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Abstract

In this Letter we show that a simple modification of supersymmetric quantum mechanics involving a mass term for
fermions naturally leads to a derivation of the integral formula for theχy genus, a quantity that interpolates between the E
characteristic and arithmetic genus. We note that this modification naturally arises in the moduli space dynamics of m
or instantons in theories with 16 supercharges partially broken to 8 supercharges by mass terms.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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Index theory, as developed by Atiyah and Singe
Ref. [1], has many important applications in theore
cal physics. For the physicist, many of the mathem
ical complications of index theory can be avoided
following Alvarez-Gaumé [3] (see also [4]) and fo
mulating it in the context of a suitable supersymme
quantum mechanical system. The crucial idea is to
a supersymmetric quantum mechanical system wh
Witten index yields the topological index of the elli
tic complex in question.

On the other hand, there are situations in wh
supersymmetric quantum mechanics arises natur
The one we have in mind here, is in the semi-class
quantization of solitons in field theory. In the classic
limit the dynamics can often be described in the ter
of motion on the moduli space of the soliton (t
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space of classical solutions). Semi-classical effects
then described by quantum mechanics on the mo
space. In a supersymmetric theory, soliton soluti
generally preserve half the supersymmetries of
parent theory and these are inherited by the quan
mechanical system.

An example of this set up is in five-dimension
gauge theories which have soliton solutions consis
of conventional instanton solutions embedded in
four spatial dimensions. Semi-classical effects
described by quantum mechanics on the moduli sp
of Yang–Mills instantons of a given chargeM [5]. If
the parent theory has 16 supercharges (N = 4 in four
dimensions) then the quantum mechanical system
the one associated to the de Rahm complex wh
usually admits 2 supercharges but sinceM is hyper-
Kähler this is enhanced to 8. On the other hand
the parent theory has 8 supercharges (N = 2 in four
dimensions) then the quantum mechanical system
the one associated to the Dolbeault—or equivalen
nse.
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sinceM is hyper-Kähler, the Dirac—complex whic
usually admits 1 supercharge but, as above, thi
enhanced to 4. A similar application concerns
semi-classical quantization of monopoles in the sa
theories in four dimensions. In this case the sa
kind of quantum mechanical systems arise but n
associated to the monopole moduli space (see,
example, [6–8]).

It is well known that the gauge theories with 16 s
percharges can be broken to one with 8 supercha
by adding suitable mass terms. In four dimensions
mass deformed theory is sometimes called theN = 2∗
theory. These mass terms induce terms in the qu
tum mechanical system describing the soliton dyna
ics which have the effect of breaking one half of t
supersymmetries. This suggests that the system
the supersymmetry-breaking terms will somehow
terpolate between the de Rahm complex and D
beault complex and, in particular, its Witten ind
will interpolate between the associated topological
dices; that is theEuler characteristic and thearith-
metic genus. In the applications to instanton-solito
in five-dimensional supersymmetric gauge theory
index is directly relevant because it determines the
stanton contributions to the prepotential.

Although the problem was inspired by insta
ton solitons in five-dimensional gauge theory
monopoles in the associated four-dimensional the
we shall divorce our discussion from these parti
lar examples because there are additional comp
tions in these cases. In particular, the moduli spa
of instantons or monopoles are non-compact and
leads to subtleties in defining the Witten index. W
shall work with a target spaceM which is compact.
In addition, in both the instanton and monopole exa
ples, VEVs for scalar fields in the parent theory le
to more complicated quantum mechanical systems
volving potentials induced by vector fields on the mo
uli space, as one can see in the instanton case in [5
in the monopole case in [8]. This leads to an equiv
ant generalization of index theory and once again
shall avoid these complications in this Letter.

Following Alvarez-Gaumé [3], we start with th
quantum mechanical system associated to the
Rahm complex of a compact manifoldM. Let Xµ,
µ = 1, . . . , n, be local coordinates forM which be-
come one-dimensional fieldsXµ(t) in the quantum
mechanical system. Associated to these bosonic q
 -

tities, we have 2-component fermionsψ
µ
α (t), α = 1,2,

which are Grassmann-valued fields. The basic
grangian that defines the system is

L= 1

2
gµνẊ

µẊν + i

2
gµνψ

µ
α ψ̇ν

α

(1)

+ i

2
gµνψ

µ
α Γ ν

σρẊ
σψρ

α +
1

4
Rµνσρψ

µ
1 ψν

1ψ
σ
2 ψ

ρ
2 ,

wheregµν(X) is the metric onM andRµνσρ(X) is
the usual Riemann tensor associated to the Levi-C
connectionΓ ν

σρ(X).
The quantization of the theory follows by imposin

the following canonical (anti-)commutation relation

(2)
[
Xµ,pν

]= igµν,
{
ψµ

a ,ψν
b

}= δabg
µν.

It is useful to define the supercovariant momentum

(3)πµ = pµ + Γµνλψ
ν
1ψ

λ
2 .

The system is invariant under 2 supersymmet
generated by the supersymmetry charges

(4a)Qα =ψµ
α πµ.

It is important to realize that operator ordering here
significant. The Hamiltonian is obtained by the an
computation of two supercharges:

(5){Qα,Qβ} = 2δαβH,

yielding

(6)H= 1

2
√
g
πµ
√
g gµνπν.

The Hilbert space of the model is realized in ter
of a fermionic Fock space, with creation operators a
annihilation operators given by the combinations

bµ†= 1√
2

(
ψ

µ
1 − iψ

µ
2

)
,

(7)bµ = 1√
2

(
ψ

µ
1 + iψ

µ
2

)
.

The states

(8)fµ1···µp (X)bµ1† · · ·bµp†|0〉
are in one-to-one correspondence with the de Ra
complex of M; for instance, the above state cor
sponds to thep-form

(9)fµ1···µp (X)dXµ1 ∧ · · · ∧ dXµp .
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Under this correspondence the superchargesQα are
realized in terms of the exterior derivatived and its
adjointd†:

(10)Q1=− i√
2

(
d − d†), Q2= 1√

2

(
d + d†).

We now suppose thatM is a Kähler manifold
for which g is the Kähler metric. SoM has a
Kähler form ω that is closed. The Kähler metricg
is Hermitian with respect to the complex structureI
and furthermoreg(IX,Y ) = ω(X,Y ), for 2 arbitrary
tangent vectorsX andY . Under these circumstance
it is well known that the quantum mechanical syst
admits 2 additional supersymmetries generated by
supercharges

(11)Q′α = (I ·ψα)
µπµ.

SinceM is a complex manifold we can choose (an
holomorphic coordinates(zj , z̄j ), j = 1, . . . , (1/2)n,
compatible with the complex structure:(I · z)j = izj

and (I · z̄)j = −iz̄j . In this coordinate system, th
Hilbert space can be built on a fermionic Fock spa
for whichψ

j

1 andψ̄j

2 are the creation operators whi

ψ̄
j

1 andψj

2 are the annihilation operators. States in
Hilbert space are naturally identified with elements
the Dolbeault complex via the correspondence

ψ
j1
1 · · ·ψ

jp
1 ψ̄

k1
2 · · · ψ̄

kq
2 |0〉

(12)
←→ dzj1 ∧ · · · ∧ dzjp ∧ dz̄k1 ∧ · · · ∧ dz̄kq .

SinceM is Kähler, we can add a kind of mass f
one of the species of fermions to the Lagrangian:

Lm =−1

2
mω(ψ2,ψ2)+ c=−1

2
mψ

µ
2 ωµνψ

ν
2 + c

(13)=−1

2
mψ2µ(I ·ψ2)

µ + c,

wherem is a parameter. In the application to insta
tons, such a term was derived in the effective quan
mechanics on the moduli space in [5]. In the mo
pole application, such a term can be extracted in
rectly from [8], by choosing the matter content of t
N = 2 theory to transform in the adjoint represen
tion. In both casesm is the mass of the adjoint hype
multiplet in the parent theory.

The term (13) is only invariant under half th
original supersymmetries; namely those generate
Q1 andQ′1, following from the fact that the Kähle
form is covariantly constant on a Kähler manifold.
(13), c is a constant that arises via a normal order
prescription and its value is fixed as follows. In t
canonical formalism, we require that the term (1
leads to a modification of the Hamiltonian operator
the normal-ordered form

(14)H′ =H+Hm, Hm = 1

2
m:ψ2µ(I ·ψ2)

µ:,
in order that it annihilates the vacuum state|0〉. Notice
in the language of the Dolbeault complex,Hm, up to
the factor ofm, simply counts the anti-holomorph
degree. Ensuring that (13) leads to (14), fixes

(15)c= mn

2
.

With the mass term added, the supersymmetry alg
gains a central charge:

Q2
1=H′ −Z, Q′21 =H′ −Z,

(16){Q1,Q
′
1} = 0,

where it is immediately apparent—sinceQ1 is un-
changed—that

(17)Z =Hm.

The question is what does the modification do to
Witten index of the model? Since we have remar
that Hm has a very simple action on the Dolbea
complex—it simply counts the anti-holomorphic d
gree of a form multiplied bym—the Witten index of
the deformed system will be given by

(18)indW =
∑
i,j

(−1)i+j bi,j e−βmj ,

where bi,j are the Betti numbers of the Dolbeau
complex withi andj being the holomorphic and ant
holomorphic degrees, respectively.

So the addition of the term (13) or (14), whic
breaks half the supersymmetry, is to deform the ind
Whenm = 0 we recover the Euler characteristic.
the limit, m→∞, the index reduces to the arithme
or Todd genus

∑
i (−1)ibi,0. In fact the interpolating

quantity (18) is theχy genus of Hirzebruch [2]

(19)χy =
∑
i,j

(−1)iyjbi,j , y =−e−βm.
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Now we see how it can naturally be obtained from
deformed quantum mechanical supersymme
σ -model. Note that theχy genus has also been r
lated to supersymmetric quantum mechanics in
via a twisted of the boundary conditions on the ferm
ons. Our approach obtained by adding the deforma
(13), motivated by the application to soliton dyna
ics, is different. In related work, a geometric interp
tation of theχy genus has been given for hyper-Käh
geometries in [10,11]. In particular, this is relevant
the application of our results to soliton quantizati
for which the relevant geometry is hyper-Kähler.

It remains to derive the known integral express
for theχy genus by computing the partition function
the deformed quantum mechanical system. The s
are a simple generalization of the standard deriva
of index densities of supersymmetric quantum m
chanics [3]. As usual the Witten index can be cal
lated by computing the Euclidean functional integ
with fields being periodic int . We defineβ to be the
period. The resulting functional integral expression
then independent ofβ—apart from via the combina
tion βm—and may be readily evaluated in the lim
β→ 0 (with fixedβm). In this limit, constant config
urations ofXµ(t) andψ

µ
α (t) dominate the functiona

integral and one can integrate out the fluctuation
Gaussian order. To this end we expand around c
stant configurations:

(20)Xµ→ xµ + δXµ(t), ψµ
α → ηµ

α + δψµ
α (t).

We can now integrate out the fluctuations separa
and this is greatly facilitated by choosing at eachxµ

normal co-ordinates for which:

(21)gµν(x)= δµν +O
(
δX2).

The Euclidean action then splits in two:

(22)S = Sc +
β∫

0

dt Lf .

The constant part is

Sc =−1

4
βRµνσρη

µ
1 η

ν
1η

σ
2η

ρ
2 +

1

2
βmη

µ
2ωµνη

ν
2

(23)+ 1

2
βnm,

where the final term arises from the normal-order
constant in (13). This expression implies that
fermions zero-modesηµ
1 scale likeβ−1/2, while η

µ
2

do not scale withβ (remember thatβm is fixed). The
fluctuation part is then

(24)Lf = 1

2
δXµ∆B

µνδX
ν + 1

2
δψµ∆F

µνδψ
ν + · · · ,

where the ellipsis represent non-Gaussian terms w
only contribute at a higher order inβ and hence can b
ignored. Using the fact that in normal coordinates (

ψ
µ
1 Γµσρ(X)Ẋσ ψ

ρ
1

(25)= 1

2
δXµRµνσρ(x)η

σ
1η

ρ
1δẊ

ν + · · ·
to leading order and up to total derivatives, the boso
operator is

(26)∆B
µν =−δµν∂

2
t −

1

2
Rµνσρη

σ
1η

ρ
1∂t + · · · ,

to leading order inβ . The fermionic operator is
matrix-valued:

∆F
µν =

(
δµν∂t 0

0 δµν∂t + 1
2Rµνσρη

σ
1η

ρ
1 − βmωµν

)

(27)+ · · · ,
to leading order inβ .

We can now integrate out the fluctuationsδXµ and
δψµ, as well as the constant modesη

µ
2 keeping carefu

track of the overall normalization of the function
integral. As usual we can write the resulting integ
overXµ andηµ

1 as an integral over differential form
by identifyingηµ

1 = dXµ. Finally we have

indW =
(

i

2π

)n/2

e−nβm/2

(28)

×
∫
M

det1/2
(
R/2 sinh(R/2− βmω/2)

sinh(R/2)

)
,

whereR is the matrix-valued curvature 2-form. Th
can be written as

(29)indW =
∫
M

n/2∏
i=1

xi(1+ ye−xi )
1− e−xi

,

wherexi are the skew eigenvalues ofR/4π andy =
−e−βm. This reproduces the integral form for theχy

genus [2].
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