseC[·�′′] = [·�′] and to show that (�′ � P1|P ′′|!P)S (�′ �
P2|P ′′|!P). The last fact comes from (i) the fact that P does not contain declassified actions, (ii) �′ � P1|P ′′ ∈
W(∼=�) and �′ � P2|P ′′ ∈ W(∼=�)which follow by persistence, the weakening Lemma 44 (since � ⊆ �′) and
the compositionality property of W(∼=�) (Proposition 48), and (iii) �′�P1|P ′′ ≈� P2|P ′′ which comes by
Lemma 47.

• by (Comm) and (Rep-Act) from P1
n〈m〉−−→ P ′

1 and P
n(m)−−→ P ′′ with P ′ = P ′

1 |P ′′|!P (or viceversa, which fol-

lows similarly). By Propositions 6 and 7 we have � � P1
n〈m〉−−→� �

′ � P ′
1 and � � P n(m)−−→� �

′ � P ′′ for some
�. Let distinguish two cases:

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1271

. � � �. In this case, from � � P1 ≈� P2 we have � � P2
n〈m〉=�⇒� �

′ � P ′
2 with �′�P ′

1 ≈� P ′
2. Then � �

P2|!P �⇒ �′ � P ′
2|P ′′|!P . In order to conclude the proof it is sufficient to choose C[·�′′] = [·�′] and

to show that (�′ � P ′
1 |P ′′|!P) S (�′ � P ′

2|P ′′|!P). The last fact comes from (i) the fact that P does not
contain declassified actions, (ii) �′ � P ′

1 |P ′′ ∈ W(∼=�) and �′ � P ′
2|P ′′ ∈ W(∼=�) which follow by per-

sistence and the compositionality property of W(∼=�) (Proposition 48) and (iii) �′�P ′
1 |P ′′ ≈� P ′

2|P ′′
which comes by Lemma 47.

. � ≺ �. From � � P n(m)−−→� � � P ′′ and � � P ∈ W(∼=�) we have � � P �⇒ � � P ′′′ with � � P ′′ ≈�
P ′′′. Hence also ��!P �⇒ � � P ′′′|!P . Moreover, from � � P1

n〈m〉−−→� � � P ′
1 and � � P1 ∈ W(∼=�)

we have � � P1 �⇒ � � P ′′
1 with � � P ′

1 ≈� P ′′
1 . From � � P1 ≈� P2 we have � � P2 �⇒ � � P ′

2
with � � P ′

2 ≈� P ′′
1 , hence, by transitivity, � � P ′

2 ≈� P ′
1 . By (Par) we have � � P2|!P �⇒ � �

P ′
2|P ′′′|!P . In order to conclude the proof it is sufficient to choose C[·�′′] = [·�] and to show

that (� � P ′
1 |P ′′|!P) S (� � P ′

2|P ′′|!P). The last fact comes from (i) the fact that P does not contain
declassified actions, (ii) � � P ′

1 |P ′′ ∈ W(∼=�) and � � P ′
2|P ′′ ∈ W(∼=�) which follow by persistence

and the compositionality property of W(∼=�) (Proposition 48) and (iii) ��P ′
1 |P ′′ ≈� P ′

2|P ′′ which
comes by Lemma 47.

• by (Dec Comm). This case is vacuous since P does not contain declassified actions.

• by (Close) and (Rep-Act) from P1
(�m:T) n〈m〉−−−−−−−→ P ′

1 and P
n(m)−−→ P ′′ with P ′ = (�m : T)(P ′

1 |P ′′|!P) (or vice-

versa, which follows similarly). By Propositions 6 and 7 we have � � P1
(�m:T) n〈m〉−−−−−−→� �,m : T � P ′

1 and � �
P

(�m:T) n(m)−−−−−−→� �,m : T � P ′′, hence��!P (�m:T) n(m)−−−−−−→� �,m : T � P ′′|!P . Let distinguish two cases, where�′ =
�,m : T :

. � � �. In this case, from � � P1 ≈� P2 we have � � P2
(�m:T) n〈m〉=====�⇒� �

′ � P ′
2 with �′�P ′

1 ≈� P ′
2. Then

� � P2|!P �⇒ �′ � (�m : T)(P ′
2|P ′′|!P). In order to conclude the proof it is sufficient to chooseC[·�′′] =

(�m : T)[·�′] and to show that (�′ � P ′
1 |P ′′|!P) S (�′ � P ′

2|P ′′|!P). The last fact comes from (i) the
fact that P does not contain declassified actions, (ii) �′ � P ′

1 |P ′′ ∈ W(∼=�) and �′ � P ′
2|P ′′ ∈ W(∼=�)

which follow by persistence and the compositionality property of W(∼=�) (Proposition 48) and (iii)
�′�P ′

1 |P ′′ ≈� P ′
2|P ′′ which comes by Lemma 47.

. � ≺ �. From � � P (�m:T) n(m)−−−−−−→� �
′ � P ′′, we know that �,m : T � P n(m)−−→� �

′ � P ′′ and, similarly, we

know �,m : T � P1
n〈m〉−−→� �

′ � P ′
1 . From � � P ∈ W(∼=�) and � � P1 ∈ W(∼=�), by the weakening

Lemma 44 we have �′ � P ∈ W(∼=�) and �′ � P1 ∈ W(∼=�), then �,m : T � P �⇒ �,m : T � P ′′′ with
�,m : T�P ′′ ≈� P ′′′ and �,m : T � P1 �⇒ �,m : T � P ′′

1 with �,m : T�P ′
1 ≈� P ′′

1 . By (Rep-Act) we
have �,m : T �!P �⇒ �,m : T � P ′′′|!P From � � P1 ≈� P2, by the weakening Lemma 44 we have
�,m : T�P1 ≈� P2, hence �,m : T � P2 �⇒ �,m : T � P ′′

2 with �,m : T�P ′′
2 ≈� P ′′

1 ≈� P ′
1 . By (Par)

we have �,m : T � P2|!P �⇒ �,m : T � P ′′
2 |P ′′′|!P , and by (Res) � � (�m : T)(P2|!P) �⇒ � � (�m : T)

(P ′′
2 |P ′′′|!P). Notice that (�m : T)(P2|!P) ≈� (P2|!P) since m is not free in P2|!P . In order to conclude

the proof it is sufficient to choose C[·�′′] = (�m : T)[·�′] and to show that (�′ � P ′
1 |P ′′|!P) S (�′ �

P ′′
2 |P ′′′|!P). The last fact comes from (i) the fact that P does not contain declassified actions, (ii)
�′ � P ′

1 |P ′′ ∈ W(∼=�) and �′ � P ′′
2 |P ′′′ ∈ W(∼=�) which follow by persistence and the composition-

ality property of W(∼=�) (Proposition 48) and (iii) �′�P ′
1 |P ′′ ≈� P ′′

2 |P ′′′ which comes by Lemma
47.

• by (Dec Close). This case is vacuous since P does not contain declassified actions. �

Proof of Theorem 29

Proof. Let � ∈ �, P and Q be two processes and � be a type environment such that � � P ,Q. If � � P ∈ CR(∼=�)
and � � Q ∈ CR(∼=�) then

1272 S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273

(1) �′ � a〈b〉.P ∈ CR(∼=�) where �′ = � ∪ {a : �[T]} ∪ {b : T } and � � �;
(2) �′ � a(x:T).P ∈ CR(∼=�) where �′ = � ∪ {a : �[T]} and � � �;
(3) �′ � if a = b then P else Q ∈ CR(∼=�) where �′ = � ∪ {a : T } ∪ {b : T };
(4) � � P |Q ∈ CR(∼=�) whenever P and Q do not synchronize on declassified actions.
(5) �′ � (�n : T)P ∈ CR(∼=�) where � = �′, n : T ;
(6) �� !P ∈ CR(∼=�) whenever P does not contain declassified actions.

The cases (1), (2), (3) are immediate.
Proof of (4). By Theorem 21 it is sufficient to prove that, given � � P and � � Q such that � � P ∈ W(∼=�) and
� � Q ∈ W(∼=�), it holds � � P |Q ∈ W(∼=�), which comes by Proposition 48.
Proof of (5) comes by Lemma 25.
Proof of (6). By Theorem 21 it is sufficient to prove that if� � P ∈ W(∼=�) then��!P ∈ W(∼=�). Let be��!P��′ �
R, then by Lemma 28 (2)R = (� n1:T1, . . . , nk :Tk)(P1| · · · |Ps|!P)where k , s ≥ 0 and� � P��i � Pi with�i ⊆ �′, n1 :
T1, . . . , nk : Tk for i = 1, . . . , s.

• Assume�′ � R �−−→� �′ � R′ with� ∈ {a〈b〉, a(b)}. By Lemma 46, this must come from one of the following
cases, where we assume � = n1 : T1, . . . , nk : Tk :
. there exists i ∈ {1, ..., s} such that �′,� � Pi

�−−→� �′,� � P ′
i and R′ = (� n1:T1,

. . . , nk :Tk)(P1| · · · |P ′
i | · · · |Ps|!P). From� � P��′

i � Pi , by persistence we have�′
i � Pi ∈ W(∼=�) and by

theweakening lemma44�′,� � Pi ∈W(∼=�). Thenwehave�′,� � Pi�⇒�′,� � P ′′
i , and�′,��P ′′

i ≈�
P ′
i . Then�′ � R �⇒ �′ � (� n1:T1, . . . , nk :Tk)(P1| · · · |P ′′

i | · · · |Ps|!P). Now, from�′,��P ′′
i ≈� P ′

i ,�
′,� �

P ′
i ∈ W(∼=�), �′,� � P ′′

i ∈ W(∼=�) and �′,� � Pj ∈ W(∼=�) for j ∈ {1, .., i − 1, i + 1, .., s}, which follow
by persistence and the weakening lemma 44, we can apply Lemma 47 (note that by hypothesis P
does not contain declassified actions) obtaining �′,��P1| · · · |P ′′

i | · · · |Ps ≈� P1| · · · |P ′
i | · · · |Ps. Then

by Lemma 49 we also have �′,��P1| · · · |P ′′
i | · · · |Ps|!P ≈� P1| · · · |P ′

i | · · · |Ps|!P , and by contextuality
of ≈� , i.e. Proposition 36, we conclude �′�(� n1:T1, . . . , nk :Tk)(P1| · · · |P ′′

i | · · · |Ps|!P) ≈� R′.
. Assume�′,��!P �−−→� �′,� � P ′|!P since�′,� � P �−−→� �′,� � P ′, and R′ = (� n1:T1, . . . , nk :Tk)

(P1| · · · |Ps|P ′|!P). By the weakening lemma 44, since � ⊆ �′,�, we have �′,� � P ∈ W(∼=�). Then
we also have �′,� � P �⇒ �′,� � P ′′, and �′,��P ′ ≈� P ′′. Then �′ � R �⇒ �′ � (� n1:T1, . . . , nk :Tk)
(P1| · · · |Ps|P ′′|!P). We can then conclude by Lemma 47 (note that by hypothesis P does not contain de-
classifiedactions) andcontextualityof ≈� , i.e. Proposition36,�′�(� n1:T1, . . . , nk :Tk)(P1| · · · |Ps|P ′′|!P)
≈� R′.

• �′ � R �−−→� �′,m:T � R′ with � ∈ {(�m:T) a〈m〉, (�m:T) a(m)}. Let distinguish two subcases:

. m /∈ {n1, . . . , nk}. This case follows similarly to the case shown above.

. m = nj with nj ∈ {n1, . . . , nk}. By Lemma 46, this must come from one of the following cases, where
we assume � = n1 : T1, . . . , nk : Tk :
(1) ∃i ∈ {1, ..., s} such that�′,� � Pi

�1−−→� �′,� � P ′
i with�1 ∈ {a〈nj〉, a(nj)}, andR′ = (� n1:T1, . . . ,

nj−1:Tj−1, nj+1:Tj+1, . . . , nk :Tk) (P1| · · · |P ′
i | · · · |Ps|!P). From � � P��′

i � Pi , by persistence we
have�′

i � Pi ∈ W(∼=�) and by the weakening lemma 44�′,� � Pi ∈ W(∼=�). Then�′,� � Pi �⇒
�′,� � P ′′

i , and�′,��P ′′
i ≈� P ′

i , hence�′ � R �⇒ �′ � (� n1:T1, . . . , nk :Tk)(P1| · · · |P ′′
i | · · · |Ps|!P).

Now, from�′,��P ′′
i ≈� P ′

i ,�
′,� � P ′

i ∈ W(∼=�),�′,� � P ′′
i ∈ W(∼=�) and�′,� � Pl ∈ W(∼=�)

for l ∈ {1, .., i − 1, i + 1, .., s}, which follow by persistence and the weakening lemma 44, we can
apply Lemma 47 (note that by hypothesis P does not contain declassified actions) obtaining
�′,��P1| · · · |P ′′

i | · · · |Ps ≈� P1| · · · |P ′
i | · · · |Ps. ThenbyLemma49�′,��P1| · · · |P ′′

i | · · · |Ps|!P ≈�
P1| · · · |P ′

i | · · · |Ps|!P , andbycontextualityof ≈� , i.e. Proposition36,we conclude�′�(� n1:T1, . . . ,
nk :Tk)(P1|· · ·|P ′′

i |· · ·|Ps|!P) ≈� (�nj:Tj)R′ as desired.

(2) R′=(� n1:T1, .., nj−1:Tj−1, nj+1:Tj+1, .., nk :Tk)(P1| · · ·|Ps|Ps+1|!P) since�′,��!P
�1−−→� �′,��!P |Ps+1

with �1 ∈ {a〈nj〉, a(nj)}, that comes from �′,� � P
�1−−→� �′,� � Ps+1. From � � P ∈ W(∼=�),

S. Crafa, S. Rossi / Information and Computation 205 (2007) 1235–1273 1273

together with � ⊆ �′,�, by the weakening lemma 44 we have that �′,� � P ∈ W(∼=�), thus
�′,� � P �⇒ �′,� � P ′′ and �′,��P ′′ ≈� Ps+1, hence �′ � R �⇒ �′ � (� n1:T1, . . . , nk :Tk)
(P1| · · · |Ps|P ′′|!P). Now, from �′,��P ′′ ≈� Ps+1, �′,� � P ′′ ∈ W(∼=�), �′,� � Ps+1 ∈ W(∼=�)
and�′,� � Pl ∈ W(∼=�) for l ∈ {1, . . . , s}, which follow by persistence and the weakening lemma
44, we can apply Lemma 47 (note that by hypothesis P does not contain declassified actions) ob-
taining �′,��P1| · · · |Ps|P ′′ ≈� P1| · · · |Ps|Ps+1. Then by Lemma 49 �′,��P1| · · · |Ps|P ′′|!P ≈�
P1| · · · |Ps|Ps+1|!P , and by contextuality of ≈� , i.e. Proposition 36, we can conclude that
�′�(� n1:T1, . . . , nk :Tk)(P1| · · · |Ps|P ′′|!P) ≈� (�nj:Tj)R′ as desired. �

References

[1] A. Sabelfeld, D. Sands, Dimensions and principles of declassification, in: Proc. IEEE Computer Security Foundations Workshop
(CSFW’05), IEEE Computer Society Press, 2005, pp. 255–269.

[2] M. Hennessy, The security picalculus and non-interference, Journal of Logic and Algebraic Programming 63 (1) (2004) 3–34.
[3] K. Honda, V. Vasconcelos, N. Yoshida, Secure information flow as typed process behaviour, in: Proc. of European Symposium on

Programming (ESOP’00), Lecture Notes in Computer Science, vol. 1782, Springer-Verlag, 2000, pp. 180–199.
[4] K. Honda, N. Yoshida, A uniform type structure for secure information flow, in: Proc. ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL’02), ACM Press, 2002, pp. 81–92.
[5] N. Kobayashi, Type-based information flow analysis for the pi-calculus, Tech. Rep. TR03-0007, Dept. Computer Science, Tokyo

Institute of Technology (2003).
[6] F. Pottier, A simple view of type-secure information flow in the �-calculus, in: Proc. the 15th IEEE Computer Security Foundations

Work shop, 2002, pp. 320–330.
[7] A. Bossi, C. Piazza, S. Rossi, Modelling downgrading in information flow security, in: Proc. 17th IEEE Computer Security Foundations

Workshop (CSFW’04), IEEE Computer Society Press, 2004, pp. 187–201.
[8] M. Hennessy, J. Rathke, Typed behavioural equivalences for processes in the presence of subtyping, Mathematical Structures in

Computer Science 14 (5) (2004) 651–684.
[9] R. Focardi, S. Rossi, Information flow security in dynamic contexts, in: Proc. IEEE Computer Security Foundations Workshop

(CSFW’02), IEEE Computer Society Press, 2002, pp. 307–319.
[10] R. Focardi, R. Gorrieri, Classification of security properties (part i: information flow), in: Proc. Foundations of Security Analysis

and Design (FOSAD’01), in: R. Focardi, R. Gorrieri (Eds.), Lecture Notes in Computer Science, vol. 2171, Springer-Verlag, 2001, pp.
331–396.

[11] A. Bossi, R. Focardi, C. Piazza, S. Rossi, Verifying persistent security properties, Computer Languages, Systems and Structures 30
(3–4) (2004) 231–258.

[12] A. Sabelfeld, D. Sands, Probabilistic noninterference for multi-threaded programs, in: Proc. IEEE Computer Security Foundations
Workshop (CSFW’00), IEEE Computer Society Press, 2000, pp. 200–215.

[13] D. Sangiorgi, D. Walker, The pi calculus: a theory of mobile processes, Cambridge, 2001.
[14] M. Boreale, D. Sangiorgi, Bisimulation in name-passing calculi without matching, in: Proc. 13th IEEE Symposium on Logic in Computer

Science (LICS’98), IEEE Computer Society Press, 1998, pp. 165–175.
[15] A. Sabelfeld, H. Mantel, Static confidentiality enforcement for distributed programs, in: Proc. of Int. Static Analysis Symposium

(SAS’02), LNCS, vol. 2477, Springer-Verlag, 2002, pp. 376–394.
[16] A. Sabelfeld, D. Sands, A per model of secure iinformation flow in sequential programs, in: Proc. European Symposium on Programming

(ESOP’99), Lecture Notes in Computer Science, vol. 1576, Springer-Verlag, 1999, pp. 40–58.
[17] S. Crafa, S. Rossi, A theory of noninterference for the �-calculus, in: Symposium on Trustworthy Global Computing, TGC’05, Lecture

Notes in Computer Science, vol. 3705, Springer-Verlag, 2005, pp. 2–18.
[18] S. Lafrance, J. Mullins, Bisimulation-based non-deterministic admissible interference and its application to the analysis of cryptographic

protocols, Electronic Notes in Theoretical Computer Science 61 (2002) 1–24.
[19] J. Mullins, Nondeterministic admissible interference, Journal of Universal Computer Science 11 (2000) 1054–1070.
[20] A.W. Roscoe, M.H. Goldsmith, What is intransitive noninterference?, in: Proc. IEEE Computer Security Foundations Workshop

(CSFW’99), IEEE Computer Society Press, 1999, pp. 228–238.
[21] P. Ryan, S. Schneider, Process algebra and non-interference, Journal of Computer Security 9 (1/2) (2001) 75–103.
[22] A.D. Gordon, A.S.A. Jeffrey, Secrecy despite compromise: types, cryptography, and the pi-calculus, in: Proc. 16th International Con-

ference on Concurrency Theory, (CONCUR’05), Lecture Notes in Computer Science, 3653, Springer-Verlag, 2005, pp. 186–201.
[23] M. Hennessy, J. Riely, Information flow vs. resource access in the asynchronous pi-calculus, ACM Transactions on Programming

Languages and Systems (TOPLAS) 24 (5) (2002) 566–591.

