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We revisit large field inflation models with modulations in light of the recent discovery of the primordial 
B-mode polarization by the BICEP2 experiment, which, when combined with the Planck + WP + highL
data, gives a strong hint for additional suppression of the CMB temperature fluctuations at small scales. 
Such a suppression can be explained by a running spectral index. In fact, it was pointed out by two 
of the present authors (TK and FT) that the existence of both tensor mode perturbations and a sizable 
running of the spectral index is a natural outcome of large inflation models with modulations such as 
axion monodromy inflation. We find that this holds also in the recently proposed multi-natural inflation, 
in which the inflaton potential consists of multiple sinusoidal functions and therefore the modulations 
are a built-in feature.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The BICEP2 experiment detected the primordial B-mode polar-
ization of the cosmic microwave background (CMB) with very high 
significance [1], giving a very strong case for inflation [2,3]. The 
inflation scale is determined to be

H inf � 1.0 × 1014 GeV

(
r

0.16

) 1
2

, (1)

r = 0.20+0.07
−0.05 (68% CL), (2)

where H inf is the Hubble parameter during inflation, and r denotes 
the tensor-to-scalar ratio. The preferred range of r is modified 
to r = 0.16+0.06

−0.05, after subtracting the best available estimate for 
foreground dust. The BICEP2 result strongly suggests large-field in-
flation occurred, and by far the simplest model is the quadratic 
chaotic inflation [4].1 The discovery of the tensor mode perturba-
tions is of significant importance not only for cosmology but also 
for particle physics, because the suggested inflation energy scale 
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1 For various large-field inflation models and their concrete realization in the 
standard model as well as supergravity and superstring theory, see e.g. [5–22].
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is close to the GUT scale. If the primordial B-mode polarization is 
measured with better accuracy by the Planck satellite and other 
ground-based experiments, it will pin down the underlying infla-
tion model, providing invaluable information on the UV physics 
such as string theory.

The BICEP2 data, when combined with the Planck + WP + highL
data, gives a strong hint for some additional suppression of the 
CMB temperature fluctuations at small scales [1]. This is because 
the large tensor mode perturbations also contribute to the CMB 
temperature fluctuations at large scales, which causes the tension 
on the relative size of scalar density perturbations at large and 
small scales. The suppression of the density perturbations at small 
scales can be realized by e.g. (negative) running of the spectral 
index, hot dark matter, etc.2 In this letter we focus on the running 
spectral index as a solution to this tension.

The spectral index of the curvature power spectrum PR is de-
fined by

ns(k) − 1 = d lnPR(k)

d ln k
, (3)

and the running of the spectral index is obtained as the differ-
entiation of ns with respect to ln k. The preferred range of the 

2 Before the BICEP2 results, there was a hint for the presence of hot dark mat-
ter, such as sterile neutrinos [23–25]. Non-thermally produced axions are also an 
interesting candidate [26,27].
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running spectral index and its statistical significance are not given 
in [1]. Since the combination of the Planck + WP + highL data con-
strains the running as [28] dns/d ln k = −0.022 ± 0.010 (68% CL), 
we expect that, once the BICEP2 data is combined, non-zero val-
ues of dns/d ln k ≈ −0.02 ∼ −0.03 will be suggested with strong 
significance. As a reference value, we will assume that the running 
is approximately given by dns/d ln k ∼ −0.025 over the observed 
cosmological scales, but the precise value is not relevant for our 
purpose.3

In a single-field slow-roll inflation model with a featureless po-
tential, the running of the spectral index is of second order in the 
slow-roll parameters, and therefore of order 10−3. Thus, it is a 
challenge to explain a running as large as dns/d ln k ∼ −0.025. For 
various proposals on this topic, see e.g. Refs. [30–37]. In particu-
lar, [37] pointed out that a large negative running that is more or 
less constant over the observed cosmological scales would quickly 
terminate inflation within N � 30 in terms of the e-folding num-
ber. However, it should be noted that such a discussion is based 
on the assumption that the inflaton potential is expanded in the 
Taylor series of the inflaton field with finite truncation. In fact, it 
is possible to realize the running spectral index in simple single-
field inflation models. In Ref. [38], two of the present authors (TK 
and FT) showed that a sizable running spectral index can be re-
alized without significant impact on the overall behavior of the 
inflaton if there are small modulations on the inflaton potential. 
(See also [39] for related work.) Here, in order for the inflaton dy-
namics to be locally affected by the modulations, the inflaton field 
excursion must be relatively large as in the large-field inflation. 
Therefore, both the tensor mode and the running spectral index 
are a natural outcome of the large field inflation with modulations. 
Examples such as monomial inflaton potentials (V = λφn) with su-
perimposed periodic oscillations were studied in [38].

In this letter we revisit the large-field inflation with modula-
tions in light of the recent discovery of the primordial B-mode 
polarization by the BICEP2. Along the lines of Ref. [38], we study 
the recently proposed multi-natural inflation [19,20,40] as an ex-
ample. Interestingly, the existence of the periodic oscillations is a 
built-in feature of multi-natural inflation. We show that the neg-
ative running spectral index can be realized without significant 
impact on the overall inflation dynamics, similar to the case stud-
ied before. We will also show that the predicted values of (ns, r)
for quadratic chaotic inflation and natural inflation can also be re-
alized in multi-natural inflation.

2. Implications of BICEP2 for inflation

Before proceeding to the analysis, let us here briefly discuss the 
implications of the BICEP2 results for inflation. First, the inflaton 
field excursion during the last 60 e-foldings exceeds the Planck 
scale, Mp � 2.4 × 1018 GeV, in a large field inflation model sug-
gested by the BICEP2 result (1). One plausible way for having a 
good control of the inflaton potential over super-Planckian field 
values is to introduce a shift symmetry, under which the inflaton 
φ transforms as

φ → φ + α, (4)

3 Note that both the spectral index and its running are usually evaluated at a 
pivot scale, and the running is assumed to be scale-independent in the MCMC anal-
ysis of the CMB data [28]. On the other hand, there is no firm ground to assume 
that they are completely scale-independent, and in fact, they do depend on scales 
in many scenarios. Therefore, the comparison between theory and observation must 
be done carefully, and a dedicated analysis to each theoretical model would be nec-
essary to deduce some definite conclusions. We also note that the joint analyses of 
the Planck and BICEP2 datasets have been performed in recent works such as [29], 
see Eq. (22).
where α is a real transformation parameter. The shift symmetry 
needs to be explicitly broken in order to generate the inflaton po-
tential. That is to say, the global continuous shift symmetry can 
be explicitly broken down to a discrete one. For instance, the sym-
metry breaking could manifest itself as sinusoidal functions in the 
inflaton potential. If a single sinusoidal function dominates the in-
flaton potential, it is the natural inflation [5]. On the other hand, 
if there are many sources for the explicit breaking, the inflaton 
potential may consist of multiple sinusoidal functions with differ-
ent height and periodicity. Such a case was investigated in [19,
20], which we refer to as multi-natural inflation. In this sense, the 
existence of small periodic oscillations is a built-in feature of the 
multi-natural inflation. As we shall see below, a sizable negative 
running spectral index can be generated in multi-natural inflation.

3. Running spectral index from inflation with modulations

3.1. Basic idea

Let us first review our basic idea from [38] on generating a 
sizable running spectral index. The point is that substructures in 
the inflaton potential can affect the tilt and/or the running spec-
tral index in a non-negligible way, while not changing the overall 
behavior of the inflaton dynamics.

We consider an inflaton potential V (φ) with modulations, 
which can be decomposed as

V (φ) = V 0(φ) + V mod(φ), (5)

where the second term represents the modulations. We assume 
that the modulations are so small that the slow-roll approxima-
tions

3Hφ̇ � −V ′(φ), (6)

3H2M2
p � V (φ), (7)

remain valid. (Here an overdot denotes a time derivative.)
The running in the spectral index is expressed in terms of the 

slow-roll parameters as

dns

d ln k
� −24ε2 + 16εη − 2ξ, (8)

where

ε ≡ M2
p

2

(
V ′

V

)2

, η ≡ M2
p

V ′′

V
, ξ ≡ M4

p
V ′V ′′′

V 2
, (9)

and primes denote derivatives with respect to the inflaton field φ. 
Thus, in order to generate a sizable running, the third derivative of 
the inflaton potential must be large. At the same time, we consider 
the modulations to minimally affect the overall behavior of the 
inflaton dynamics. To this end we require the following conditions 
for most of the inflaton field values:

∣∣V 0(φ)
∣∣ 	 ∣∣V mod(φ)

∣∣, (10)∣∣V ′
0(φ)

∣∣ � ∣∣V ′
mod(φ)

∣∣, (11)∣∣V ′′
0 (φ)

∣∣ � ∣∣V ′′
mod(φ)

∣∣, (12)∣∣V ′′′
0 (φ)

∣∣ 
 ∣∣V ′′′
mod(φ)

∣∣. (13)

We assume that the effect of the modulations V mod (and its deriva-
tives) on the inflaton dynamics should be negligibly small when 
averaged over a sufficiently long time or large field space. One ex-
ample for such modulations is a sinusoidal function. If both V 0 and 
V mod are given by sinusoidal functions as in multi-natural inflation, 
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Fig. 1. Evolution of the spectral index ns , its running dns/d ln k, and the tensor-to-scalar ratio for f = 100Mp , A = 4 × 10−3, B = 1 × 10−4, and θ = −1. The red diamond 
denotes N = 60 e-folds before the end of inflation, whereas the black (white) star corresponds to N = 63 (55).
V mod should have a shorter period, i.e., smaller decay constant to 
satisfy the above conditions.

The curvature perturbation power spectrum can be computed 
as4

PR(k) � H4

4π2φ̇2

∣∣∣∣
k=aH

. (15)

Thus, the curvature power spectrum receives modulations due to 
φ̇2 ∝ |V ′

0 + V ′
mod|2. Note that the modulations of H due to V mod is 

subdominant, as long as condition (10) is met. On the other hand, 
the spectral index as well as the running are strongly affected by 
the modulations if (12) and (13) are met.

3.2. Multi-natural inflation

Now let us consider multi-natural inflation, where the inflaton 
potential consists of multiple sinusoidal functions. For simplicity 

4 It should also be noted that the formulae obtained using the slow-roll approxi-
mations can break down when the higher order derivatives of the inflaton potential 
become too large. In particular, expressions such as (8) contain errors of order the 
approximate results operated by

1

H

d

dt
� −M2

p
V ′

V

d

dφ
. (14)

This quantity is smaller than unity in the cases studied in this letter, as we consider 
examples where the oscillation amplitude of the spectral index is larger than that 
of the running. Hence we can invoke the slow-roll approximations.
let us focus on the case of two sinusoidal functions with different 
heights and periodicities. The potential takes the form

V (φ) = C − Λ4
1 cos(φ/ f1) − Λ4

2 cos(φ/ f2 + θ), (16)

where the decay constants f1 and f2 take different values. C is a 
constant that shifts the minimum of the potential to zero, and θ is 
a relative phase. The last term shifts the potential minimum from 
the origin to φ = φmin, and also modifies the potential shape. This 
model is reduced to the original natural inflation in the limit of 
either Λ2 → 0 or f2 → ∞. If we further take the limit of Λ1 → ∞
and f1 → ∞ while Λ2

1/ f1 is kept constant, the model is reduced 
to the quadratic chaotic inflation.

To simplify the notation we set f1 = f and Λ1 = Λ, and relate 
the parameters by,

f2 = A f , (17)

Λ4
2 = BΛ4, (18)

where A and B are real and positive constants. Because we are in-
terested in small modulations to the inflaton potential, we choose 
the parameters so that the conditions from (10) to (13) are met. 
That is to say, A and B satisfy

A3 
 A2 � B � A 
 1. (19)

Figs. 1 and 2 show the running as a function of ns and r
for f = 100Mp and f = 10Mp , respectively. In Fig. 1 we take 
A = 4 × 10−3, B = 1 × 10−4, and θ = −1, whereas in Fig. 2 we 
take A = 4.5 × 10−2, B = 1.24 × 10−2 and θ = 2. One can see that 
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Fig. 2. Same as Fig. 1 but for f = 10Mp , A = 4.5 × 10−2, B = 1.24 × 10−2 and θ = 2. The red diamond denotes N = 60 e-folds before the end of inflation, whereas the black 
(white) star corresponds to N = 62 (54).
the inequalities in (19) are satisfied for these choices of the pa-
rameters. The case of f = 100Mp is approximately the same as 
the case of the quadratic potential with small modulations [38]. 
The potential height Λ is fixed by the Planck normalization on the 
primordial density perturbations [28]. Its typical value is approx-
imately given by Λ2 ∼ f × 1013 GeV. The predicted values of ns , 
r, and the running dns/d ln k evolve clockwise around the curves 
and the tail of the curves correspond to N = 70 e-folds before 
the end of inflation. In Fig. 1, the black (white) star corresponds 
to N = 63 (55). In Fig. 2, the black (white) star corresponds to 
N = 62 (54). In both cases, the red diamond is for N = 60. There-
fore a negative running spectral index can be realized in between 
the N = 50 to 60 regime. Thus, by taking the second sinusoidal 
term to be modulations in the potential, multi-natural inflation 
readily accommodates a negative running of ns .

In fact, there is a relation among the e-folding number during 
one period of modulations, �N , and the oscillation amplitudes of 
dns/d ln k and ns [41], given by

Adns/d ln k ∼ 2π

�N
Ans . (20)

This relation approximately holds in the above two examples.

3.3. Comparison with observational constraints

The combined Planck + WP + highL data constrains the running 
as

dns/d ln k = −0.022 ± 0.010 (68%), (21)
when allowing tensor fluctuations [28]. A recent work [29] have 
performed a joint analysis of the Planck and BICEP2 datasets, giving 
similar constraints,

dns/d ln k = −0.024 ± 0.010 (68%). (22)

The analyses assume a scale-independent running, while multi-
natural inflation produces a running which itself oscillates with 
respect to the wave number. However, when the oscillation pe-
riod of the modulations on the inflaton potential is large enough 
to incorporate of order 10 number of e-foldings, then the produced 
running is effectively constant over the observed CMB scales. This 
is the case for the example parameters chosen in the previous sub-
section; Figs. 1 and 2 show that over ∼10 e-folds around the pivot 
scale, the running varies by �(dns/d ln k) ∼ 0.01, which is within 
the errors of the constraints. Hence the above running constraints 
should be valid for multi-natural inflation as well. It would also 
be interesting to investigate cases with smaller oscillation periods 
such that the running exhibits a strong scale-dependence within 
the observed scales. (Though in such cases one should also con-
sider the applicability of the slow-roll approximations, see Foot-
note 4.) More precise data from upcoming experiments may allow 
detailed investigations of the oscillation period of the modulations 
in the inflaton potential.

4. Discussions

As we have pointed out in [38], large field inflation with sub-
structures in the inflaton potential entails large tensor perturba-
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tions as well as a running spectral index. In this letter, we revisited 
large field models with modulations in the context of multi-natural 
inflation, where multiple effects breaking the shift symmetry give 
rise to a superposition of sinusoidal functions to the inflaton po-
tential. We focused on the interesting case where a hierarchy 
exists among the periodicities of the sinusoidal oscillations, so 
that the model is a large field model with superimposed periodic 
oscillations. While the large field nature of the model produces 
large tensor mode perturbations, the oscillations on the poten-
tial source a running spectral index for the density perturbation 
spectrum. We have seen that multi-natural inflation possesses rich 
phenomenology, in particular, it produces a wide variety of values 
for (r, ns, dns/d ln k) depending on the relative size of the sinu-
soidal functions.

We also remark that large field inflation with modulations not 
only sources the running spectral index for the density perturba-
tions, but also for the tensor perturbation spectrum. The tensor 
spectral index and its running are given in terms of the slow-roll 
parameters as

nT = d lnPT

d ln k
� −2ε,

dnT

d ln k
� −8ε2 + 4εη. (23)

Unlike ns , the tensor tilt depends only on ε and thus the tensor 
running is set by ε and η. Therefore, one sees from the conditions 
(10)–(13) that the running of the tensor tilt is smaller than that 
for the density perturbations. Nonetheless, it is worth noting that a 
non-negligible dns/d ln k entails some amount of dnT /d ln k as well. 
This will become especially important when measuring the ten-
sor tilt by combining tensor observations at different scales, such 
as when combining CMB experiments with direct observations of 
gravity waves. A simple extrapolation between widely different 
scales without considering the possibility of the tensor running 
could lead to a misinterpretation of the observational results; In 
particular, such a naive extrapolation would give rise to an appar-
ent violation of the slow-roll consistency relation r = −8nT [42], 
which holds locally at each scale in our case.

Upcoming experimental data are expected to verify whether 
there actually are sizable tensor mode perturbations and a run-
ning of the spectral index. This will shed light on the substructure 
of the inflaton potential, which should be directly tied to the un-
derlying microphysics.
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