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1. Introduction 

A perpendicular array PA,(t, k, u) is a n(y) by k array A of u distinct symbols, which 
satisfies: 

(i) every row of A contains k distinct symbols, 
(ii) for any t columns, and for any t distinct symbols, there are precisely 2 rows with 

the given symbols in the given columns. 
Such a structure may also be described as a A-uniform, t-homogeneous set of 

injective mappings from a k-set into a u-set. 
A close connection with t-designs is obvious. In contrast to the situation with 

designs, it is not clear if a perpendicular t-array PA,(t, k, u) is also a perpendicular 
s-array PA,,&, k, u) for SC t, where 

If this is the case for all s < t, we shall call A an inductive perpendicular array. 
Especially a necessary condition for the existence of an inductive PA,@, k, u) is 

Lx@Is)-0 (mod(:)). 

An application to cryptography was given in [7, proof of Theorem 2.31, where it 
was shown that an inductive PA,@, k, u) gives rise to a cryptocode for k source states 
with u messages and J_(y) encoding rules, which achieves perfect t-fold secrecy. 
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No infinite family of inductive perpendicular t-arrays with t > 3 and reasonably small 

2 seems to be known. In [6] the marriage theorem is used to construct PA’s from t-designs 

with k = t + 1. Especially Alltop’s series of 4-designs with parameters 4 - (2f + 1, 5,5) (see 

[ 11) yields PA1 (4,5,2* + 1) and the (nonsimple) designs with parameters 5 - (2f + 2,6, 15) 

of [4] yield PA,(5,6,2f+ 2) for fa 2. However, these arrays have no change to be 

inductive as the above necessary condition is violated for s = 3. 

In this paper we use the families of designs with parameters 4-(2f + 1,6, 10) (fodd) 

and 4 - (2f + 1,9,84) ((f; 6) = 1) as constructed in [2,3] to produce inductive PAS with 

t=4. 

Theorem 1.1. (i) Iff is odd, there is an inductioe PA,,(4, 6, 25+ 1). 

(ii) If(f; 6)= 1, there is an inductive PA36(4r 9, 2f+ 1). 

This construction is possible because the designs are highly symmetric. They are 

defined on the projective line and have the projective group PTL(2,2’) as their group 

of automorphisms. 

Corollary 1.2. (i) Let f be odd. Then there is a cryptocode for 6 source states with 2f + 1 
messages and 12(“4’ ‘) encoding rules, which achieves perfect 4-fold secrecy. 

(ii) If (f, 6)= 1, there is a cryptocode for 9 source states with 2f + 1 messages and 

36( “,’ ‘) encoding rules, which achieves perfect 4-fold secrecy. 

It is not clear if a variation of our method could produce inductive PAS with the 

same values of t, k, u and smaller A. The necessary conditions given above show that 

2 must be even.’ 

2. Constructions and proofs 

Let q = 2f, f odd. Consider the operation of the projective group G = PGL(2, q) on 

the projective line PG(l, q). Elements of order 3 are fixed-point-free. Define blocks of 

a design B, to be unions of two point-orbits of elements of order 3 in G. We get 

a design with parameters 4-(q+ 1, 6, 10) (see [2]). It was shown in [2] that blocks of 

B1 are exactly the 6-subsets of PG(l, q) which have the symmetric group S3 as 

stabilizer in G. If B is such a block, we write B = B 1 u B2, where B 1 and B2 are orbits of 

the group of order 3 operating on B. We call B1, B2 the triples of B. 

Definition 2.1. Let q=2f, f odd. The array A1 with 6 columns and PG(l, q) as set of 

symbols is defined as follows. 

From each block BEB, construct a row, where the triples of B are written in the 

first three and the last three positions, respectively. Then every such row is replaced 

1 I wish to thank Tran van Trung for introducing me to this subject. 
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by an 18 x 6 array A,(B) consisting of the images of the initial row under the action 
of the wreath-product Z3\Zz with the first and last three columns as regions of 
imprimitivity. 

Remark that A,(B) is not uniquely determined by B. 

Theorem 2.2. Let q =2f, f odd. The array A, is an inductive 

PA,,(4,6, q+ 1). 

Proof. It is sufficient to show that Al is a PA12(4, 6, q+ 1) and a PA,,,_,,(3, 6, q+ 1). 
(see [S, Theorem 1.11). 

(1) Consider first the case t = 3. Only two 3-subsets T of columns have to be 
considered: 

(a) Let T= { 1,2,3}, S a set of 3 elements of PG(l, q). Then S determines a unique 
subgroup of order 3 of G having S as an orbit. Thus there are exactly (q - 2)/3 blocks 
B having S as one of their triples. If B is such a block, then A,(B) contributes 9 rows 
with S in the first three columns. 

(b) Let T= { 1,2,4}, S= {co, 0, l}. Whichever symbol of S appears in column 4 
(three choices), there remain q - 2 choices for the symbol in column 3. We have 3(q - 2) 

blocks B 1 S in the appropriate position. The array A,(B) has exactly one row with 
a given symbol in column 4 and a given set of symbols in columns 1,2. 

(2) Consider the case t = 4. We have two essentially different 4-sets of columns. The 
sets of symbols appearing there may be chosen to be S= {co, 0, 1, a}. 

(a) Let T= { 1,2, 3,4}. There are four blocks B 1 S having one of their triples in S. 
Each such block contributes three lines of A,(B) to our counting problem. 

(b) Let T= { 1,2,4, 5). There are six blocks B I S having no triple in S. Each 
corresponding A,(B) contributes two rows to our problem. 0 

Let q=2f, (f, 6)= 1. In [3] we constructed a block design, here called B2, with 
parameters 4-(q+ 1,9,84), whose blocks are the unions of the nonregular and 
a regular orbit of a subgroup S3 of G. If B is a block of B,, K the stabilizer of B 

in G, we write B = BO u B1 u B2, where BO is the nonregular orbit of K and B1, Bz are 
orbits of the subgroup of order 3 of K. Let us call B1, B, the triples of B, and B,, the 
center of B. 

Definition 2.3. Let q=2f, (f; 6)= 1. The array A2 with 9 columns and entries from 
PG(l, q) is defined as follows. Every block BEB, yields a row, where the center of 
B appears in the first three columns, the triples in the middle and final three columns, 
respectively. Then every such row is replaced by a 54 x 9 array A,(B) consisting of the 
images of the initial row under the action of the group Z3 x (Z, <Z,) of order 54, 
operating in the natural way. 
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Theorem 2.4. Let q=2f, (J; 6)= 1. The array A2 is an inductive 

P&(4,9,4 + 1). 

Proof. By [S, Theorem 1.11 it suffices to show that A2 is a PAs6(4, 9, q+ 1). Let T 
be a set of four columns, S a set of four entries. We can choose, without restriction, 

S= {co, 0, 1, a}. We have to count the rows of A z, where the symbols from S appear in 

the positions of T. The expected number is 36. If T c {4,5,6,7,8,9}, we are done, by 

Theorem 1, for by deleting the first three columns of A2 we get three copies of A,. Five 

essentially different cases of T have to be considered. 

Case 1: T= { 1,2,3,4}. There are exactly four blocks B containing S and having 

their center in S. Each such A,(B) contributes 9 rows to our counting problem. 

Case 2: T= { 1,2,4,5>. We have to count blocks B =) S having two center points 

and two points of a triple in S. This reverts to Case (2(b)) of the proof of Theorem 2.2. 

We counted 6 blocks there. Here the order, in which the pairs of elements of S occur, 

has to be taken into account. We get 12 blocks in our case. Each corresponding A,(B) 

produces three rows which we have to count. 

Case 3: T= { 1,2,4,7}. We use the counting done in the proof of the main theorem 

of [3]. Cases 2 and 3 in the present situation correspond to case d = 2 in [3]. Thus we 

get 30- 12 = 18 blocks B 1 S having two center points in S and having the two 

remaining points of S in different triples. The array A,(B) contributes 2 rows to our 

problem for every such B. 

Case 4: T= { 1,4, 5,6). Obviously, there are four blocks B 3 S having a triple in 

S and a center point in S. Each corresponding A,(B) contributes 9 rows. 

Case 5: T= { 1,4,5,7}. By case d = 1 of the proof of the main theorem of [3], which 

corresponds to Cases 4 and 5 here, there are 36 blocks B in the proper position with 

respect to S. Each corresponding array A,(B) contributes exactly one row. 
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