
Theoretical Computer Science 267 (2001) 17–34
www.elsevier.com/locate/tcs

Subset construction complexity for homogeneous automata,
position automata and ZPC-structures�

J.-M. Champarnaud
Universit	e de Rouen, LIFAR, F-76821 Mont-Saint-Aignan Cedex, France

Abstract

The aim of this paper is to investigate how subset construction performs on speci,c families of
automata. A new upper bound on the number of states of the subset-automaton is established in
the case of homogeneous automata. The complexity of the two basic steps of subset construction,
i.e. the computation of deterministic transitions and the set equality tests, is examined depend-
ing on whether the nondeterministic automaton is an unrestricted one, an homogeneous one, a
position one or a ZPC-structure, which is an implicit construction for a position automaton. c©
2001 Elsevier Science B.V. All rights reserved.

Keywords: Subset construction; Homogeneous automaton; Position sets; Position automaton;
ZPC-structure

1. Introduction

Automata determinization may be exponential, whereas most of automata operations
are polynomial. It is not possible to avoid this behavior in the general case [16]. It is,
nevertheless, important to carefully handle the implementation of the determinization
algorithm when designing automata software tools, in order to preserve as well as
enable the performances of the whole system.
Two basic computation steps are carried on all along the determinization process:

the computation of a deterministic transition, which yields a subset of the set of non-
deterministic states, and set equality testing which makes it possible to decide whether
a deterministic transition generates a new state or not.
Concerning the computation of the set of deterministic transitions, the choice of the

data structure implementing the set of nondeterministic transitions has much in:uence

� This work is a contribution to the Automate software development project carried on by AIA
(Algorithmics and Implementation of Automata) Working Group, LIFAR Contact: {Champarnaud, Ziadi}
@dir.univ-rouen.fr.
E-mail address: champarnaud@dir.univ-rouen.fr (J.M. Champarnaud).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00293 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82519506?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

18 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

on the complexity. Softwares such as AUTOMATE [3], INR [6] and GRAIL [17] make
use of a representation in which both transitions with the same origin and transitions
with the same origin and the same symbol are contiguous. Johnson and Wood [7] have
studied the eIciency of various sorting procedures applied to subsets computed from
such data structures.
On the other hand, the choice of the data structure encoding subsets has a sig-

ni,cant in:uence on the complexity of set equality testing. The number of integer
comparisons involved by the overall set equality tests is O(

√
n22n) when using lists

and O(n2 log(n)2n) when using balanced search trees [14]. There exist investigations that
are motivated by the will to improve such complexities, for instance, Leslie et al. [9, 10].
The aim of this paper is to investigate how subset construction performs on spe-

ci,c automata, in particular on position automata. The position automaton of a regular
expression is de,ned by the algorithm described in [4, 11]. The author and his co-
researchers [20, 13] have designed a linear space and time representation of the position
automaton of a regular expression, which is based on two-state forests connected by a
set of links. The so-called ZPC-structure leads to an output sensitive implementation of
the conversion of a regular expression into an automaton and to an eIcient algorithm
for testing the membership of a word to a regular language [15].
The impact that the speci,c properties of position automata have on subset con-

struction are analyzed. Firstly, a position automaton is homogeneous and we establish
a new upper bound on the number of states of the automaton resulting from the deter-
minization of an homogeneous automaton; this bound is much smaller in many cases
than the standard 2n−1 bound which holds for unrestricted automata. We also give
an estimation of the complexity of the transition computation and of the set equality
testing in the case of an homogeneous automaton. Secondly, a position automaton can
be implemented as a ZPC-structure, whose main feature is to allow the computation
of disjoint unions of transition sets owing to a speci,c encoding of position sets. We
show how to make use of this representation in order to reduce the complexity of the
two basic steps of the determinization process.
Basic de,nitions and useful notations are gathered together in the next section. Sec-

tion 3 recalls how subset construction performs on unrestricted automata, and analyzes
its complexity. Section 4 deals with homogeneous automata, Section 5 with position
automata and Section 6 with ZPC-structures. In each of these sections, algorithmic
re,nements of subset construction are provided, as well as new complexity bounds.

2. De�nitions and notations

A reminder of the de,nitions and notations which are useful for the description of
our results will be found in this section. For further details about regular languages
and ,nite automata, Refs. [1, 5, 18, 12, 19] should be consulted.
A ,nite automaton is a 5-tuple M=(Q;�; �; I; F) where Q is a (,nite) set of states,

� is a (,nite) alphabet, I ⊆Q is the set of initial states, F ⊆Q is the set of ,nal states,

J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34 19

and � is the transition function. The automaton M is deterministic (M is a DFA) if
and only if |I |=1 and � is a mapping from Q×� to Q. Otherwise M is a NFA and
� is a mapping from Q × � to 2Q. The automaton M is complete if and only if � is
a full mapping.
The following overloadings of the transition function will be used:

�(p) =
⋃
a∈�

�(p; a); ∀p ∈ Q; (1)

�(P; a) =
⋃

p∈P
�(p; a); ∀P⊆Q; ∀a ∈ �; (2)

�(P) =
⋃
a∈�

�(P; a); ∀P⊆Q: (3)

A path of M is a sequence (qi; ai; qi+1); i=1; : : : ; n, of consecutive edges. Its label
is the word w= a1a2 : : : an. A word w= a1a2 : : : an is recognized by the automaton
M if there is a path with label w such that q1 ∈ I and qn+1 ∈F . The language L(M)
recognized by the automaton M is the set of words which it recognizes. Two automata
M and M′ are equivalent if and only if they recognize the same language. A state is
accessible if and only if there is a path from an initial state to this state.
A regular expression over an alphabet � is generated by recursively applying op-

erators ‘+’ (union), ‘·’ (concatenation) and ‘∗’ (Kleene star) to atomic expressions
(i.e. every symbol of �, the empty word and the empty set). A language is regular
if and only if it can be denoted by a regular expression. The length of a regular ex-
pression E, denoted by |E|, is the number of occurrences of operators and symbols
in E. The alphabetic width of E, denoted by ‖E‖, is the number of occurrences of
symbols in E. Notice that these two parameters are linearily related as far as sequences
of star operators and occurrences of the empty word and of the empty set are carefully
preprocessed.
Kleene’s theorem [8] states that a language is regular if and only if it is recognized

by a ,nite automaton. Computing the position automaton of a regular expression [4, 11]
is a constructive proof of the direct part of this theorem.

3. Subset construction

Subset construction takes an NFA M as input, and yields an equivalent DFA denoted
by DM as output. The automaton DM is the subset-automaton of M.

3.1. The subset-automaton

De�nition 1. Let M=(Q;�; �; I; F) be an NFA. The subset-automaton of M is the
automaton DM =(Q′; �; �′; {0′}; F ′) de,ned as follows [5, 19]:
• Set of states: A deterministic state is a set of nondeterministic states; for all q′ in

Q′, we have q′ ⊆Q.

20 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

• Initial state: The initial state in DM , denoted by 0′, is the set I of initial states in M.
• Set of transitions: Let q′ be a deterministic state and let a be a symbol in �. If
the transition from q′ on symbol a is de,ned, then, by construction, its target is the
state �′(q′; a) such that

�′(q′; a) =
⋃

q∈q′
�(q; a): (4)

• Set of ,nal states: A deterministic state is ,nal if and only if it contains at least one
,nal nondeterministic state: q′ ∈F ′ ⇔ q′ ∩ F �= ∅.

Lemma 1. Let q′ be a deterministic state. The transition function �′ deduces from �
according to the following formulas:

�′(q′; a) = �(q′; a); ∀a ∈ �; (5)

�′(q′) = �(q′): (6)

Proof. By formula (4), we have �′(q′; a)=
⋃

q∈q′ �(q; a). Since q′ ⊆Q, by formula (2),
we get

⋃
q∈q′ �(q; a)= �(q′; a). Consequently, we have �′(q′; a)= �(q′; a). From formula

(1) we deduce �′(q′)=
⋃

a∈� �′(q′; a). By formula (3) we have �(q′)=
⋃

a∈� �(q′; a).
Thus we get �′(q′)= �(q′).

3.2. The standard bound on the number of states of the subset-automaton

In the following, the automata M and DM are not necessarily complete. Let n (resp.
n′) be the number of states in M (resp. in DM). The upper bound n′62n−1 obviously
holds. As far as unrestricted automata are concerned, it is a least upper bound, as
established by Rabin and Scott [16].
There exist two possible implementations of subset construction:

(1) The ,rst one computes the transitions of the 2n−1 potential states and then makes
the DFA trim.

(2) The second one computes the transitions of accessible states only. The main point
is to decide whether a target state is a new state. It induces many time-consuming
identity tests involving a potentially new subset and already produced subsets.

From now on, we shall investigate the construction based on accessibility and we
shall compare how it performs on unrestricted automata and on speci,c families of
automata.

3.3. The standard complexity

Complexity results about unrestricted automata are summarized in the following the-
orem:

Theorem 1. Let M be an unrestricted automaton on the alphabet �; and DM be the
subset-automaton of M. Let n (resp. n′) be the number of states in M (resp. in DM).

J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34 21

The automaton DM can be computed with the following complexity:
(1) Upper bound on the number of states: n′62n − 1.
(2) Transition computation:

(a) O(n2) for one transition;
(b) O(|�|n2) for the set of transitions of one state;
(c) O(|�|n2n′) for the set of transitions of the subset-automaton.

(3) Set equality testing:
(a) O(

√
n22n) when using lists;

(b) O(n2 log(n)2n) when using balanced search trees.

Proof. Let us ,rst examine the complexity of transition computation. By construction,
for all q′ in Q′ and all a in �, the target state of the transition from q′ on the symbol
a is the state �′(q′; a)=

⋃
q∈q′ �(q; a). Since |q′|6n, and since |�(q; a)|6n for all q in

q′, the subset �(q′; a) is computed with an O(n2) time complexity.
The complexity of set equality testing depends on the data structure encoding subsets.

The results reported in Theorem 1 concern lists and balanced search trees, improved
by a hashing w.r.t. subset size. A complete proof can be found in [14].

4. Homogeneous automata

This section aims at studying the impact of the homogeneity property on subset
construction. We ,rst establish a new upper bound on the number of states of the
subset-automaton of an homogeneous automaton. We also give an estimation of the
complexity of transition computation and of set equality testing in the homogeneous
case.

4.1. The homogeneity property

De�nition 2. An automaton M=(Q;�; �; I; F) is homogeneous if and only if, for all
state q in Q, all transitions in q are labeled by the same symbol:

∀r; s ∈ Q; ∀a; b ∈ �; a �= b ⇒ �(r; a) ∩ �(s; b) = ∅:

A state q is said to be labeled by a symbol a if and only if all transitions in q are
labeled by a. Notice that an initial state may have no in-transition. Assume symbol
0 is not in � and let 0 be the label of initial states with no in-transition. Let Qa,
a∈� ∪ {0}, be the set of states labeled by the symbol a. We have: Q0 = I\⋃a∈� Qa.
The sets Qa, for all a in � ∪ {0}, are obviously pairwise disjoint. Assuming M is
accessible, we have the following property:

Lemma 2. The set of states of an homogeneous automaton is partitioned as follows:

Q =
⊎

a∈�∪{0}
Qa with Q0 = I\ ⋃

a∈�
Qa:

22 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

A subset P of Q is said to be homogeneous if and only if there exists a symbol a
in � such that P⊆Qa. In this case, we say that P is labeled by a.

Lemma 3. Let M=(Q;�; �; I; F) be an homogeneous automaton. Let Qa, for all a
in �; be the set of states labeled by the symbol a. The following properties hold:
(1) For all subset P of Q; and for all a in �; we have �(P; a)⊆Qa.
(2) The subset-automaton of an homogeneous automaton M is homogeneous.
(3) For all noninitial state q′ in DM ; there exists a symbol a such that q′ ⊆Qa.

Proof. (1) Let P be a subset of Q. We have �(P; a)=
⋃

q∈P �(q; a). Since M is
homogeneous, we have �(q; a)⊆Qa, ∀q∈Q. Thus we get �(P; a)⊆Qa.
(2) Assume there exist two states x′ and y′ in Q′ and two distinct symbols a and b in

�, such that �′(x′; a)= �′(y′; b). By Lemma 1, it implies that �(x′; a)= �(y′; b). Since
M is homogeneous, by (1) we have: �(x′; a)⊆Qa and �(y′; b)⊆Qb. Since Qa∩Qb = ∅,
we get a contradiction.
(3) Let q′ be a non-initial state in DM . By construction, there exists at least one

pair (r′; a)∈Q′ × � such that �′(r′; a)= q′. Notice that since DM is homogeneous the
symbol a is unique. By construction, q′ =

⋃
q∈r′ �(q; a). Since M is homogeneous,

from (1) we deduce that q′ ⊆Qa.

Remark 2. Notice that the subset I , which is the initial deterministic state, is not
necessarily homogeneous. If it is, then there exists a symbol a such that I ⊆Qa. In
this case, there may exist a deterministic state r′ such that �(r′; a)= I , which implies
0′ ∈Q′

a. Otherwise Q′
0 = {0′}.

4.2. A new upper bound on the number of states in DM

Lemma 3:3 implies that the number of subsets produced by the determinization of
an homogeneous automaton is equal to the overall number of the nonempty subsets of
sets Qa, a in �. Since subset I is not necessarily homogeneous, one is added to get at
the following upper bound on the number of states in the subset-automaton.

Proposition 1. Let M=(Q;�; �; I; F) be an homogeneous automaton and Qa be the
set of states labeled by the symbol a. Then the number n′ of states in the subset-
automaton of M is such that

n′6
(∑

a∈�
2|Qa|

)
− |�|+ 1 with

∑
a∈�

|Qa| = |Q| − |Q0|:

Remark 3. This new upper bound is generally much smaller than the standard bound.
For instance, if there are at least two symbols, and if subsets Qa have the same size,
we get n′6|�| × 2|Q|=|�|�2|Q| − 1. The gap increases with the alphabet size, which
can be very large in linguistic applications. Let us notice that such a bound could help
to decide whether an exhaustive implementation is realistic or not.

J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34 23

4.3. Transition computation

Let q′ be a deterministic state and a be a symbol. We have to compute the subset
�′(q′; a), according to the formula: �′(q′; a)=

⋃
q∈q′ �(q; a).

Since M is homogeneous, for all q in q′, we have: �(q; a)⊆Qa, and thus |�(q; a)|
6|Qa|. If q′ is not an initial state, by Lemma 3:3, there exists a symbol ‘ such that
q′ ⊆Q‘ and thus |q′|6|Q‘|. Consequently, the transition �′(q′; a) is computed with an
O(|Q‘|× |Qa|) time complexity. On the other hand, the transition �′(0′; a) is computed
with an O(|I | × |Qa|) time complexity. Hence the following proposition:

Proposition 2. For an homogeneous automaton; such that

Q =
⊎

‘∈�∪{0}
Q‘ with Q0 = I\ ⋃

‘∈�
Q‘;

the time complexity of the transition computation step is the following:
(1) O(|Q‘| × |Qa|) for the transition �′(q′; a) from a noninitial state q′ labeled with

symbol ‘; and O(|I | × |Qa|) for the transition �′(0′; a); for all a in �;
(2) O(|Q‘| × |Q|) for the set of transitions �′(q′) from a noninitial state q′ labeled

with symbol ‘; and O(|I | × |Q|) for the transition �′(0′);
(3) O(|Q| ×∑

‘∈� |Q‘|2|Q‘|) for the set of transitions of the subset-automaton.

Remark 4. This complexity generally improves the standard one by a factor greater
than |�|. For instance, if there are at least two symbols, and if subsets Qa have the same
size, we get n′6|Q| × 2|Q|=|�|�|�| × |Q|2 × 2|Q|. Let us notice that this improvement
is due to homogeneity property; it does not depend on the implementation, which can
be based on the raw transition table of the automaton.

Lemma 4. In the homogeneous case; the family of subsets (�′(q′; a))a∈�; can be de-
duced from the set �(q′); according to the formula: �′(q′; a)= �(q′)∩Qa.

Proof. By Lemma 3:3, we have �(q′; a)⊆Qa, for all a in �. Since sets Qa are pairwise
disjoint, we get �(q′)=

⊎
a∈� �(q′; a). By Lemma 1 it implies that �′(q′)=

⊎
a∈� �′(q′;

a). Finally, we have �′(q′; a)= �(q′)∩Qa.

As a consequence, subsets (�′(q′; a))a∈� can be retrieved from �(q′) set with an
overall O(|Q|) time complexity. This property is particularly interesting when the set
�(q′) can be computed with an O(|Q|) time complexity. It is not the case for an
arbitrary homogeneous automaton since �(q′), for a subset q′ labeled by ‘, is computed
in O(|Q‘| × |Q|) time. We shall see it is the case for the ZPC-structure representation
of a position automaton.

4.4. Set equality testing

Homogeneous bounds reported in the following theorem are deduced from standard
bounds, by hashing the data structure implementing subsets w.r.t. the partition of Q
into homogeneous subsets.

24 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

4.5. Homogeneous complexity

Complexity results about homogeneous automata are summarized in the following
theorem:

Theorem 5. Let M be an homogeneous automaton on the alphabet �; such that

Q =
⊎

l∈�∪{0}
Ql with Q0 = I\ ⋃

l∈�
Ql:

Let DM be the subset-automaton of M. Let n (resp. n′) be the number of states in M

(resp. in DM). The automaton DM can be computed with the following complexity:
(1) Upper bound on the number of states:

n′6
(∑

a∈�
2|Qa|

)
− |�|+ 1 with

∑
a∈�

|Qa| = |Q| − |Q0|:

(2) Transition computation:
(a) O(|Q‘| × |Qa|) for the transition �′(q′; a) from a noninitial state q′ labeled

with symbol ‘; for all a in �;
(b) O(|Q‘| × |Q|) for the set of transitions �′(q′) from a noninitial state q′

labeled with symbol ‘;
(c) O(|Q| × ∑

‘∈� |Q‘|2|Q‘|) for the set of transitions of the subset-automaton.
(3) Set equality testing:

(a) O(
∑

a∈�

√|Qa| × 22× |Qa|) when using lists;
(b) O(

∑
a∈� |Qa|2 × log(|Qa|)× 2|Qa|) when using balanced search trees.

5. Position automata

We ,rst recall the de,nition of the position automaton of a regular expression.
Position automata turn to be homogeneous, which leads to a new bound on the number
of deterministic states w.r.t. the number of occurrences of symbols in the expression.

5.1. The position automaton of a regular expression

A regular expression over an alphabet � is linear if and only if all its symbols
are distinct. Let E be a linear expression over �. The following sets of symbols are
associated to E:
• Null(E)= {�} if �∈L(E) and ∅ otherwise,
• First(E); the set of symbols that match the ,rst symbol of some word in L(E);
• Last(E); the set of symbols that match the last symbol of some word in L(E);
• Follow(E; x); for all x in �: the set of symbols that follow the symbol x in some

word of L(E).
Now, let E be a regular expression over �. If x is the jth occurrence of a symbol in

E, the pair (x; j), or xj for short, is the position associated to x. The set of positions of

J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34 25

E is denoted by Pos(E). Let PE be the linear expression deduced from E by substituting
each symbol by its position. We denote by h the application from Pos(E) to � which
maps a position to the symbol it is associated to. Let E= a · (a + b) + (a + b) · (1 +
b). We have: Pos(E)= {a1; a2; b3; a4; b5; b6}, PE= a1 · (a2 + b3) + (a4 + b5) · (1 + b6),
h(a1)= h(a2)= h(a4)= a and h(b3)= h(b5)= h(b6)= b.
The sets of positions associated to E are straightforwardly deduced from the sets of

symbols associated to PE:
• Null(E)=Null(PE),
• First(E)=First(PE),
• Last(E)=Last(PE),
• Follow(E; x)=Follow(PE; x), for all x in Pos(E).
Positions of E, added with an initial state, are the states of the position automaton of

E, denoted by PE . The automaton PE is deduced from the sets First, Last and Follow
as follows.

De�nition 3 (Position automaton). The position automaton of E, PE =(Q;�; �; I; F),
is de,ned by
• Q=Pos(E) ∪ {0}, where 0 is not in Pos(E),
• I = {0},
• F =

{
Last(E) if Null(E)= ∅;
Last(E) ∪ {0} otherwise;

• �(0; a)= {x∈First(E) | h(x)= a}, ∀a∈�,
• �(x; a)= {y |y∈Follow(E; x) and h(y)= a}, ∀x∈Pos(E), ∀a∈�.

Proposition 3 (Glushkov [4] and McNaughton and Yamada [11]). The position auto-
maton of a regular expression E recognizes the language L(E).

Example 1. Consider the regular expression E=((x∗y)∗+ x(x∗y)∗y)∗ and the linear
expression PE=((x∗1 y2)∗ + x3(x∗4 y5)∗y6)∗. We have
• Null(E)= {�},
• First(E)= {x1; y2; x3},
• Last(E)= {y2; y6},
• Follow(E; x1)= {x1; y2}; Follow(E; y2)= {x1; y2; x3},

Follow(E; x3)=Follow(E; y5)= {x4; y5; y6},
Follow(E; x4)= {x4; y5}, Follow(E; y6)= {x1; y2; x3}.

The position automaton of E is shown by the Fig. 1.

5.2. Homogeneity of position automata

Lemma 5. The position automaton PE of a regular expression E is homogeneous.

Proof. From De,nition 3, we deduce that
(1) There is no transition in state 0, since 0 is not a position of E.

26 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

Fig. 1. The position automaton for E = ((x∗y)∗ + x(x∗y)y)∗.

(2) By de,nition of the transition function �, for all x in Q, for all y in Pos(E), and
for all a in �, we have: y∈ �(x; a)⇒ h(y)= a. Consequently, for all y in Pos(E),
all transitions in y have the same label h(y).

5.3. Homogeneous bounds for position automata

By Lemma 5, complexity bounds of Theorem 5 apply to position automata. On the
other hand, a position automaton is related to a regular expression, and it has a unique
initial state, with no in-transition. Theorem 5 is therefore restated according to these
speci,c features.

Theorem 6. Let E be a regular expression over the alphabet �. Let na be the num-
ber of occurrences of symbol a in E; and n=1 +

∑
a∈� na. Let PE be the position

automaton of E; and DE be the subset-automaton of PE . Let n′ be the number of
states in DE . The automaton DE can be computed with the following complexity:
(1) Upper bound on the number of states: n′6(

∑
a∈� 2

na)− |�|+ 1.
(2) Transition computation:

(a) O(n‘ × na) for the transition �′(q′; a) from a noninitial state q′ labeled with
symbol ‘; for all a in �;

(b) O(n‘ × n) for the set of transitions �′(q′) from a noninitial state q′ labeled
with symbol ‘;

(c) O(n× ∑
‘∈� n‘2n‘) for the set of transitions of the subset-automaton.

(3) Set equality testing:
(a) O(

∑
a∈�

√
na22na) when using lists;

(b) O(
∑

a∈� n2a log(na)2na) when using balanced search trees.

Example 2. E=(a1 + (a2 + b3)∗a4)(a5 + b6)∗: the automata PE and DE are given by
Fig. 2; the standard bound is 127 and the new bound is 19.

J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34 27

Fig. 2. (a) The nondeterministic automaton PE . (b) The deterministic automaton DE which is the subset
automaton of PE .

Example 3. E=(a+b)∗(babab(a+b)∗bab+bba(a+b)∗bab)(a+b)∗ [2]: the standard
bound is 8:3× 106 and the new bound is 8:7× 103.

6. ZPC-structures

An implicit construction of the position automaton, the so-called ZPC-structure
[20, 21, 13, 14], has been developed in 1995. It can be obtained in O(|E|) time, it
requires O(|E|) space, and it can be converted into a position automaton in O(|E|2)
time. The main feature of a ZPC-structure is that, for all subset P of states, the sub-
set �(P), and the family of subsets (�(P; a))a∈�, can be computed in O(|E|) time. A
consequence is that operations usually performed on a NFA, such as membership lan-
guage testing or determinization, can be carried out on the implicit structure, without
expanding it, and with a lower complexity.
In this section, we ,rst recall how a regular expression can be converted into its

ZPC-structure. Then we review the major properties of ZPC-structures, and deduce
further improvements of subset construction.

6.1. From a regular expression to its ZPC-structure

Let us provide an unformal description of the conversion of a regular expression
into its ZPC-structure (a regular expression is said nullable if and only if the language
it denotes recognizes the empty word):
(1) Start from the syntax tree T (PE) of PE. Process a depth-,rst search and link each

leaf to its successor and each node to its leftmost leaf and to its rightmost leaf.
Notice that these basic links give a direct access to the set of positions of a node.

28 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

(2) Make two copies of T (PE). These copies will soon be changed into two forests,
respectively, encoding the Last sets and the First sets of the subexpressions of E.
These forests are, respectively, denoted by Lasts(E) and Firsts(E). Notice that the
initial value of the basic links in Lasts(E) match the case where the Last set of a
node is the union of the Last sets of its children (or is the Last set of its child,
for a unary node). A similar property holds in Firsts(E).

(3) The Last set of a concatenation node whose right child is not nullable is the Last
set of its right child. We therefore process a depth-,rst search in Lasts(E) and,
for each such concatenation node, we disable the left child connection, and update
the leftmost pointer.

(4) Similarly, the First set of a concatenation node whose left child is not nullable is
the First set of its left child. For each such concatenation node in Firsts(E), we
therefore disable the right child connection, and update the rightmost pointer.

(5) The set of transitions produced by a concatenation operation is equal to the carte-
sian product of the Last set of its left child by the First set of its right child.
Similarly, the set of transitions produced by a Kleene’s star operation is equal to
the cartesian product of the Last set of its child by the First set of its child. Such
sets of transitions are called follow sets. For a concatenation node, we therefore
connect its left child in Lasts(E) to its right child in Firsts(E). For a Kleene’s star
node, we connect its child in Lasts(E) to its child in Firsts(E). We call follow
link a link representing a follow set.

(6) Redundant follow links may be eliminated, so that each transition is encoded by
a unique follow link.

Example 4. Let E= a(b+ a)∗+ a and PE= a1(b2 + a3)∗+ a4. The ZPC-structure of E
is shown in Fig. 3.

Remark 7. It is helpful to add two special positions, $ and #, and to process the
expression PE=$(a1(b2 + a3)∗ + a4)#. Position $ is associated to the initial state and
is involved in the follow set {$}×First(E). Position # is reached from positions in
Last(E) by scanning the end of the input word. It only appears in the set Last(E)×{#}.
Notice that $ also appears in this set if E is nullable.

Remark 8. It is easier to describe the ZPC-structure construction using two forests.
But they need not be implemented; the syntax tree, added with suitable pointers and
booleans to control disabled connections, is a better representation.

6.2. ZPC-structure properties

Formal properties of the ZPC-structure are reviewed now. Extended proofs can be
found in [20, 13].

Proposition 4 (Ziadi et al. [20] and Ponty et al. [13]). Let E be a regular expression
and SE be its ZPC-structure. The following properties hold:
(1) The structure SE can be constructed in O(|E|) space and time.

J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34 29

Fig. 3. The ZPC-structure of E = a(b + a)∗ + a.

(2) The structure SE can be converted into the position automaton of E in O(|E|2)
time.

(3) The structure SE allows an O(|E|) space and time computation of the following
sets:
(a) the set " of nodes in Lasts(E) whose Last sets intersect a given position

set X; and which are the origin of a follow link;
(b) the set Y =

⋃
’∈& First(’) of positions in the First set of the target ’ of

follow links belonging to a given set.

Let X be a position subset and Y be the set of positions which are a target for
a transition exiting from a position in X . We have Y = �(X)=

⋃
x∈X �(x). A fast

algorithm to compute Y can be deduced from Proposition 4:3. A detailed exposition
can be found in [15], where membership testing is investigated.

Proposition 5. Given a position subset X; the set Y = �(X) can be computed in O(|E|)
space and time according to the following algorithm:
(1) Compute the set " of nodes ' in Lasts(E) such that Last(')∩X �= ∅ and there

exists a follow link exiting from node '.
(2) Compute the set & of nodes ’ in Firsts(E) such that there exists a follow link

in " entering in ’. The set Y = �(X) is such that Y =
⋃

’∈& First(’).
(3) Deduce a set &′ from & so that the set Y be computed according to the formula:

Y =
⊎

’∈&′ First(’).

30 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

Example 5. We consider the ZPC-structure of E = a(b + a)∗ + a (see Fig. 4).
Step 1: X = {1; 3; 4}→"= {'1; '5; '7}.
Step 2: "= {'1; '5; '7}→&= {’11; ’6; ’7}.
Step 3: &= {’11; ’6; ’7}→&′ = {’11; ’6; ’7}→Y = {2; 3; #}.

6.3. Transition computation

Let q′ be a deterministic state. According to the algorithm of Proposition 5, we com-
pute the sets "(q′) and &′(q′), associated to the subset q′, and the set �(q′)=

⊎
’∈&′(q′)

First(’). The set �(q′) can be obtained in O(|E|) space and time. By Lemma 4, sub-
sets (�′(q′; a))a∈� can be retrieved from �(q′) set with an overall O(|Q|) time com-
plexity, according to the formula �′(q′; a)= �(q′)∩Q′

a. Since the number n of states
in the position automaton of E is equal to ‖E‖ + 1, and since we can assume that
O(|E|)=O(‖E‖), the following proposition holds:

Proposition 6. Using the ZPC-structure of E; the time complexity of the transition
computation step is the following:
(1) O(n) for the set of transitions from a state q′;
(2) O(n

∑
‘∈� 2n‘) for the set of transitions of the subset-automaton.

6.4. Set equality testing

Our aim is to reduce the size of subsets involved in set equality testing. We show
that for all q′ in Q′, a set ((q′) of nodes in T (E) can be deduced from the set &′(q′),
with the following properties:
(1) �(q′)= �(r′)⇔ ((q′)= ((r′),
(2) |((q′)|6|�(q′)|,
(3) The set ((q′) is obtained in O(|E|) space and time.
Let us ,rst notice that properties (2) and (3) are satis,ed by the set &′(q′), which

is such that: �(q′)=
⊎

’∈&′(q′) First(’). The number of First sets which occur in the
disjoint union is obviously less than or equal to the number of positions in �(q′), hence
property (2) is satis,ed. Property (3) comes from Proposition 4. Property (1) is not
satis,ed however, since we can have &′(q′) �= &′(r′) for two distinct states q′ and r′

such that �(q′)= �(r′). This situation is illustrated by the following example:

Example 6. We consider the Example 5 (Fig. 4). After determinization, we obtain the
following results:

0′ → {0}; �(0′) = {1; 4}; �(0′; a) = {1; 4}; �(0′; b) = ∅;
1′ → {1; 4}; �(1′) = {2; 3; #}; �(1′; a) = {3}; �(1′; b) = {2};
2′ → {3}; �(2′) = {2; 3; #};
3′ → {2}; �(3′) = {2; 3; #}:

It implies that �(1′)= �(2′)= {2; 3; #} whereas {’6; ’11}=&′(1′) �= &′(2′)= {’7; ’11}.

J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34 31

Fig. 4. Computation of �(x) on the ZPC-structure of PE = a1(b2 + a3)∗ + a4.

Fig. 5. Computation of ((q′).

Let us now consider the set ((q′) de,ned as follows:

De�nition 4. Let q′ be a deterministic state. The set ((q′) is the smallest set of nodes
in T (E) such that �(q′)=

⋃
’∈((q′) Pos(’).

For all ’ in &′(q′), let a(’) be the farthest parent of ’ in T (E) such that First(’)⊆
Pos(a(’))⊆ �(q′). Two distinct nodes ’1 and ’2 in &′(q′) may be such that a(’1)=
a(’2). Furthermore, substituting a node ’ in &′(q′) by a(’) adds no new position in
the set �(q′). It implies that the set ((q′) can be deduced from &′(q′) by substituting
each node ’ by the node a(’).

Example 7. In this example (see Fig. 5), we assume that &′(q′)= {’8; ’11} and
�(q′)={a2; b3; a4}. We have Pos(’6)=First(’8)∪First(’11). Furthermore, ’6 is a
child of ’4 which is such that Pos(’4)* �(q′). Thus we get a(’8)= a(’11)=’6 and
((q′)= {’6}.

32 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

Fig. 6. Algorithm to compute the set ((q′).

Proposition 7. The following properties hold:
(1) �(q′)= �(r′)⇔ ((q′)= ((r′);
(2) |((q′)|6|�(q′)|;
(3) The set ((q′) is obtained in O(|E|) space and time.

Proof. For the direct part of property (1), proof comes from unicity of the set ((q′).
The inverse part of properties (1) and (2) are obvious. As for property (3), an O(|E|)
space and time algorithm is provided to compute the set ((q′) (see Fig. 6).

Finally, for all a in �, the set (a(q′) can be deduced from the set ((q′) in the fol-
lowing way: (a(q′)= {’∈ ((q′) |Pos(’)∩Qa �= ∅}. The following proposition deduces
from Proposition 7:

Proposition 8. The following properties hold:
(1) �(q′; a)=

⋃
’∈(a(q′) Pos(’);

(2) �(q′; a)= �(r′; a)⇔ (a(q′)= (a(r′);

J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34 33

(3) |(a(q′)|6|�(q′; a)|;
(4) The set (a(q′) is obtained in O(|E|) space and time.

Since sets (a(q′) and �(q′; a) are computed with the same complexity and since
(a(q′) is smaller than �(q′; a), using sets (a(q′) instead of sets �(q′; a) in the set
equality testing step should speed up subset construction.

6.5. ZPC-structure complexity

Complexity results about ZPC-structures are summarized in the following theorem:

Theorem 9. Let E be a regular expression over the alphabet �. Let na be the num-
ber of occurrences of symbol a in E; and n=1 +

∑
a∈� na. Let PE be the position

automaton of E; and DE be the subset-automaton of PE . Let n′ be the number of
states in DE . The automaton DE can be deduced from the ZPC-structure SE of E
with the following complexity:
(1) Upper bound on the number of states: n′6(

∑
a∈� 2

na)− |�|+ 1.
(2) Transition computation:

(a) O(n) for the set of transitions from a state q′;
(b) O(n ×∑

a∈� 2
na) for the set of transitions of the subset-automaton.

(3) Set equality testing: the theoretical complexity is the same as for position
automata; using sets (a(q′) should however speed up the computation:
(a) O(

∑
a∈�

√
na22na) when using lists;

(b) O(
∑

a∈� n2a log(na)2na) when using balanced search trees.

7. Conclusion

The homogeneity property signi,cantly reduces the number of deterministic states;
as a consequence, the complexity of the transition computation and of the set equality
testing is generally much lower for homogeneous automata than for unrestricted au-
tomata. This complexity can be lessened still further in the case of position automata
as far as computation is carried out on the ZPC-structure whose main feature is to
allow the computation of transition sets via disjonctive unions.

Acknowledgements

I would like to thank Derick Wood for his constructive review of a ,rst version of
this paper. I am deeply grateful to Evelyne for a valuable linguistic assistance.

References

[1] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

34 J.-M. Champarnaud / Theoretical Computer Science 267 (2001) 17–34

[2] V. Antimirov, Partial derivatives of regular expressions and ,nite automaton constructions, Theoret.
Comput. Sci. 155 (1996) 291–319.

[3] J.-M. Champarnaud, G. Hansel, Automate, a computing package for automata and ,nite semigroups, J.
Symbolic Comput. 12 (1991) 197–220.

[4] V.M. Glushkov, The abstract theory of automata, Russian Math. Surveys 16 (1961) 1–53.
[5] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation,

Addison-Wesley, Reading, MA, 1979.
[6] J.H. Johnson, A program for computing ,nite automata, Unpublished Report, University of Waterloo,

Canada, 1986.
[7] J.H. Johnson, D. Wood, Instruction computation in subset construction, in: D. Raymond, D. Wood, S.

Yu (Eds.), Automata Implementation: First Internat. Workshop on Implementing Automata, WIA’96,
Lecture Notes in Computer Science, vol. 1260, London, Ontario, Springer, Berlin, 1997, pp. 64–71.

[8] S. Kleene, Representation of events in nerve nets and ,nite automata, Automata Studies, Ann. Math.
Studies, vol. 34, Princeton University Press, Princeton, 1956, pp. 3–41.

[9] T.K.S. Leslie, EIcient approaches to subset construction, Tech. Report CS-92-29, Department of
Computer Science, University of Waterloo, Waterloo, Ont., Canada, 1992.

[10] T.K.S. Leslie, D.R. Raymond, D. Wood, The expected performance of subset construction, non publiSe,
1996.

[11] R.F. McNaughton, H. Yamada, Regular expressions and state graphs for automata, IEEE Trans. Electron.
Comput. 9 (1960) 39–57.

[12] D. Perrin, Finite automata, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer Science,
Formal Models and Semantics, vol. B, Elsevier, Amsterdam, 1990, pp. 1–57.

[13] J.-L. Ponty, D. Ziadi, J.-M. Champarnaud, A new quadratic algorithm to convert a regular expression
into an automaton, in: D. Raymond, D. Wood, S. Yu (Eds.), Automata Implementation: First Internat.
Workshop on Implementing Automata, WIA’96, Lecture Notes in Computer Science, vol. 1260, London,
Ont., Springer, Berlin, 1997, pp. 109–119.

[14] J.-L. Ponty, Algorithmique et implSementation des automates, ThTese, UniversitSe de Rouen, France, 1997.
[15] J.-L. Ponty, An eIcient null-free procedure for deciding regular language membership, Theoret. Comput.

Sci 231 (2000) 89–101.
[16] M.O. Rabin, D. Scott, Finite automata and their decision problems, IBM J. Res. 3 (2) (1959) 115–125.
[17] D. Raymond, D. Wood, Grail, a C++ library for automata and expressions, J. Symbolic Comput. 17

(1994) 341–350.
[18] D. Wood, Theory of Computation, Wiley, New York, 1987.
[19] S. Yu, Regular languages, in: G. Rozenberg, A. Salomaa (Eds.), Handbook of Formal Languages, Word,

Language, Grammar, vol. I, Springer, Berlin, 1997, pp. 41–110.
[20] D. Ziadi, J.-L. Ponty, J.-M. Champarnaud, Passage d’une expression rationnelle Ta un automate ,ni

non-dSeterministe, JournSees Montoises (1995), Bull. Belg. Math. Soc. 4 (1997) 177–203.
[21] D. Ziadi, Algorithmique parallTele et sSequentielle des automates, ThTese, UniversitSe de Rouen, France,

1996.

