A family of perpendicular arrays achieving perfect 4-fold secrecy

Jürgen Bierbrauer
Institut für Reine Mathematik, Universität Heidelberg, Im Neuenheimer Feld 288, W-6900 Heidelberg 1, Germany
Received 12 July 1991
Revised 6 December 1991

1. Introduction

A perpendicular array $P A_{\lambda}(t, k, v)$ is a $\lambda\binom{v}{t}$ by k array A of v distinct symbols, which satisfies:
(i) every row of A contains k distinct symbols,
(ii) for any t columns, and for any t distinct symbols, there are precisely λ rows with the given symbols in the given columns.
Such a structure may also be described as a λ-uniform, t-homogeneous set of injective mappings from a k-set into a v-set.

A close connection with t-designs is obvious. In contrast to the situation with designs, it is not clear if a perpendicular t-array $P A_{\lambda}(t, k, v)$ is also a perpendicular s-array $P A_{\lambda(s)}(t, k, v)$ for $s<t$, where

$$
\lambda(s)=\lambda \times\binom{ v-s}{t-s} /\binom{t}{s} .
$$

If this is the case for all $s \leqslant t$, we shall call A an inductive perpendicular array.
Especially a necessary condition for the existence of an inductive $P A_{\lambda}(t, k, v)$ is

$$
\lambda \times\binom{ v-s}{t-s} \equiv 0\left(\bmod \binom{t}{s}\right) .
$$

An application to cryptography was given in [7, proof of Theorem 2.3], where it was shown that an inductive $P A_{\lambda}(t, k, v)$ gives rise to a cryptocode for k source states with v messages and $\lambda\binom{v}{t}$ encoding rules, which achieves perfect t-fold secrecy.

Correspondence to: Jürgen Bierbrauer, Institut fur Reine Mathematik, Universitat Heidelberg, Im Neuenheimer Feld 288, W-6900 Heidelberg 1, Germany.

No infinite family of inductive perpendicular t-arrays with $t>3$ and reasonably small λ seems to be known. In [6] the marriage theorem is used to construct PA's from t-designs with $k=t+1$. Especially Alltop's series of 4 -designs with parameters $4-\left(2^{f}+1,5,5\right)$ (see [1]) yields $P A_{1}\left(4,5,2^{f}+1\right)$ and the (nonsimple) designs with parameters $5-\left(2^{f}+2,6,15\right)$ of [4] yield $P A_{5}\left(5,6,2^{f}+2\right)$ for $f \geqslant 2$. However, these arrays have no change to be inductive as the above necessary condition is violated for $s=3$.
In this paper we use the families of designs with parameters $4-\left(2^{f}+1,6,10\right)(f$ odd) and $4-\left(2^{f}+1,9,84\right)((f, 6)=1)$ as constructed in $[2,3]$ to produce inductive PAs with $t=4$.

Theorem 1.1. (i) If f is odd, there is an inductive $P A_{12}\left(4,6,2^{f}+1\right)$.
(ii) If $(f, 6)=1$, there is an inductive $P A_{36}\left(4,9,2^{f}+1\right)$.

This construction is possible because the designs are highly symmetric. They are defined on the projective line and have the projective group $P \Gamma L\left(2,2^{f}\right)$ as their group of automorphisms.

Corollary 1.2. (i) Let fbe odd. Then there is a cryptocode for 6 source states with $2^{f}+1$ messages and $12\left({ }_{4}^{2 f+1}\right)$ encoding rules, which achieves perfect 4 -fold secrecy.
(ii) If $(f, 6)=1$, there is a cryptocode for 9 source states with $2^{f}+1$ messages and $36\binom{2 f+1}{4}$ encoding rules, which achieves perfect 4 -fold secrecy.

It is not clear if a variation of our method could produce inductive PAs with the same values of t, k, v and smaller λ. The necessary conditions given above show that λ must be even. ${ }^{1}$

2. Constructions and proofs

Let $q=2^{f}, f$ odd. Consider the operation of the projective group $G=\operatorname{PG} L(2, q)$ on the projective line $\mathrm{PG}(1, q)$. Elements of order 3 are fixed-point-free. Define blocks of a design \boldsymbol{B}_{1} to be unions of two point-orbits of elements of order 3 in G. We get a design with parameters $4-(q+1,6,10)$ (see [2]). It was shown in [2] that blocks of B_{1} are exactly the 6 -subsets of $\operatorname{PG}(1, q)$ which have the symmetric group S_{3} as stabilizer in G. If B is such a block, we write $B=B_{1} \cup B_{2}$, where B_{1} and B_{2} are orbits of the group of order 3 operating on B. We call B_{1}, B_{2} the triples of B.

Definition 2.1. Let $q=2^{f}, f$ odd. The array A_{1} with 6 columns and $\operatorname{PG}(1, q)$ as set of symbols is defined as follows.

From each block $B \in \boldsymbol{B}_{1}$ construct a row, where the triples of B are written in the first three and the last three positions, respectively. Then every such row is replaced

[^0]by an 18×6 array $\boldsymbol{A}_{1}(B)$ consisting of the images of the initial row under the action of the wreath-product $Z_{3} \backslash Z_{2}$ with the first and last three columns as regions of imprimitivity.

Remark that $\boldsymbol{A}_{1}(B)$ is not uniquely determined by B.

Theorem 2.2. Let $q=2^{f}, f$ odd. The array A_{1} is an inductive

$$
P A_{12}(4,6, q+1) .
$$

Proof. It is sufficient to show that A_{1} is a $P A_{12}(4,6, q+1)$ and a $P A_{3(q-2)}(3,6, q+1)$. (see [5, Theorem 1.1]).
(1) Consider first the case $t=3$. Only two 3 -subsets T of columns have to be considered:
(a) Let $T=\{1,2,3\}, S$ a set of 3 elements of $\operatorname{PG}(1, q)$. Then S determines a unique subgroup of order 3 of G having S as an orbit. Thus there are exactly $(q-2) / 3$ blocks B having S as one of their triples. If B is such a block, then $A_{1}(B)$ contributes 9 rows with S in the first three columns.
(b) Let $T=\{1,2,4\}, S=\{\infty, 0,1\}$. Whichever symbol of S appears in column 4 (three choices), there remain $q-2$ choices for the symbol in column 3 . We have $3(q-2)$ blocks $B \supset S$ in the appropriate position. The array $A_{1}(B)$ has exactly onc row with a given symbol in column 4 and a given set of symbols in columns 1,2 .
(2) Consider the case $t=4$. We have two essentially different 4 -sets of columns. The sets of symbols appearing there may be chosen to be $S=\{\infty, 0,1, a\}$.
(a) Let $T=\{1,2,3,4\}$. There are four blocks $B \supset S$ having one of their triples in S. Each such block contributes three lines of $\boldsymbol{A}_{1}(B)$ to our counting problem.
(b) Let $T=\{1,2,4,5\}$. There are six blocks $B \supset S$ having no triple in S. Each corresponding $A_{1}(B)$ contributes two rows to our problem.

Let $q=2^{f},(f, 6)=1$. In [3] we constructed a block design, here called \boldsymbol{B}_{2}, with parameters $4-(q+1,9,84)$, whose blocks are the unions of the nonregular and a regular orbit of a subgroup S_{3} of G. If B is a block of B_{2}, K the stabilizer of B in G, we write $B=B_{0} \cup B_{1} \cup B_{2}$, where B_{0} is the nonregular orbit of K and B_{1}, B_{2} are orbits of the subgroup of order 3 of K. Let us call B_{1}, B_{2} the triples of B, and B_{0} the center of B.

Definition 2.3. Let $q=2^{f},(f, 6)=1$. The array \boldsymbol{A}_{2} with 9 columns and entries from $\mathrm{PG}(1, q)$ is defined as follows. Every block $B \in \boldsymbol{B}_{2}$ yields a row, where the center of B appears in the first three columns, the triples in the middle and final three columns, respectively. Then every such row is replaced by a 54×9 array $A_{2}(B)$ consisting of the images of the initial row under the action of the group $Z_{3} \times\left(Z_{3} \backslash Z_{2}\right)$ of order 54, operating in the natural way.

Theorem 2.4. Let $q=2^{f},(f, 6)=1$. The array A_{2} is an inductive

$$
P A_{36}(4,9, q+1) .
$$

Proof. By [5, Theorem 1.1] it suffices to show that A_{2} is a $P A_{36}(4,9, q+1)$. Let T be a set of four columns, S a set of four entries. We can choose, without restriction, $S=\{\infty, 0,1, a\}$. We have to count the rows of A_{2}, where the symbols from S appear in the positions of T. The expected number is 36 . If $T \subset\{4,5,6,7,8,9\}$, we are done, by Theorem 1, for by deleting the first three columns of \boldsymbol{A}_{2} we get three copies of \boldsymbol{A}_{1}. Five essentially different cases of T have to be considered.

Case 1: $T=\{1,2,3,4\}$. There are exactly four blocks B containing S and having their center in S. Each such $A_{2}(B)$ contributes 9 rows to our counting problem.

Case 2: $T=\{1,2,4,5\}$. We have to count blocks $B \supset S$ having two center points and two points of a triple in S. This reverts to Case (2(b)) of the proof of Theorem 2.2. We counted 6 blocks there. Here the order, in which the pairs of elements of S occur, has to be taken into account. We get 12 blocks in our case. Each corresponding $\boldsymbol{A}_{2}(B)$ produces three rows which we have to count.

Case 3: $T=\{1,2,4,7\}$. We use the counting done in the proof of the main theorem of [3]. Cases 2 and 3 in the present situation correspond to case $d=2$ in [3]. Thus we get $30-12=18$ blocks $B \supset S$ having two center points in S and having the two remaining points of S in different triples. The array $A_{2}(B)$ contributes 2 rows to our problem for every such B.

Case 4: $T=\{1,4,5,6\}$. Obviously, there are four blocks $B \supset S$ having a triple in S and a center point in S. Each corresponding $A_{2}(B)$ contributes 9 rows.

Case 5: $T=\{1,4,5,7\}$. By case $d=1$ of the proof of the main theorem of [3], which corresponds to Cases 4 and 5 here, there are 36 blocks B in the proper position with respect to S. Each corresponding array $A_{2}(B)$ contributes exactly one row.

References

[1] W.O. Alltop, An infinite class of 4-designs, J. Combin. Theory 6 (1969) 320-322.
[2] J. Bierbrauer, A new family of 4-designs, Discrete Math., to appear.
[3] J. Bierbrauer, A family of 4-designs with block-size 9, Discrete Math., submitted.
[4] D. Jungnickel and S.A. Vanstone, Hyperfactorizations of graphs and 5-designs, Research Report CORR 85-24 (University of Warterloo, Waterloo, 1985).
[5] E.S. Kramer, D.L. Kreher, R. Rees and D.R. Stinson, On perpendicular arrays with $t \geqslant 3$, Ars Combin. 28 (1989) 215-223.
[6] E.S. Kramer, S. Magliveras, T. van Trung and Q. Wu, Some perpendicular arrays for arbitrarily large t, manuscript.
[7] D.R. Stinson, The combinatorics of authentication and secrecy codes, J. Cryptology 2 (1990) 23-49.

[^0]: ${ }^{1}$ I wish to thank Tran van Trung for introducing me to this subject.

