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Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than 
the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change 
is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-
invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and 
discuss the different phenomenological consequences of the new physics. These are qualitatively different 
from other sources of unitarity violation discussed in the literature.
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Neutrino oscillations, first unambiguously observed towards the 
end of the twentieth century, have proven to be a powerful tool 
for fundamental physics research. Their observations revolution-
ized our understanding of neutrinos, revealing that these have tiny 
but nonzero masses. Moreover, they can be used to reveal new 
phenomena including the existence of new, weaker-than-weak in-
teractions involving neutrinos and ordinary matter – which lead to 
non-standard matter effects [1] – or the existence of light ster-
ile neutrinos or new contributions to the charged-current weak 
interactions – which lead to different non-unitary 3 × 3 leptonic 
mixing matrices [2–5]. Neutrino oscillations also provide powerful 
testbeds of some of the most basic assumptions of fundamen-
tal physics [6], including tests of whether neutrino propagation is 
Lorentz invariant [7], whether neutrinos obey the CPT-theorem [7,
8], whether there are exotic sources of decoherence in the time-
evolution of the neutrino states [9,10], etc.

In this letter, we explore the consequences of the hypothesis 
that the neutrino propagation Hamiltonian is not Hermitian. When 
applied to the active neutrinos, these include new parameters for 
neutrino oscillation observables that are not captured by the dif-
ferent scenarios considered in the literature to date. We compute 
the transition probabilities, concentrating on the case where the 
non-unitary effects are small, and discuss the different qualitative 
aspects of the associated phenomenology.

It is important to stress that non-unitary time evolution need 
not be an extravagant hypothesis. Neutrino propagation is non-
unitary if one takes into account the possibility that neutrinos 
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interact with and decay into other generic light states; a general-
ization of what is known to occur in the neutral kaon system [11]. 
A similar version of this phenomenon is also realized in resonant 
leptogenesis [12].

We start by postulating that the neutrino states involved in the 
production and detection processes are orthonormal. Generically, 
we refer to these as flavor eigenstates |να〉 and our assumption 
amounts to imposing

〈να |νβ〉 = δαβ, (1)

where α, β are flavor indices. For the case of the light, active 
neutrinos of the Standard Model (SM), this assumption certainly 
holds true if both production and detection occur via the standard 
charged-current weak interactions and there are no additional neu-
trino states. In that case, α, β = e, μ, τ . In practice, this implies that 
as long as the production and detection processes occur through 
the weak interactions, there are no flavor-changing phenomena in 
the limit that the baseline is much shorter than the dimensionful 
parameters that govern propagation, as will become clear momen-
tarily.

It is important to stress the importance of the assumption that 
there are no additional neutral fermions that can mix with the 
three SM flavor states. This assumption sets our framework apart 
from the nonunitarity scenario analyzed in [5] where such an as-
sumption is implicit. In [5], the neutrino state appearing in the 
left-handed charged current along with the lepton α is written 
as the linear combination |να〉 = ∑

i Uαi |νi〉 where i runs over 
all mass eigenstates, including the heavy ones. Since the produc-
tion of physical |νi〉 states is kinematically forbidden if they are 
sufficiently heavy, the linear transformation that carries from the 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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produced flavor state to the orthogonal mass eigenstates is nonuni-
tary.

On the other hand, we shall see below that in our framework 
the implicit assumption is that there is new physics which can 
mediate neutrino decay into as-of-yet-unknown states. The neu-
trino states involved in the weak interaction are those of the SM 
and they are orthogonal much in the same way as kaon states 
produced by strong interactions are orthogonal. In flight, how-
ever, new physics can produce an effectively nonunitary propaga-
tion, playing a role analogous to that played by weak interactions 
in the kaon system.

Neutrino flavor-evolution in space is governed by the usual 
Schrödinger-like equation, valid in the limit of ultra-relativistic 
neutrinos assuming that the initial states are perfectly coherent,

i
d

dL

∣∣να(L)
〉 = [Heff]αβ

∣∣νβ(L)
〉
, (2)

where L is the distance traversed by the neutrino. The effective 
Hamiltonian Heff , which we assume is a generic matrix, can be 
parameterized as

Heff = M − iΓ, (3)

where M and Γ are Hermitian matrices. For Γ = 0, we have stan-
dard oscillations. The eigenvalues of M are, as usual, m2

i /2E , where 
E is the neutrino energy and mi , i = 1, 2, . . . , are real. Γ also has 
real eigenvalues and can be diagonalized by a unitary matrix. We 
explore the most general case where M and Γ cannot be simulta-
neously diagonalized, i.e., the “mass” eigenstates need not coincide 
with the “decay” eigenstates.

Time evolution governed by a non-Hermitian Hamiltonian is 
generically expected if there are new interactions that couple the 
light neutrinos to new, very light many-particle states. We provide 
a quick description of the formalism, which has been developed 
for the kaon system [11,13] and can be readily adapted to neu-
trino propagation. The main difference between the two is that 
in the neutrino case there are no constraints from CPT invariance 
which, for the kaons, lead to some simplifications.

Consider a system consisting of light neutrino states |ν0i〉 along 
with new many-particle states |φ0k〉, with the index k understood 
to run over both discrete and continuous labels required to iden-
tify such states. It is convenient for this analysis to work in the 
mass basis so that |ν0i〉 and |φ0k〉 are eigenstates of a “free parti-
cle” Hamiltonian H0:

H0|ν0i〉 = Ei |ν0i〉, H0|φ0k〉 = E(k)|φ0k〉. (4)

The complete propagation Hamiltonian H of the system is as-
sumed to involve new interactions and can be split into

H = H0 + H ′. (5)

In the context of neutrino oscillations, H0 describes the standard 
propagation Hamiltonian for the neutrino mass eigenstates in the 
absence of new interactions. On the other hand, the new physics 
piece H ′ is completely general. In particular, it can induce transi-
tions between the |ν0i〉 and the |φ0k〉.

At any time t , the state of the system |ψ(t)〉 can be written as 
a linear combination of the light neutrino eigenstates |ν0i〉 and the 
|φ0k〉 as∣∣ψ(t)

〉 = ∑
i

ci(t)|ν0i〉 +
∑

k

Ck(t)|φ0k〉, (6)

The time evolution of |ψ(t)〉 is governed by the Schrödinger equa-
tion

i
d

(
c(t)
C(t)

)
= H

(
c(t)
C(t)

)
, (7)
dt
where c(t) and C(t) are column vectors formed by the coefficients 
ci(t) and Ck(t) respectively. Eq. (7) is exact.

Because H is Hermitian, the evolution of the complete sys-
tem is unitary. Any neutrino produced at time zero satisfies ∑

i |ci(0)|2 = 1, while the probability that it remains a neutrino 
at some time t is Pν→ν = ∑

i |ci(t)|2. It is clear that

Pν→ν =
∑

i

∣∣ci(t)
∣∣2 = 1 −

∑
k

∣∣Ck(t)
∣∣2 ≤ 1, (8)

for all t .1

For the case in which the processes of production and detec-
tion involve only linear combinations of neutrino states |ν0i〉, it 
has proved useful to devise a way to reduce Eq. (7) to a differential 
equation only for the vector c(t). This can be accomplished under 
the Weisskopf–Wigner approximation (WW). WW assumes that the 
spectrum of accessible |φ0k〉 modes is very broad and that the ma-
trix elements of the Hamiltonian with respect to the new states 
〈φ0 j |H ′|φ0k〉 can be neglected. Under these conditions, [13,14]

i
d

dt
c(t) = Heffc(t) = (M − iΓ )c(t), (9)

where M and Γ are Hermitian matrices with matrix elements 
given by [13]

Mij = (Ei − Ē)δi j + 〈
ν0i|H ′|ν0 j

〉
−

∑
k

〈ν0i|H ′|φ0k〉〈φ0k|H ′|ν0 j〉
E(k) − Ē

, (10)

Γi j = π
∑

k

〈ν0i |H ′|φ0k〉〈φ0k|H ′|ν0 j〉δ
(

E(k) − Ē
)
, (11)

and Ē is the average energy of the neutrino beam. Within WW, 
Eq. (3) appears naturally as a result of “integrating out” the new 
states, taking into account that the new states may be on-shell. 
Moreover, it is easy to see that Γ is positive definite. That is, 
WW only yields neutrino states that “decay” into the new states 
but never the other way around. Furthermore, off-diagonal Γi j oc-
cur when different H0 eigenstates can access the same φ0k state, 
i.e., the different neutrino “mass” eigenstates can “decay” into the 
same final state.

In this work we assume that neutrino evolution is dictated by 
Eq. (9), but we are also be interested in violations of WW that may 
invalidate the constraint that Γ is positive definite. In particular, 
these could happen if the matrix elements 〈φ0 j |H ′|φ0k〉 cannot 
be neglected. In other words, we assume that there are conditions 
under which Eq. (9) is a good description of neutrino propagation 
physics while the restriction that Γ is positive definite need not 
apply. On the other hand, Eq. (8) is a consequence of the more 
general hypothesis that the neutrinos mix with new, unidentified 
degrees of freedom, so we pay special attention to what these con-
straints imply. Of course, if one wishes to simply explore how well 
neutrino oscillations are governed by the standard laws of quan-
tum mechanics, no constraints on Γ , other than those imposed by 
experimental data, need apply.

Eq. (9) can be written in the flavor basis, as in Eq. (2), by per-
forming the unitary transformation that links the two orthonormal 
sets of states |ν0i〉 and |να〉. Solving Eq. (2) is straightforward. Let 
N be a generic matrix such that

H̃ = NH N−1, H̃ = diag{h1,h2, . . .}, (12)

1 Note that we make no assumptions about the number of |ν0i〉 states. New 
single-particle states – e.g., sterile neutrinos – would simply imply that there are 
more |ν0i〉 states than active neutrinos.
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where hi are complex numbers, and define the eigenstates |νi〉 of 
the effective Hamiltonian as

|να〉 = Nαi|νi〉. (13)

The matrix N is not uniquely defined by Eq. (13); rescalings of the 
eigenvalues are still possible. In order to define it completely, we 
further impose

〈νi |νi〉 = 1, ∀i. (14)

In general, the states |νi〉 and |ν j〉, i 	= j, are not orthogonal. We 
define

〈νi |ν j〉 ≡ Hij = (I+ δ)i j (15)

where I is the identify matrix, H and δ are Hermitian matrices, 
and δii = 0, ∀i. It is convenient to express N in terms of δ. Eqs. (1)
and (13) imply

N
(
I+ δT )

N† = I, (16)

hence

N
(
I+ δT )1/2 = V , (17)

N = V
(
I+ δT )−1/2

, (18)

where V is a unitary matrix. When δ = 0, N is a unitary ma-
trix and the Hamiltonian eigenstates form an orthonormal basis 
in spite of the fact that the hi are, in general, complex. This special 
case is the one usually considered when one addresses neutrino 
decay (see, for example, [15,16]; for a detailed discussion see [17]). 
It is equivalent to postulating that M and Γ can be simultaneously 
diagonalized, and the eigenvalues of Γ are proportional to the life-
times of the neutrino mass eigenstates.

Γ � M implies δi j � 1 and

N ∼ V
(
I− δT /2

)
. (19)

We will restrict our discussions to this case, unless otherwise 
noted.

The solution to Eq. (2), assuming that the neutrino is in state 
|να〉 at L = 0, is∣∣να(L)

〉 = ∑
i

Nαie
−ihi L(N−1)

iβ |νβ〉, (20)

and the oscillation amplitudes are

Aαβ = 〈
να

∣∣νβ(t)
〉 = Ne−iH̃ L N−1, (21)

trivially related to the oscillation “probabilities,” Pαβ ≡ |Aαβ |2, 
which are the observables directly accessible to neutrino oscilla-
tion experiments.

Eq. (21) leads to unitarity-violating effects that are qualita-
tively different from postulating the existence of new oscillation 
lengths (i.e., light sterile neutrinos), or postulating that the weak-
interaction eigenstates are not orthogonal [3,5]. Some of the dif-
ferences are easy to spot. For instance Eq. (21) does not allow for 
any flavor change in the limit L → 0 (N N−1 ≡ I even if N is not 
unitary!), unlike the effects discussed in [5]. Also, Eq. (21) does 
not contain any new oscillation lengths: the new dimensionful pa-
rameters lead to exponential decay (or growth) of Pαβ , as will be 
discussed in more detail in the next paragraphs.

It is instructive to discuss the case of two neutrino flavors in 
detail in order to illustrate the phenomena described by Eq. (21). 
In this case, we define

〈ν1|ν2〉 ≡ εeiζ , (22)
where ε, ζ are real and positive, ζ ∈ [0, 2π). Further defining 
h1,2 = a1,2 − ib1,2 and parameterizing the 2 × 2 unitary matrix V
with the mixing angle θ , in the usual way,2 we find

N ∼
(

cos θ sin θ

− sin θ cos θ

)(
1 − 1

2εe−iζ

− 1
2εeiζ 1

)
, (23)

keeping in mind that ε � 1. Setting α, β = e, μ for the sake of 
definiteness we find the oscillation probabilities

Pee = e−2b1 L cos4 θ + e−2b2 L sin4 θ

+ 1

2
e−(b1+b2)L sin 2θ[sin 2θ cos�L − 2ε sin ζ sin�L], (24)

Peμ = 1

4

(
e−2b2 L + e−2b1 L − 2e−(b1+b2)L cos�L

)
× sin 2θ(sin 2θ − 2ε cos ζ ), (25)

Pμe = 1

4

(
e−2b2 L + e−2b1 L − 2e−(b1+b2)L cos�L

)
× sin 2θ(sin 2θ + 2ε cos ζ ), (26)

Pμμ = e−2b2 L cos4 θ + e−2b1 L sin4 θ

+ 1

2
e−(b1+b2)L sin 2θ[sin 2θ cos�L + 2ε sin ζ sin�L],

(27)

where � = a2 − a1 plays the role of �m2/2E in the standard case 
and can be chosen positive. The expressions above ignore terms of 
O(ε2), an approximation that is not appropriate in the limit θ → 0. 
The two new dimensionful parameters b1,2 lead to the exponen-
tial decay/growth of all oscillations probabilities. Lorentz invariance 
dictates that bi ∝ di/E , where d1,2 are constants with dimensions 
of mass-squared. In the limit ε → 0 we recover the well-known 
expressions for neutrino oscillations under the assumption that the 
neutrino mass eigenstates have a finite lifetime. In the more gen-
eral case where the “mass” eigenstates do not coincide with the 
“decay” eigenstates, ε 	= 0 and the non-unitarity of the propaga-
tion leads to new “mixing” parameters, ε and ζ .

As discussed earlier, the physics responsible for Γ 	= 0 imposes 
constraints on the different parameters. In the two-flavor case, in 
the basis where M is diagonal with diagonal elements a1 and a2
(chosen positive), Γii = bi in the limit Γi j � a1, a2, ∀i, j. In the 
same basis, defining Γ12 = Γ ∗

21 = b,

εeiζ = −2ib

�
. (28)

In the context of the Weisskopf–Wigner approximation, Γ is con-
strained to be positive-definite: b1, b2 > 0, b1b2 ≥ |b|2. In turn, 
these imply that ε ≤ 2

√
b1b2/�.

The less stringent constraint 
∑

β Pαβ ≤ 1, for all α, translates 
into b1, b2 ≥ 0 and

ε ≤ Cζ

b1 cot θ + b2 tan θ

�
∩ ε ≤ C ′

ζ

b2 cot θ + b1 tan θ

�
, (29)

where Cζ , C ′
ζ are O(1) non-illuminating functions of ζ such that 

1 < Cζ � 2. This constraint allows for ε 	= 0 as long as both 
b1, b2 	= 0. Importantly and opposed to the case in which WW 
is assumed, we find that for small mixing (sin 2θ � 1), ε values 
larger than b1,2/� are allowed. This is potentially relevant for the 
“1 − 3 sector,” as well as for the application of this formalism to 
sterile neutrinos.

2 It is straightforward to show that, like in the standard unitary-case, potential 
“Majorana phases” in V play no role in neutrino oscillations, even for δ 	= 0.



J.M. Berryman et al. / Physics Letters B 742 (2015) 74–79 77
Regardless of the origin of Γ , it is instructive to consider the 
case |b1L|, |b2L| → 0. Under these circumstances

Pee = 1 − sin2 2θ sin2(�L/2) − sin 2θ(ε sin ζ ) sin �L, (30)

Peμ = sin 2θ(sin 2θ − 2ε cos ζ ) sin2(�L/2), (31)

Pμe = sin 2θ(sin 2θ + 2ε cos ζ ) sin2(�L/2), (32)

Pμμ = 1 − sin2 2θ sin2(�L/2) + sin 2θ(ε sin ζ ) sin �L. (33)

Note that these are only good approximations in scenarios where ∑
β Pαβ > 1, in which case Pαβ need to be carefully reinterpreted 

as they cannot stand, mathematically speaking, for probabilities. 
Nonetheless, the above expressions are easy to explore – only two 
new dimensionless parameters appear – and are useful in order to 
illustrate the consequences of ε, ζ 	= 0.

Some interesting features are worthy of note. Even when the 
decay effects are “turned off,” unitarity is violated – Pee + Peμ 	= 1
– along with, in the case ζ 	= π/2, 3π/2, time-reversal invari-
ance – Peμ 	= Pμe . The oscillation length is the same for all Pαβ , 
Losc = 2π/�, but the survival probabilities are “out of phase”, i.e., 
maxima and minima do not correspond to L = nLosc, for natural n. 
The amplitudes of the oscillations – differences between the small-
est and largest Pαβ – for appearance and disappearance are also 
different. For example

Aee = sin2 2θ

√
1 +

(
2ε sin ζ

sin 2θ

)2

, (34)

Aμe = sin2 2θ

(
1 + 2ε cos ζ

sin 2θ

)
. (35)

A measurement of νe disappearance can report an effective mixing 
angle sin2 2θeff ≡ Aαβ that is different from that observed in ap-
pearance experiments. For example, if 2ε � sin 2θ , non-unitarity 
effects in disappearance are much smaller than those in appear-
ance, unless cos ζ is very small.

Under a CP-transformation N → (N−1)T , so antineutrinos are 
governed by the same differential equation except for ζ → π − ζ , 
i.e., sin ζ → sin ζ , cos ζ → − cos ζ . For example, ignoring term of 
O(ε2),

Pēē = e−2b1 L cos4 θ + e−2b2 L sin4 θ

+ 1

2
e−(b1+b2)L sin 2θ[sin 2θ cos�L − 2ε sin ζ sin�L], (36)

P μ̄ē = 1

4

(
e−2b2 L + e−2b1 L − 2e−(b1+b2)L cos�L

)
× sin 2θ(sin 2θ − 2ε cos ζ ). (37)

As expected, CPT-invariance is preserved, i.e., Pαβ = P β̄ᾱ , while CP-
invariance is not unless ζ = π/2, 3π/2. Non-unitary propagation 
leads to new CP-invariance-violating phenomena, even in the two-
flavor case.

CP-invariance and T-invariance violation are also present, as 
long as ε cos ζ 	= 0, in the regime where the oscillatory terms av-
erage out, i.e., �L � 1. In this case,

Pee = e−2b1 L cos4 θ + e−2b2 L sin4 θ, (38)

Pμμ = e−2b1 L sin4 θ + e−2b2 L cos4 θ, (39)

Peμ = sin2 2θ

4

(
e−2b2 L + e−2b1 L)(1 − 2ε cos ζ

sin 2θ

)
, (40)

Pμe = sin2 2θ

4

(
e−2b2 L + e−2b1 L)(1 + 2ε cos ζ

sin 2θ

)
. (41)

Pēē = Pee , while Peμ − Pμe = Peμ − Pēμ̄ ∝ ε cos ζ .
All expressions above ignore terms O(ε2) and are not good ap-
proximations in the limit sin 2θ � ε . In the limit θ → 0, it is easy 
to compute the oscillation probabilities. Ignoring O(ε3) terms3

Pee =
(

1 + ε2

2

)
e−2b1 L − ε2

2
e−(b1+b2)L cos�L, (42)

Pμμ =
(

1 + ε2

2

)
e−2b2 L − ε2

2
e−(b1+b2)L cos�L, (43)

Peμ = ε2

4

(
e−2b1 L + e−2b2 L − 2e−(b1+b2)L cos�L

)
, (44)

while Pμe = Peμ . CP-invariance is preserved – none of the expres-
sions depend of ζ , so Pαβ = P ᾱβ̄ , ∀α, β , but nonzero ε implies 
flavor change as long as the neutrino masses are different (� 	= 0).

In the θ → 0 limit, the constraint 
∑

α Pαβ < 1 translates into 
b1, b2 ≥ 0 and

ε ≤
√

π
min(b1,b2)

2�
, (45)

where min(b1, b2) indicates the smaller between b1 and b2, so 
nonzero ε requires both b1, b2 nonzero. Furthermore, 

∑
α Pαβ < 1

also implies that oscillatory effects cannot dominate over the ex-
ponential decay.

It is easy to extend the discussion to the three-flavor case. We 
define

〈ν1|ν2〉 = ε3eiζ3 , 〈ν1|ν3〉 = ε2eiζ2 , 〈ν2|ν3〉 = ε1eiζ1 (46)

where εi ≥ 0 and ζi ∈ [0, 2π). Thus, in the limit εi � 1, N is given 
by Eq. (19) where

δ =
⎛
⎝ 0 e−iζ3ε3 e−iζ2ε2

eiζ3ε3 0 e−iζ1ε1

eiζ2ε2 eiζ1ε1 0

⎞
⎠ , (47)

while the 3 ×3 unitary matrix V can be parameterized in the usual 
way,

V =
⎛
⎜⎝

c12c13 s12c13 s13e−iδCP

−s12c23 − c12s23s13eiδCP c12c23 − s12s23s13eiδCP s23c13

s12s23 − c12c23s13eiδCP −c12s23 − s12c23s13eiδCP c23c13

⎞
⎟⎠ ,

(48)

where si j = sin θi j , ci j = cos θi j and δCP is the “Dirac” CP-odd phase. 
As in the two-flavor case, neutrino oscillations are not sensitive to 
“Majorana phases” in V .

Using Eq. (21), the transition probabilities can be written as

Pαβ = ∣∣e−ihit
∣∣2(

Nαi N
−1
iβ

)(
N∗

αi N
−1∗
iβ

)
+

∑
i 	=k

e−ihiteihkt(Nαi N
−1
iβ

)(
N∗

αk N−1∗
kβ

)
, (49)

where hi = ai − ibi . As before, �i j = (ai − a j) play the role of 
oscillation frequencies, �m2

i j/2E , while the different bi ∝ di/E , 
i = 1, 2, 3 lead to exponential decay (or growth).

Complete expressions for the different Pαβ are rather cumber-
some and not particularly illuminating. They depend on all decay 
parameters as well as the new mixing parameters ε1,2,3 and the 
new CP-odd phases ζ1,2,3. As in the two-flavor case, the tran-
sitions for antineutrinos are governed by the same expressions, 
except for N → (N−1)T , or V → V ∗ , � → −�. In terms of the 

3 Here we include O(δ2) contributions to N , replacing Eq. (19) with N ∼ I(1 +
3ε2/8) − δ/2.
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parameterization introduced here, this translates into δCP → −δCP, 
ζi → π − ζi . As expected, CPT-invariance is preserved, Pαβ = P β̄ᾱ , 
but CP-invariance and T-invariance are violated unless εi cos ζi = 0
for all i. This is true even when three-flavor effects are “turned-off” 
(some mixing angles and some mass-squared differences vanish) 
and persists in the limit �31 L, �21L � 1.

For the case of standard neutrinos, bounds on some of the new 
physics parameters have been discussed in the literature, mostly 
in the context of “standard” neutrino decay (δi j = 0 in Eq. (15)). 
However, the bounds on the εi we will discuss are indirect, all 
of them deriving from the bounds on the bi , and relatively weak 
if WW is abandoned. Here we summarize qualitatively some of 
these bounds. A quantitative discussion on how non-unitary neu-
trino propagation is constrained by current data and the potential 
reach of next-generation experiments is currently being pursued in 
the follow-up to this letter [18].

In what follows, it will prove convenient to define the Hamilto-
nian eigenstates as

hi = ai − ibi ≡ 1

2E

(
m2

i − idi
)
, (50)

where the di ’s have dimensions of mass-squared. Below, we as-
sume that m2

i agree with the results obtained by analyzing the 
world’s neutrino data under the assumption that neutrino propa-
gation is unitary, and use the standard definition for the ordering 
of the masses [6].

A finite neutrino lifetime can dramatically impact all the indi-
rect information we have on primordial neutrinos. The nature of 
the decay products and the interactions, however, plays a role in 
determining if and how decaying neutrinos impact the cosmic mi-
crowave background, structure formation, etc., so bounds on decay 
parameters are very model-dependent (see, for example, [19,20]), 
ranging from very stringent to non-existent. A future observation 
of nonzero neutrino mass effects in cosmic surveys may change 
the picture dramatically [21].

The recent observation of ultra-high energy neutrinos from po-
tentially extra-galactic sources [22] implies that at least one of the 
di ’s is tiny. Much more information can be obtained – especially 
if the di ’s are not zero – with more statistics and flavor informa-
tion [23] (see also, for example, [24–28]). A similarly very stringent 
bound – at least one of the di is zero for all practical purposes – 
comes from the observation of neutrinos from SN1987A [15].

Closer to home, solar neutrino data place strong constraints 
on some neutrino decay parameters. Data on 8B-neutrinos from 
Super-Kamiokande and SNO constrain d2 � 10−11 eV2 [29], as-
suming d1 is zero. A more detailed analysis [18], including recent 
data from Borexino, should also allow one place bounds on d1. At-
mospheric neutrino data constrain d3 � 10−5 eV2 [30], assuming 
d1,2 are zero.4 Shorter-baseline neutrino experiments (e.g., reac-
tor and beam experiments) constrain di � 10(−7)−(−4) eV2 for all 
i = 1, 2, 3.

If Γ is positive definite, εi �
√

d jdk/�m2 and the bounds above 
imply that at least two of the εi are tiny given the constraints from 
solar neutrino data (at least ε � 10−5), while the third one might 
be of order a few percent (� 10−5 eV2/|�m2

13|). The less stringent 
requirement 

∑
α Pαβ ≤ 1 allows for more εi of order several per-

cent, potentially enhanced by the fact that θ13 is small. A detailed 
discussion will be presented in [18]. If no restriction is imposed 
on Γ or 

∑
α Pαβ , joint analyses of nonzero di and εi are required 

in order to establish the currently allowed values of these phe-
nomenological parameters.

4 A new analysis of recent long-baseline neutrino data quotes a new bound, 
which is about an order of magnitude stronger [31]. This analysis appeared on the 
preprint archives as this manuscript was about to be submitted.
In summary, non-unitary neutrino propagation can be realized 
if neutrinos couple to new very light states – lighter than the 
active neutrinos – which can interact among themselves. Here, 
we study some of the consequences of this hypothesis. This sce-
nario is qualitatively different from the unitarity violation setups 
that have been previously discussed in the literature and leads to 
new phenomena – including new sources of CP-invariance viola-
tion and new mass-scales – that can only be probed in oscillation 
experiments. A lot of work remains to be done, including a quan-
titative discussion of current bounds on non-unitary propagation, 
three-flavor phenomenology and prospects for next-generation os-
cillation experiments, potential applications to the short-baseline 
anomalies and other searches for new neutrino oscillation lengths, 
etc. We also need to address matter effects, especially when it 
comes to addressing their impact on the non-unitarity parameters 
– especially the ε parameters – and some of the constraints we 
have discussed here.
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