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We perform a systematic analysis of all possible texture zeros in general and symmetric quark mass 
matrices. Using the values of masses and mixing parameters at the electroweak scale, we identify for 
both cases the maximally restrictive viable textures. Furthermore, we investigate the predictive power of 
these textures by applying a numerical predictivity measure recently defined by us. With this measure we 
find no predictive textures among the viable general quark mass matrices, while in the case of symmetric 
quark mass matrices most of the 15 maximally restrictive textures are predictive with respect to one or 
more light quark masses.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
One of the most interesting questions of flavor physics is 
whether mixing angles are related to fermion mass ratios, like in 
the famous relation [1]

sin θc �
√

md

ms
(1)

between the Cabibbo angle θc and the ratio of down-quark mass to 
strange-quark mass. Here and in the following, quark masses are 
denoted by mq with q = d, s, b for the down-type quark masses 
and q = u, c, t for the up-type quark masses. It is an open ques-
tion if Eq. (1) is only an empirical relation or if there is a deeper 
reason for it founded in a hitherto undiscovered theory of flavor. 
Obviously, since the CKM matrix U is defined as

U = U (u)
L

†
U (d)

L (2)

with diagonalization matrices U (u)
L and U (d)

L given by

U (d)
L

†
MdU (d)

R = diag (md,ms,mb) and

U (u)
L

†
Mu U (u)

R = diag (mu,mc,mt) (3)

for the down-type and up-type quarks, respectively, the quark 
mass matrices Md and Mu must have some structure in order to 
deduce relations like Eq. (1). The simplest attempt to achieve such 
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relations is to place texture zeros in the mass matrices [2]. Apart 
from simplicity, texture zeros have the feature that they are prac-
tically synonymous with Abelian symmetries [3]. Unfortunately, 
even in this limited framework no clear-cut predictive model has 
emerged—see for instance [4,5] for reviews and [6] for an attempt 
on a unified texture in both quark and lepton sector. Therefore, it 
is appropriate to perform a complete study of all possibilities, as 
was recently done in [7] for the lepton sector (see also [8]).

In the analysis of [7] the notion of “maximally restrictive” tex-
tures plays an important role. These have a maximal number of 
zeros in the pair (Md, Mu) in the sense that by placing one more 
zero into this pair it becomes incompatible with experimental 
data. It turned out that in the lepton sector the predictive power 
of general mass matrices with texture zeros is rather limited even 
for maximally restrictive textures. Actually, we find the same in 
the quark sector, as we will explain in more detail below. In view 
of this result, we perform an additional analysis with symmetric
quark mass matrices.1 In this paper, this is no more than a facile 
assumption in order to enhance predictivity,2 however, it could 
be motivated by left–right symmetric models [10] or by mod-
els based on SO(10)—see [11] for reviews—with renormalizable

1 In many papers the mass matrices are assumed to be Hermitian. It is true that 
one can always achieve this by separate weak-basis transformations on the right-
handed quark fields, however, this is not a valid argument because in the first place 
it is the texture zeros which define a basis and performing a subsequent basis trans-
formation will in general remove the texture zeros.

2 For this purpose, other assumptions are possible as well, like for instance a 
scaling ansatz [9].
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Yukawa couplings to scalar 10-plets and 126-plets, but not to 
scalar 120-plets which would introduce an antisymmetric compo-
nent in the mass matrices [12].

Under weak-basis transformations the mass matrices transform 
as

Md → V †
L Md V (d)

R , Mu → V †
L Mu V (u)

R (4)

with unitary matrices V L , V (d)
R , V (u)

R . Such transformations have 
no effect on the quark masses and the mixing matrix, i.e. they 
do not change the physical predictions. These weak-basis trans-
formations are used in two ways. Firstly, it is well-known that 
with weak-basis transformations of Eq. (4) one can generate some 
zeros in (Md, Mu) which have, therefore, no predictive power at 
all [13]. Such cases we exclude a priori from our analysis—for more 
details on this issue see [7]. Secondly, if one wants to preserve 
the zeros in the mass matrices, the unitary matrices occurring in 
Eq. (4) have to be restricted to permutation matrices times diag-
onal matrices of phase factors. Weak-basis transformations where 
the unitary matrices in Eq. (4) are pure permutation matrices, i.e.
“weak-basis permutations” [7], allow to divide the possible pat-
terns of texture zeros in (Md, Mu) into equivalence classes with 
identical predictions and it is thus sufficient to treat one repre-
sentative (M(i)

d , M(i)
u ) of each equivalence class. Finally, with weak-

basis transformations which are diagonal matrices of phase factors, 
i.e. by rephasing, one can then remove redundant phases from each 
representative (M(i)

d , M(i)
u ) in order to obtain representatives with 

the minimal number of parameters.
Another important aspect of our general analysis is that we 

do not consider model realizations of the textures. Therefore, we 
cannot treat radiative corrections and we have to assume that the 
quark masses and the CKM matrix can be reproduced with suffi-
cient accuracy by tree-level mass matrices. Consequently, we take 
into account only non-singular mass matrices.

To test if a texture is compatible with the observations, we 
perform a χ2-analysis. We have ten physical observables: the six 
quark masses, the three mixing angles and the CP-violating phase. 
We have to check for each texture (M(i)

d , M(i)
u ) whether it can re-

produce the input data within experimental errors. Actually, for the 
mixing matrix U we prefer to use the Wolfenstein parameters [14]
λ, A, ρ̄ and η̄, as defined in [15]. In order to have a consistent set 
of input data, we have to fix a common energy scale μ at which 
the quark masses and mixing parameters are taken. We settle on 
the scale μ = M Z , the mass of the Z gauge boson, which means 
that, if the texture zeros have a symmetry realization, then this 
symmetry is effective at the electroweak scale.3 This scale has the 
advantage that all observables used for the input, with the excep-
tion of the top quark mass, are measured at energies below M Z

and, therefore, are evolved by the renormalization group equations 
of the Standard Model4 to the scale μ = M Z . Concretely, we take 
the input values at M Z from [17]; since in that paper the mixing 
angles and the CKM phase are given, we have to convert these into 
the Wolfenstein parameters. We display our input in Table 1.

3 So we have in mind that the symmetry responsible for the texture zeros is bro-
ken at the electroweak scale. If it were broken at a higher scale �, then in general 
the texture zeros would not be stable under the renormalization group evolution of 
the Yukawa coupling matrices between � and the electroweak scale.

4 Within the Standard Model the relevant mass ratios md/mb , ms/mb , mu/mt and 
mc/mt do not significantly change due to renormalization group running of the 
quark masses at scales from μ ∼ 2 GeV to μ ∼ mt . This can be easily checked using 
the results of [16]. Moreover, within the Standard Model also the mixing angles do 
not run significantly. Therefore, if the effects of physics beyond the Standard Model 
are small at scales μ � mt , the analysis of texture zeros will not be affected by the 
exact choice of μ.
Table 1
The quark masses and the parameters of the CKM matrix in the MS scheme at μ =
M Z computed within the Standard Model in [17]. The quark masses are given in 
units of v = 174.104 GeV. We have transformed the mixing parameters θ12, θ23, θ13

and δ given in Table 2 of [17] to the four Wolfenstein parameters [15] λ, A, ρ̄ and 
η̄ assuming Gaussian error propagation.

mu/(10−6 v) 7.4 +1.5
−3.0

md/(10−5 v) 1.58 +0.23
−0.10

ms/(10−4 v) 3.12 +0.17
−0.16

mc/(10−3 v) 3.60 ±0.11

mb/(10−2 v) 1.639 ±0.015

mt/(10−1 v) 9.861 +0.086
−0.087

λ 0.22540 ±0.00070
A 0.828 ±0.014
ρ̄ 0.133 ±0.020
η̄ 0.350 ±0.015

Now we formulate a criterion that a texture (M(i)
d , M(i)

u ) is com-
patible with the data. We stipulate that the contribution of each 
observable to χ2

min, the minimum of χ2, is at most 25; this means 
that the deviation of the observable from its experimental value 
is at most 5σ [7]. Since we have ten input values, this implies 
χ2

min ≤ 250.

Even if we know that a texture (M(i)
d , M(i)

u ) is compatible with 
the data, we do not know whether it has any predictive power 
or not. In order to discuss this question, we apply the numer-
ical method developed in [7] which we repeat here briefly. The 
method is completely general, independent of the problem under 
discussion.5 Consider a model with a set of parameters x making 
predictions P j(x) for the observables O j with experimental mean 
values O j and errors σ j . Then the χ2-function of the model is 
given by6

χ2(x) =
∑

j

χ2
j (x) with χ2

j (x) =
(

P j(x) −O j

σ j

)2

. (5)

Let us assume that the model gives a good fit to the observables, 
i.e. χ2

min is sufficiently small. Now we want to pose the question 
whether the model is predictive with respect to the observable Oi . 
Loosely speaking, this means we want to investigate how much the 
prediction for Oi can deviate from its mean value while varying x
such that all P j(x) with j �= i remain close to O j . The numerical 
implementation is done in two steps [7]:

1. We define

χ̃2
i (x) = χ2(x) − χ2

i (x), (6)

where we have removed the χ2-contribution of the observable 
whose predictivity we want to investigate. With this χ̃2

i (x) we 
define a region in the parameter space via

Bi =
{

x | χ̃2
i (x) ≤ χ2

min + δχ2 and χ2
j (x) ≤ 25 ∀ j �= i

}
,

(7)

where χ2
min is the minimal value of the total χ2(x) of Eq. (5)

and δχ2 is a fixed parameter in the range 0 ≤ δχ2 � 1.

5 Since in the quark sector all ten observables have been measured and their 
relative errors are not exceedingly small, we employ here a uniform predictivity 
measure for all observables. This was not possible in the lepton sector [7].

6 In case of asymmetric error intervals, σ j is replaced by σ left
j and σ right

j for 
P j(x) < O j and P j(x) ≥ O j , respectively.
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Table 2
The 27 maximally restrictive textures in general quark mass matrices. A matrix entry 0 denotes a texture zero, and entries 1 and 2 stand for real positive and complex 
parameters, respectively. None of these textures is predictive with respect to any observable.

Md Mu Md Mu Md Mu

G1

( 0 1 1
0 1 2
1 0 1

) (0 0 1
0 1 0
1 0 0

)
G2

(0 0 1
0 1 0
1 1 2

) (0 0 1
0 1 0
1 0 1

)
G3

( 0 0 1
0 1 0
1 1 2

) (0 0 1
0 1 1
1 0 0

)

G4

( 0 0 1
0 1 0
1 2 1

) (0 0 1
1 1 0
0 1 0

)
G5

(0 0 1
0 1 1
1 0 2

) (0 0 1
0 1 0
1 0 1

)
G6

( 0 0 1
0 1 1
1 0 2

) (0 0 1
0 1 0
1 1 0

)

G7

( 0 0 1
0 1 2
1 0 1

) (0 1 1
0 0 1
1 0 0

)
G8

(0 0 1
0 1 1
1 2 0

) (0 0 1
0 1 0
1 0 1

)
G9

( 0 0 1
0 1 1
1 2 0

) (0 0 1
0 1 0
1 1 0

)

G10

( 0 0 1
0 1 2
1 1 0

) (0 0 1
0 1 1
1 0 0

)
G11

(0 0 1
0 1 1
1 2 0

) (0 0 1
1 1 0
0 1 0

)
G12

( 0 0 1
0 1 2
1 1 0

) (0 1 1
0 0 1
1 0 0

)

G13

( 0 0 1
0 1 1
1 2 0

) (0 1 1
1 0 0
0 0 1

)
G14

(0 0 1
0 1 0
1 0 2

) (0 0 1
0 1 0
1 1 1

)
G15

( 0 0 1
0 1 0
1 0 2

) (0 0 1
0 1 1
1 0 1

)

G16

( 0 0 1
0 1 0
1 0 2

) (0 0 1
0 1 1
1 1 0

)
G17

(0 0 1
0 1 0
1 0 2

) (0 0 1
1 1 0
0 1 1

)
G18

( 0 0 1
0 1 0
1 0 2

) (0 0 1
1 1 1
0 1 0

)

G19

( 0 0 1
0 1 0
1 0 2

) (0 1 1
0 0 1
1 0 1

)
G20

(0 0 1
0 1 0
1 0 2

) (0 1 1
0 0 1
1 1 0

)
G21

( 0 0 1
0 1 0
1 0 2

) (0 1 1
1 0 0
1 0 1

)

G22

( 0 0 1
0 1 0
1 0 2

) (0 1 1
1 0 1
0 0 1

)
G23

(0 0 1
0 1 0
1 0 2

) (0 1 1
1 0 1
0 1 0

)
G24

( 0 0 1
0 1 0
1 0 2

) (0 1 1
1 0 1
1 0 0

)

G25

( 0 0 1
0 1 0
1 0 2

) (1 1 1
0 0 1
0 1 0

)
G26

(0 0 1
0 1 0
1 0 0

) (0 0 1
1 1 1
0 1 2

)
G27

( 0 0 1
0 1 0
1 0 0

) (0 1 1
0 1 2
1 0 1

)

2. With Bi we formulate the predictivity measure for Oi as


(Oi) = max
x∈Bi

χ2
i (x). (8)

Note that for x ∈ Bi the P j(x) with j �= i are within the 5σ region 
of their experimental mean values O j , i.e. they are “close” to O j in 
the sense of our compatibility criterion of a texture with the data. 
In Eq. (7), a non-zero δχ2 accelerates the convergence of the nu-
merical maximization of 
(Oi) [7]. In the present paper we have 
set δχ2 = 0.1.

Clearly, the smaller 
(Oi) is, the better it is determined by the 
other observables. By choosing a bound b2, we can define a pre-
dictivity criterion: for 
(Oi) ≤ b2 we say the model is capable to 
predict the observable Oi ; in this case, its value deviates from its 
mean value by at most bσ . The choice of b is rather arbitrary. 
We follow Ref. [7] and take b = 10. Thus our predictivity criterion 
is


(Oi) ≤ 100. (9)

The results of our analysis are presented in two tables, Ta-
ble 2 for general mass matrices and Table 3 for symmetric mass 
matrices. In the general case, removing those pairs of mass matri-
ces (Md, Mu) whose texture zeros can be generated by weak-basis 
transformations and those with at least one singular matrix, we 
find 243 inequivalent classes with representatives (M(i)

d , M(i)
u ). Of 

these, 214 classes are compatible with the data and among them 
there are 27 maximally restrictive classes whose representatives 
(M(i)

d , M(i)
u ) are listed in Table 2. None of these mass matrices are 

predictive in the sense discussed above.
For the symmetric mass matrices, we cannot apply general 

weak-basis transformations which generate texture zeros, without 
destroying the symmetry of the mass matrices. Thus we discard 
only those pairs (Md, Mu) which have at least one singular ma-
trix and arrive in this way at 230 classes with representatives 
(M(i)

d , M(i)
u ). Out of these, 79 classes survive the χ2-test. Finally, 

these classes contain 15 maximally restrictive classes which are 
displayed in Table 3. According to our predictivity criterion, 11 of 
these 15 textures are predictive with respect to one or more of the 
three light quark masses mu , md and ms; the masses of the heavy 
quarks and the Wolfenstein parameters cannot be predicted.

At first sight, the last sentence seems to exclude approximate 
relations of the form of Eq. (1) or, more generally, relations of the 
form7

f

(
m1

m2
, W

)
= 0, (10)

where f denotes a function specified by the particular form of 
the texture, m1 and m2 are quark masses and W is one of the 
Wolfenstein parameters. Clearly, if a relation of the type of Eq. (10)
follows from a texture, then W is predicted by m1/m2, but math-
ematically we can turn this conclusion around and say that m1 is 
predicted by m2 and W or m2 is predicted by m1 and W . How-
ever, numerically this will in general not be the case because of 
the different relative errors σ j/O j of the observables. From Ta-
ble 1 one finds that the relative errors of the light quark masses 
mu , md and ms are between 5% and 40%, the errors of the heavy 
quark masses are between 1% and 3% and the errors of the Wolfen-
stein parameters range from 0.3% for λ to 15% for ρ̄ . For instance, 
for the famous relation (1), varying md and ms around their exper-
imental mean values within ranges of the order of magnitude of 
their respective experimental errors, one may well obtain values 
for λ ≡ sin θc which, due to the small relative error σλ/λ ∼ 0.3%, 
lie more than 10 sigmas off its mean value, i.e. 
(λ) > 100. Con-
versely, fixing λ and one of the masses gives a prediction for the 
second mass which, since the relative errors of md and ms are 
much larger, may very well be within ten sigmas of the experi-
mental value, i.e. 
(mq) < 100 for q = d, s. To summarize, even 
if there is a relation of the form (10), the predictivity analysis 
will in general not detect all involved observables. This has to be 
kept in mind in the assessment of the results displayed in Ta-
ble 3.

7 For the sake of simplicity, in this paragraph we confine ourselves to three ob-
servables.
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Table 3
The 15 maximally restrictive textures in symmetric quark mass matrices. A matrix entry 0 denotes a texture zero, and entries 1 and 2 stand for real positive and complex 
parameters, respectively. Several of these textures are predictive with respect to some of the light quark masses.

Md Mu predicted obs. Md Mu predicted obs.

S1

(0 1 1
1 1 2
1 2 2

) (1 0 0
0 0 1
0 1 2

)
md S2

( 0 1 1
1 1 2
1 2 2

) (1 0 0
0 1 0
0 0 1

)
md

S3

(0 1 1
1 0 1
1 1 2

) (1 0 0
0 1 2
0 2 2

)
md S4

( 0 0 1
0 2 2
1 2 2

) (0 1 1
1 0 1
1 1 2

)
–

S5

(0 0 1
0 2 2
1 2 2

) (1 0 1
0 0 1
1 1 2

)
– S6

( 0 0 1
0 2 2
1 2 2

) (1 1 0
1 2 1
0 1 0

)
–

S7

(0 0 1
0 1 1
1 1 2

) (1 0 0
0 1 2
0 2 2

)
md S8

( 0 0 1
0 2 2
1 2 2

) (0 0 1
0 1 1
1 1 0

)
md

S9

(0 0 1
0 1 1
1 1 2

) (0 0 1
0 1 0
1 0 2

)
md S10

( 0 0 1
0 1 1
1 1 2

) (0 1 0
1 2 0
0 0 1

)
mu , md , ms

S11

(0 1 1
1 1 0
1 0 2

) (1 0 0
0 1 2
0 2 2

)
md S12

( 0 0 1
0 2 2
1 2 0

) (0 0 1
0 1 1
1 1 2

)
md

S13

(0 0 1
0 2 2
1 2 0

) (0 1 0
1 1 1
0 1 2

)
md , ms S14

( 0 0 1
0 1 0
1 0 2

) (1 0 1
0 1 2
1 2 2

)
–

S15

(0 0 1
0 1 0
1 0 2

) (0 1 0
1 1 1
0 1 2

)
md , ms
All of the 15 textures for symmetric quark mass matrices have 
four (S1, . . . , S7, S11, S14) or five (S8, S9, S10, S12, S13, S15) inde-
pendent texture zeros, the most predictive one being8

S10 : Md ∼
( 0 0 1

0 2 1
1 1 1

)
, Mu ∼

(0 1 0
1 2 0
0 0 1

)
, (11)

which shows predictive power with respect to all of the three light 
quark masses. In the light of the discussion above, this does not 
mean that the texture S10 has three independent predictions. In-
deed, in this case there are only two independent ones, which 
can be formulated as sin θ12 � √

md/ms , i.e. Eq. (1), and |Uub| ≡
sin θ13 � √

mu/mt .
We emphasize once more that, after the consideration of gen-

eral quark mass matrices, we have investigated symmetric (but not 
Hermitian) mass matrices, in which context we have discovered six 
viable textures with five texture zeros—see Table 3. It is interesting 
to compare these six textures with the five viable Hermitian tex-
tures with five texture zeros discussed in the literature [18,19]. For 
this comparison we use the table in [19] where the five Hermi-
tian patterns I–V are listed and check if there are corresponding 
patterns in our Table 3, with zeros in corresponding places af-
ter suitable weak-basis permutations. We find the correspondences 
II ∼ S9, III ∼ S8, IV ∼ S15 and V ∼ S10, while pattern I has no 
correspondence to viable texture zeros in symmetric quark mass 
matrices. This comparison reveals the fundamental difference be-
tween texture zeros in symmetric and Hermitian mass matrices.9

Summary: In this paper we have performed a systematic and 
complete analysis of texture zeros in general and symmetric quark 
mass matrices. Among all the possible texture zeros in general 
quark mass matrices, we identified the 27 maximally restric-
tive classes—see Table 2—which, however, do not show predictive 
power with respect to any of the quark masses and mixing param-
eters. This is very similar to the situation of Dirac neutrinos, where 
texture zeros are predictive at most with respect to the smallest 

8 Note that for the mass matrices of Eq. (11) we find numerically |(Md)22| � mb , 
|(Mu)22| � mt . For achieving the usual ordering with large elements having higher 
indices, one has to apply a permutation 2 ↔ 3 to the indices.

9 Note that in [19] the Hermitian mass matrices I-V are studied at μ = M Z just 
as in this paper. Hence, the results can directly be compared.
neutrino mass and, in one case, also to the Dirac phase δ of the 
lepton mixing matrix [7]. In other words, pure Abelian flavor sym-
metries effective at the electroweak scale, i.e. texture zeros but no 
further restrictions on the quark mass matrices, do not seem to 
contribute to the solution of the mass and mixing problem in the 
quark sector.

The case of texture zeros in symmetric quark mass matrices 
is more promising, since there the majority of the 15 maximally 
restrictive textures has some predictive power—see Table 3. This 
may be compared to the case of Majorana neutrinos, where the 
neutrino mass matrix is symmetric. There the maximally restric-
tive textures are also more predictive than for the Dirac neutrino 
case [7].
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