Discrete Mathematics 125 (1994) 63-66 North-Holland 63

A family of perpendicular arrays achieving perfect 4-fold secrecy

Jürgen Bierbrauer

Institut für Reine Mathematik, Universität Heidelberg, Im Neuenheimer Feld 288, W-6900 Heidelberg 1, Germany

Received 12 July 1991 Revised 6 December 1991

1. Introduction

A perpendicular array $PA_{\lambda}(t, k, v)$ is a $\lambda(v)$ by k array A of v distinct symbols, which satisfies:

(i) every row of A contains k distinct symbols,

(ii) for any t columns, and for any t distinct symbols, there are precisely λ rows with the given symbols in the given columns.

Such a structure may also be described as a λ -uniform, t-homogeneous set of injective mappings from a k-set into a v-set.

A close connection with t-designs is obvious. In contrast to the situation with designs, it is not clear if a perpendicular t-array $PA_{\lambda}(t, k, v)$ is also a perpendicular s-array $PA_{\lambda(s)}(t, k, v)$ for s < t, where

$$\lambda(s) = \lambda \times \binom{v-s}{t-s} / \binom{t}{s}.$$

If this is the case for all $s \le t$, we shall call A an *inductive perpendicular array*. Especially a necessary condition for the existence of an inductive $PA_{\lambda}(t, k, v)$ is

$$\lambda \times {\binom{v-s}{t-s}} \equiv 0 \left(\mod {\binom{t}{s}} \right).$$

An application to cryptography was given in [7, proof of Theorem 2.3], where it was shown that an inductive $PA_{\lambda}(t, k, v)$ gives rise to a cryptocode for k source states with v messages and $\lambda(t)^{v}$ encoding rules, which achieves *perfect t-fold secrecy*.

Correspondence to: Jürgen Bierbrauer, Institut fur Reine Mathematik, Universitat Heidelberg, Im Neuenheimer Feld 288, W-6900 Heidelberg 1, Germany.

⁰⁰¹²⁻³⁶⁵X/94/\$07.00 © 1994—Elsevier Science B.V. All rights reserved SSDI 0012-365X(92)00181-6

J. Bierbrauer

No infinite family of inductive perpendicular *t*-arrays with t > 3 and reasonably small λ seems to be known. In [6] the marriage theorem is used to construct PA's from *t*-designs with k = t + 1. Especially Alltop's series of 4-designs with parameters $4 - (2^f + 1, 5, 5)$ (see [1]) yields $PA_1(4, 5, 2^f + 1)$ and the (nonsimple) designs with parameters $5 - (2^f + 2, 6, 15)$ of [4] yield $PA_5(5, 6, 2^f + 2)$ for $f \ge 2$. However, these arrays have no change to be inductive as the above necessary condition is violated for s = 3.

In this paper we use the families of designs with parameters $4 - (2^f + 1, 6, 10)$ (f odd) and $4 - (2^f + 1, 9, 84)$ ((f, 6) = 1) as constructed in [2, 3] to produce inductive PAs with t = 4.

Theorem 1.1. (i) If f is odd, there is an inductive $PA_{12}(4, 6, 2^{f} + 1)$. (ii) If (f, 6) = 1, there is an inductive $PA_{36}(4, 9, 2^{f} + 1)$.

This construction is possible because the designs are highly symmetric. They are defined on the projective line and have the projective group $P\Gamma L(2, 2^{f})$ as their group of automorphisms.

Corollary 1.2. (i) Let f be odd. Then there is a cryptocode for 6 source states with $2^{f} + 1$ messages and $12\binom{2^{f}+1}{4}$ encoding rules, which achieves perfect 4-fold secrecy.

(ii) If (f, 6) = 1, there is a cryptocode for 9 source states with $2^{f} + 1$ messages and $36\binom{2^{f}+1}{4}$ encoding rules, which achieves perfect 4-fold secrecy.

It is not clear if a variation of our method could produce inductive PAs with the same values of t, k, v and smaller λ . The necessary conditions given above show that λ must be even.¹

2. Constructions and proofs

Let $q = 2^{f}$, f odd. Consider the operation of the projective group G = PGL(2, q) on the projective line PG(1, q). Elements of order 3 are fixed-point-free. Define blocks of a design B_1 to be unions of two point-orbits of elements of order 3 in G. We get a design with parameters 4 - (q + 1, 6, 10) (see [2]). It was shown in [2] that blocks of B_1 are exactly the 6-subsets of PG(1, q) which have the symmetric group S_3 as stabilizer in G. If B is such a block, we write $B = B_1 \cup B_2$, where B_1 and B_2 are orbits of the group of order 3 operating on B. We call B_1, B_2 the triples of B.

Definition 2.1. Let $q = 2^{f}$, f odd. The array A_1 with 6 columns and PG(1, q) as set of symbols is defined as follows.

From each block $B \in B_1$ construct a row, where the triples of B are written in the first three and the last three positions, respectively. Then every such row is replaced

¹ I wish to thank Tran van Trung for introducing me to this subject.

by an 18×6 array $A_1(B)$ consisting of the images of the initial row under the action of the wreath-product $Z_3 \wr Z_2$ with the first and last three columns as regions of imprimitivity.

Remark that $A_1(B)$ is not uniquely determined by B.

Theorem 2.2. Let $q = 2^{f}$, f odd. The array A_{1} is an inductive

 $PA_{12}(4, 6, q+1).$

Proof. It is sufficient to show that A_1 is a $PA_{12}(4, 6, q+1)$ and a $PA_{3(q-2)}(3, 6, q+1)$. (see [5, Theorem 1.1]).

(1) Consider first the case t=3. Only two 3-subsets T of columns have to be considered:

(a) Let $T = \{1, 2, 3\}$, S a set of 3 elements of PG(1, q). Then S determines a unique subgroup of order 3 of G having S as an orbit. Thus there are exactly (q-2)/3 blocks B having S as one of their triples. If B is such a block, then $A_1(B)$ contributes 9 rows with S in the first three columns.

(b) Let $T = \{1, 2, 4\}$, $S = \{\infty, 0, 1\}$. Whichever symbol of S appears in column 4 (three choices), there remain q-2 choices for the symbol in column 3. We have 3(q-2) blocks $B \supset S$ in the appropriate position. The array $A_1(B)$ has exactly one row with a given symbol in column 4 and a given set of symbols in columns 1, 2.

(2) Consider the case t = 4. We have two essentially different 4-sets of columns. The sets of symbols appearing there may be chosen to be $S = \{\infty, 0, 1, a\}$.

(a) Let $T = \{1, 2, 3, 4\}$. There are four blocks $B \supset S$ having one of their triples in S. Each such block contributes three lines of $A_1(B)$ to our counting problem.

(b) Let $T = \{1, 2, 4, 5\}$. There are six blocks $B \supset S$ having no triple in S. Each corresponding $A_1(B)$ contributes two rows to our problem.

Let $q=2^f$, (f, 6)=1. In [3] we constructed a block design, here called B_2 , with parameters 4-(q+1, 9, 84), whose blocks are the unions of the nonregular and a regular orbit of a subgroup S_3 of G. If B is a block of B_2 , K the stabilizer of B in G, we write $B=B_0 \cup B_1 \cup B_2$, where B_0 is the nonregular orbit of K and B_1 , B_2 are orbits of the subgroup of order 3 of K. Let us call B_1 , B_2 the triples of B, and B_0 the center of B.

Definition 2.3. Let $q=2^{f}$, (f, 6)=1. The array A_{2} with 9 columns and entries from PG(1, q) is defined as follows. Every block $B \in B_{2}$ yields a row, where the center of B appears in the first three columns, the triples in the middle and final three columns, respectively. Then every such row is replaced by a 54×9 array $A_{2}(B)$ consisting of the images of the initial row under the action of the group $Z_{3} \times (Z_{3} \setminus Z_{2})$ of order 54, operating in the natural way.

J. Bierbrauer

Theorem 2.4. Let $q = 2^{f}$, (f, 6) = 1. The array A_{2} is an inductive

 $PA_{36}(4, 9, q+1)$.

Proof. By [5, Theorem 1.1] it suffices to show that A_2 is a $PA_{36}(4, 9, q+1)$. Let T be a set of four columns, S a set of four entries. We can choose, without restriction, $S = \{\infty, 0, 1, a\}$. We have to count the rows of A_2 , where the symbols from S appear in the positions of T. The expected number is 36. If $T \subset \{4, 5, 6, 7, 8, 9\}$, we are done, by Theorem 1, for by deleting the first three columns of A_2 we get three copies of A_1 . Five essentially different cases of T have to be considered.

Case 1: $T = \{1, 2, 3, 4\}$. There are exactly four blocks B containing S and having their center in S. Each such $A_2(B)$ contributes 9 rows to our counting problem.

Case 2: $T = \{1, 2, 4, 5\}$. We have to count blocks $B \supset S$ having two center points and two points of a triple in S. This reverts to Case (2(b)) of the proof of Theorem 2.2. We counted 6 blocks there. Here the order, in which the pairs of elements of S occur, has to be taken into account. We get 12 blocks in our case. Each corresponding $A_2(B)$ produces three rows which we have to count.

Case 3: $T = \{1, 2, 4, 7\}$. We use the counting done in the proof of the main theorem of [3]. Cases 2 and 3 in the present situation correspond to case d = 2 in [3]. Thus we get 30-12=18 blocks $B \supset S$ having two center points in S and having the two remaining points of S in different triples. The array $A_2(B)$ contributes 2 rows to our problem for every such B.

Case 4: $T = \{1, 4, 5, 6\}$. Obviously, there are four blocks $B \supset S$ having a triple in S and a center point in S. Each corresponding $A_2(B)$ contributes 9 rows.

Case 5: $T = \{1, 4, 5, 7\}$. By case d = 1 of the proof of the main theorem of [3], which corresponds to Cases 4 and 5 here, there are 36 blocks *B* in the proper position with respect to *S*. Each corresponding array $A_2(B)$ contributes exactly one row.

References

- [1] W.O. Alltop, An infinite class of 4-designs, J. Combin. Theory 6 (1969) 320-322.
- [2] J. Bierbrauer, A new family of 4-designs, Discrete Math., to appear.
- [3] J. Bierbrauer, A family of 4-designs with block-size 9, Discrete Math., submitted.
- [4] D. Jungnickel and S.A. Vanstone, Hyperfactorizations of graphs and 5-designs, Research Report CORR 85-24 (University of Warterloo, Waterloo, 1985).
- [5] E.S. Kramer, D.L. Kreher, R. Rees and D.R. Stinson, On perpendicular arrays with t≥3, Ars Combin. 28 (1989) 215-223.
- [6] E.S. Kramer, S. Magliveras, T. van Trung and Q. Wu, Some perpendicular arrays for arbitrarily large t, manuscript.
- [7] D.R. Stinson, The combinatorics of authentication and secrecy codes, J. Cryptology 2 (1990) 23-49.

66