A family of perpendicular arrays achieving perfect 4-fold secrecy

Jürgen Bierbrauer

Institut für Reine Mathematik, Universität Heidelberg, Im Neuenheimer Feld 288, W-6900 Heidelberg 1, Germany

Received 12 July 1991
Revised 6 December 1991

1. Introduction

A perpendicular array $PA_\lambda(t, k, v)$ is a $\lambda(\ell)$ by k array A of v distinct symbols, which satisfies:

(i) every row of A contains k distinct symbols,

(ii) for any t columns, and for any t distinct symbols, there are precisely λ rows with the given symbols in the given columns.

Such a structure may also be described as a λ-uniform, t-homogeneous set of injective mappings from a k-set into a v-set.

A close connection with t-designs is obvious. In contrast to the situation with designs, it is not clear if a perpendicular t-array $PA_\lambda(t, k, v)$ is also a perpendicular s-array $PA_{\lambda(s)}(t, k, v)$ for $s < t$, where

$$\lambda(s) = \lambda \times \frac{v-s}{t-s} \binom{t}{s}$$

If this is the case for all $s \leq t$, we shall call A an inductive perpendicular array.

Especially a necessary condition for the existence of an inductive $PA_\lambda(t, k, v)$ is

$$\lambda \times \begin{pmatrix} v-s \\ t-s \end{pmatrix} \equiv 0 \pmod{\begin{pmatrix} t \\ s \end{pmatrix}}.$$

An application to cryptography was given in [7, proof of Theorem 2.3], where it was shown that an inductive $PA_\lambda(t, k, v)$ gives rise to a cryptocode for k source states with v messages and $\lambda(\ell)$ encoding rules, which achieves perfect t-fold secrecy.
No infinite family of inductive perpendicular t-arrays with $t > 3$ and reasonably small λ seems to be known. In [6] the marriage theorem is used to construct PA's from t-designs with $k = t + 1$. Especially Alltop's series of 4-designs with parameters $4 - (2^f + 1, 5, 5)$ (see [1]) yields $PA_1(4, 5, 2^f + 1)$ and the (nonsimple) designs with parameters $5 - (2^f + 2, 6, 15)$ of [4] yield $PA_5(5, 6, 2^f + 2)$ for $f \geq 2$. However, these arrays have no chance to be inductive as the above necessary condition is violated for $s = 3$.

In this paper we use the families of designs with parameters $4 - (2^f + 1, 6, 10)$ (f odd) and $4 - (2^f + 1, 9, 84)$ ($f; 6) = 1$ as constructed in [2, 3] to produce inductive PAS with $t = 4$.

Theorem 1.1. (i) If f is odd, there is an inductive $PA_{12}(4, 6, 2^f + 1)$.

(ii) If $(f, 6) = 1$, there is an inductive $PA_{36}(4, 9, 2^f + 1)$.

This construction is possible because the designs are highly symmetric. They are defined on the projective line and have the projective group $PGL(2, 2^f)$ as their group of automorphisms.

Corollary 1.2. (i) Let f be odd. Then there is a cryptocode for 6 source states with $2^f + 1$ messages and $12(2^f + 1)$ encoding rules, which achieves perfect 4-fold secrecy.

(ii) If $(f, 6) = 1$, there is a cryptocode for 9 source states with $2^f + 1$ messages and $36(2^f + 1)$ encoding rules, which achieves perfect 4-fold secrecy.

It is not clear if a variation of our method could produce inductive PAs with the same values of t, k, v and smaller λ. The necessary conditions given above show that λ must be even.1

2. Constructions and proofs

Let $q = 2^f, f$ odd. Consider the operation of the projective group $G = PGL(2, q)$ on the projective line $PG(1, q)$. Elements of order 3 are fixed-point-free. Define blocks of a design B_1 to be unions of two point-orbits of elements of order 3 in G. We get a design with parameters $4 - (q + 1, 6, 10)$ (see [2]). It was shown in [2] that blocks of B_1 are exactly the 6-subsets of $PG(1, q)$ which have the symmetric group S_3 as stabilizer in G. If B is such a block, we write $B = B_1 \cup B_2$, where B_1 and B_2 are orbits of the group of order 3 operating on B. We call B_1, B_2 the **triples** of B.

Definition 2.1. Let $q = 2^f, f$ odd. The array A_1 with 6 columns and $PG(1, q)$ as set of symbols is defined as follows.

From each block $B \in B_1$ construct a row, where the triples of B are written in the first three and the last three positions, respectively. Then every such row is replaced

1 I wish to thank Tran van Trung for introducing me to this subject.
A family of perpendicular arrays

by an 18×6 array $A_1(B)$ consisting of the images of the initial row under the action of the wreath-product $Z_3 \wr Z_2$ with the first and last three columns as regions of imprimitivity.

Remark that $A_1(B)$ is not uniquely determined by B.

Theorem 2.2. Let $q = 2^f$, f odd. The array A_1 is an inductive

\[PA_{12}(4, 6, q+1). \]

Proof. It is sufficient to show that A_1 is a $PA_{12}(4, 6, q+1)$ and a $PA_{3(q-2)}(3, 6, q+1)$. (see [5, Theorem 1.1].)

(1) Consider first the case $t = 3$. Only two 3-subsets T of columns have to be considered:

(a) Let $T = \{1, 2, 3\}$, $S = \{\infty, 0, 1\}$. Whichever symbol of S appears in column 4 (three choices), there remain $q - 2$ choices for the symbol in column 3. We have $3(q - 2)$ blocks $B \ni S$ in the appropriate position. The array $A_1(B)$ has exactly one row with a given symbol in column 4 and a given set of symbols in columns 1, 2.

(b) Let $T = \{1, 2, 4\}$, $S = \{0, 1, a\}$. Whichever symbol of S appears in column 4 (three choices), there remain $q - 2$ choices for the symbol in column 3. We have $3(q - 2)$ blocks $B \ni S$ in the appropriate position. The array $A_1(B)$ has exactly one row with a given symbol in column 4 and a given set of symbols in columns 1, 2.

(2) Consider the case $t = 4$. We have two essentially different 4-sets of columns. The sets of symbols appearing there may be chosen to be $S = \{\infty, 0, 1, a\}$.

(a) Let $T = \{1, 2, 3, 4\}$. There are four blocks $B \ni S$ having one of their triples in S. Each such block contributes three lines of $A_1(B)$ to our counting problem.

(b) Let $T = \{1, 2, 4, 5\}$. There are six blocks $B \ni S$ having no triple in S. Each corresponding $A_1(B)$ contributes two rows to our problem.

Let $q = 2^f$, $(f; 6) = 1$. In [3] we constructed a block design, here called B_2, with parameters $4 - (q + 1, 9, 84)$, whose blocks are the unions of the nonregular and a regular orbit of a subgroup S_3 of G. If B is a block of B_2, K the stabilizer of B in G, we write $B = B_0 \cup B_1 \cup B_2$, where B_0 is the nonregular orbit of K and B_1, B_2 are orbits of the subgroup of order 3 of K. Let us call B_1, B_2 the triples of B, and B_0 the center of B.

Definition 2.3. Let $q = 2^f$, $(f; 6) = 1$. The array A_2 with 9 columns and entries from $PG(1, q)$ is defined as follows. Every block $B \in B_2$ yields a row, where the center of B appears in the first three columns, the triples in the middle and final three columns, respectively. Then each such row is replaced by a 54×9 array $A_3(B)$ consisting of the images of the initial row under the action of the group $Z_3 \times (Z_3 \wr Z_2)$ of order 54, operating in the natural way.
Theorem 2.4. Let $q = 2^f$, $(f, 6) = 1$. The array A_2 is an inductive $PA_{36}(4, 9, q + 1)$.

Proof. By [5, Theorem 1.1] it suffices to show that A_2 is a $PA_{36}(4, 9, q + 1)$. Let T be a set of four columns, S a set of four entries. We can choose, without restriction, $S = \{\infty, 0, 1, a\}$. We have to count the rows of A_2, where the symbols from S appear in the positions of T. The expected number is 36. If $T \subset \{4, 5, 6, 7, 8, 9\}$, we are done, by Theorem 1, for by deleting the first three columns of A_2 we get three copies of A_1. Five essentially different cases of T have to be considered.

Case 1: $T = \{1, 2, 3, 4\}$. There are exactly four blocks B containing S and having their center in S. Each such $A_2(B)$ contributes 9 rows to our counting problem.

Case 2: $T = \{1, 2, 4, 5\}$. We have to count blocks $B \supset S$ having two center points and two points of a triple in S. This reverts to Case (2(b)) of the proof of Theorem 2.2. We counted 6 blocks there. Here the order, in which the pairs of elements of S occur, has to be taken into account. We get 12 blocks in our case. Each corresponding $A_2(B)$ produces three rows which we have to count.

Case 3: $T = \{1, 2, 4, 7\}$. We use the counting done in the proof of the main theorem of [3]. Cases 2 and 3 in the present situation correspond to case $d = 2$ in [3]. Thus we get $30 - 12 = 18$ blocks $B \supset S$ having two center points in S and having the two remaining points of S in different triples. The array $A_2(B)$ contributes 2 rows to our problem for every such B.

Case 4: $T = \{1, 4, 5, 6\}$. Obviously, there are four blocks $B \supset S$ having a triple in S and a center point in S. Each corresponding $A_2(B)$ contributes 9 rows.

Case 5: $T = \{1, 4, 5, 7\}$. By case $d = 1$ of the proof of the main theorem of [3], which corresponds to Cases 4 and 5 here, there are 36 blocks B in the proper position with respect to S. Each corresponding array $A_2(B)$ contributes exactly one row.

References