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SUMMARY

Genetic screening for suppressor mutants has been
successfully used to identify important signaling
regulators. Using an analogy to genetic suppressor
screening, we developed a chemical suppressor
screening method to identify inhibitors of the
Wnt/b-catenin signaling pathway. We used zebra-
fish embryos in which chemically induced b-cate-
nin accumulation led to an ‘‘eyeless’’ phenotype
and conducted a pilot screening for compounds
that restored eye development. This approach
allowed us to identify geranylgeranyltransferase in-
hibitor 286 (GGTI-286), a geranylgeranyltransferase
(GGTase) inhibitor. Our follow-up studies showed
that GGTI-286 reduces nuclear localization of b-cat-
enin and transcription dependent on b-catenin/T cell
factor in mammalian cells. In addition to pharmaco-
logical inhibition, GGTase gene knockdown also at-
tenuates the nuclear function of b-catenin. Overall,
we validate our chemical suppressor screening as a
method for identifying Wnt/b-catenin pathway inhib-
itors and implicate GGTase as a potential therapeutic
target for Wnt-activated cancers.

INTRODUCTION

Genetic screening in model organisms has uncovered the mo-

lecular mechanisms for diverse biological processes, such as

cell cycle in Saccharomyces cerevisiae (Hartwell, 1991), pro-

grammed cell death in Caenorhabditis elegans (Metzstein

et al., 1998), and embryonic pattern formation in Drosophila

melanogaster (Nüsslein-Volhard and Wieschaus, 1980). Such

genetic screening has been further extended to screening for ge-

netic modifiers, such as dominant suppressors or enhancers,

facilitating identification of the signaling components and char-

acterization of the pathways. Some of the most successful ex-

amples of modifier gene screening are identifications of compo-

nents ofDrosophila receptor tyrosine kinase signaling pathways,

such as Drk, Src homology 3/Src homology 2/Src homology 3
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adaptor (Simon et al., 1993), and Sos, a guanine nucleotide ex-

change factor (Simon et al., 1991), which activate a downstream

guanosine triphosphatase (GTPase), Ras1. Downstream com-

ponents of Ras1, such as Raf, mitogen-activated protein kinase

kinase, and mitogen-activated protein kinase, were also identi-

fied as enhancers or suppressors in a Drosophila rough eye sys-

tem, in which eye development was forced to be abnormal by

genetic methods (Karim et al., 1996).

The zebrafish Danio rerio has become a widely used model

organism in vertebrate genetics and in developmental biology

along with the frog Xenopus laevis; also, zebrafish are highly

amenable to chemical genetic studies (Zon and Peterson,

2005). Because of their small body size, embryos can be fit

into 96-well plates and are particularly suitable for in vivo pheno-

type-based screens for small molecule compounds. Identified

chemicals become important pharmacological probes in

analyzing the underlying molecular mechanisms of the pheno-

types and can ultimately provide new therapeutics. Phenotype-

based screens with zebrafish anatomically similar to mammals

can contribute to several aspects of the drug development pro-

cess, such as disease modeling and toxicology.

The evolutionarily conservedWnt/b-catenin pathway is essen-

tial for body axis formation during vertebrate embryogenesis

(McMahon and Moon, 1989) and for segment polarity control

during Drosophila larval development (Babu, 1977; Nüsslein-

Volhard and Wieschaus, 1980). Wnt/b-catenin signaling plays

crucial roles in cancer and stem cell homeostasis as well. Loss

of function in the adenomatous polyposis coli (Apc) gene results

in b-catenin accumulation, which leads to constitutive activation

of the Wnt pathway and epithelial cell transformation (Kinzler

et al., 1991). More than 80% of sporadic colon cancers are asso-

ciated with Apcmutation and 10%with b-cateninmutation, both

of which lead to Wnt pathway activation (Klaus and Birchmeier,

2008). Because of the key role of aberrant Wnt pathway activa-

tion inmany types of cancers, such as colorectal and breast can-

cers, the development of Wnt pathway inhibitors has gathered

attention (Barker and Clevers, 2006).

Regulating b-catenin levels is a critical event in the Wnt/b-cat-

enin pathway. In the absence of the Wnt ligand, cytoplasmic

b-catenin is maintained at low levels by its constitutive degrada-

tion, which is controlled primarily by association with the b-cat-

enin destruction complex containing glycogen synthase kinase

3 (GSK3), casein kinase 1a (CK1a), APC, and Axin. Within this
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complex, b-catenin is phosphorylated by GSK3 and CK1a and is

targeted for degradation by the ubiquitin-proteasome system. In

the presence of theWnt ligand, b-catenin destruction is stopped,

leading to b-catenin accumulation in the nucleus and transcrip-

tional activation through the b-catenin/T cell factor (TCF) com-

plex (Cselenyi et al., 2008; Kofron et al., 2007; Tolwinski et al.,

2003; Yamamoto et al., 1999).

In zebrafish embryos, the ectopically activated Wnt canonical

pathway during gastrulation leads to an ‘‘eyeless’’ phenotype, a

phenotype lacking a forebrain and eyes (Heisenberg et al., 1996,

2001; Kim et al., 2000; van de Water et al., 2001). Similar pheno-

types have also been observed among other species (Ciani and

Salinas, 2005;Wilson andHouart, 2004). Pharmacological inhibi-

tion of GSK3 with either LiCl or 6-bromoindirubin-30-oxime (BIO),

a small molecule GSK3 inhibitor, copies the eyeless phenotype

(Stachel et al., 1993; Atilla-Gokcumen et al., 2006). Using

an analogy to genetic suppressor screening, we developed a

phenotype-based chemical suppressor screening method, in

which restoration of the eye development in eyeless zebrafish

embryos treated with BIO is monitored, to identify Wnt canonical

pathway inhibitors. First, we performed a pilot screening on

chemical libraries composed of known target compounds and

classified inhibitors of AKT, geranylgeranyltransferase (GGTase),

calcium-activated potassium channel, and telomerase as chem-

ical suppressors of the eyeless phenotype. Second, these com-

pounds diminished b-catenin/TCF-dependent transcriptional

activity in mammalian cells. Third, we found that gene knock-

down of the GGTase I beta subunit reduced b-catenin/TCF-

dependent transcriptional activity as well as pharmacological

inhibition. Finally, the pharmacological inhibition in b-catenin/

TCF-dependent transcriptional activation was reversed by a

phospho-mimicking b-catenin mutant, S191D, that imitates

phosphorylation by c-Jun N-terminal kinase (JNK), a Rac1

effector kinase. Thus, our simple chemical suppressor screening

with zebrafish has been validated as a method for identifying

Wnt/b-catenin pathway inhibitors, and GGTase has been shown

to be a potential therapeutic target for Wnt-activated malignant

cancers. Our method may allow small laboratories to conduct

chemical genetic screening without the necessity of maintaining

mutant animals and genotyping.

RESULTS

Known Wnt/b-catenin Pathway Inhibitors Suppress
Chemically Induced Eyeless Phenotype in Zebrafish
Embryos
The evolutionally conserved Wnt canonical pathway regulates

body axis formation among diverse species and is also involved

in human diseases such as colorectal and breast cancers. To

develop a chemical genetic screening platform in vertebrates,

we used zebrafish embryos because of their small and trans-

parent bodies and sensitivity to chemical compounds. In zebra-

fish embryos, aberrant b-catenin accumulation in the nucleus

leads to body axis defects, resulting in an eyeless phenotype

(Heisenberg et al., 1996, 2001; Kim et al., 2000; van de Water

et al., 2001). In our system, the eyeless phenotype was induced

by abnormal b-catenin accumulation with pharmacological

GSK3 inhibition by a GSK3 inhibitor, BIO. Effects of test com-

pounds were evaluated to determine whether eye development
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was restored (Figure 1A). When eye development was restored

to normal and no obvious developmental defect was observed,

the compound was classified as a positive candidate. When

a developmental defect was observed, the test compound was

classified as a negative candidate because possible adverse

effects were suspected (Figure 1A).

To verify whether the chemical suppressor screening works as

a screening system for Wnt pathway inhibitors, known inhibitors

were subjected to the assay system. Pyrvinium (Thorne et al.,

2010), ICG-001 (Emami et al., 2004), inhibitor of Wnt response

1 (IWR-1) (Chen et al., 2009), and XAV939 (Huang et al., 2009)

at least partially rescued eye development, but IWR-1 and

XAV939 treatments resulted in developmental malformation,

suggesting signs of their potential toxicity in vivo (Figure 1B).

Next, we performed a pilot screening with a chemical library

composed of known target compounds (Figure 2A). Among

282 test compounds, geranylgeranyltransferase inhibitor 286

(GGTI-286), Akt inhibitor IV, dequalinium, and b-rubromycin

were classified as positive candidates inducing restored

eye development without obvious developmental abnormality

(Figure 2B).

Chemical Suppressors of the ‘‘Eyeless’’ Phenotype
Inhibit the Wnt Canonical Pathway in Mammalian Cells
Next, Wnt canonical pathway inhibition of these four compounds

was also tested in mammalian cell lines to exclude possible spe-

cies-specific effects. Using two cell lines (Chinese hamster ovary

[CHO] and human embryonic kidney 293 [HEK293] cells), the

effects of the candidate compounds on the Wnt canonical

pathway were analyzed by luciferase reporter assay using a

b-catenin/TCF-responsible TOPFlash reporter plasmid (Veeman

et al., 2003). In CHO cells, all four candidates significantly

reduced b-catenin/TCF-dependent transcriptional activity (Fig-

ure 2C). The decrease in the transcriptional activity was

observed only in HEK293 cells treated with Akt inhibitor IV, de-

qualinium, and b-rubromycin, not in cells treated with GGTI-

286 (Figure S1A available online). Because Akt inhibitor IV

showed cytotoxicity at 10 mM, a 1 mM dose was tested and

diminished the transcriptional activity to levels comparable

with those seen with other compound treatments (Figure 2C;

Figure S1A). HEK293 cells are less sensitive to GGTI-286 in

comparison with CHO cells. Because b-catenin is a well-

known component of cadherin-dependent adherens junctions,

we focused on differences in expression levels of cadherins be-

tween these two cell lines. Knockdown of endogenous N-cad-

herin made HEK293 cells sensitive to GGTI-286 (Figure S1B).

Conversely, forced expression of exogenous E-cadherin made

CHO cells insensitive to GGTI-286 (Figure S1C). Although sensi-

tivity to GGTI-286 may depend on cadherin expression levels,

these data indicate that all four candidate compounds inhibit

the Wnt canonical pathway in mammalian cells.

Target molecules of the candidates are GGTase I (a target of

GGTI-286), Akt (a target of Akt inhibitor IV), calcium-activated

potassium channels (targets of dequalinium), and telomerase

(a target of b-rubromycin) (Figure 2D). Because Akt promotes

b-catenin/TCF-dependent transcriptional activity by directly

phosphorylating b-catenin (Fang et al., 2007), Akt inhibition

reduces the transcriptional activity. Elevated calcium ion level

antagonizes Wnt/b-catenin signaling (Slusarski et al., 1997), so
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Figure 1. A Zebrafish Assay for Chemical Suppressors Confirms Inhibitory Activities of Known Inhibitors of the Wnt Pathway
(A) A schematic diagram of the zebrafish chemical suppressor screening is shown. Chemical suppressors of the eyeless phenotype were identified. Embryos

were pretreated with test compounds at 50% epiboly and treated with BIO (a GSK3 inhibitor) at the shield stage, then incubated for 18 to 24 hr. Effects of the

compounds were evaluated under a dissecting microscope. When eye development was restored to normal, the test compound was classified as a positive

candidate for Wnt pathway inhibitors. When a developmental defect was observed, the adverse effect might reflect potential toxicity of the compound.

Arrowheads indicate sites of toxic effects (e.g., heart edema, bent tail).

(B) Known Wnt pathway inhibitors restored eye development in the presence of BIO. Pyrvinium (a casein kinase activator), ICG-001 (an inhibitor of interaction

between b-catenin/TCF and CREB-binding protein), XAV939 (a tankylase inhibitor), and IWR-1 (an Axin stabilizer) at least partially reversed the BIO-induced

eyeless phenotype at 100 mM (dotted lines). Treatments of XAV939 and IWR-1 resulted in malformation in tails (arrowheads). Images were taken at 30 hpf.
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dequaliniummay eventually diminish theWnt canonical pathway

by increasing cytoplasmic calcium ion concentration (Kuum

et al., 2012). Telomerase associates and collaborates with the

b-catenin/TCF complex to promote downstream gene expres-

sion (Park et al., 2009). Consequently, telomerase inhibition

results in reduced b-catenin function in the nucleus. Thus, our

zebrafish whole-animal screening system works reasonably

well to identify Wnt/b-catenin pathway inhibitors.

GGTase Inhibition Suppresses the Wnt Canonical
Pathway In Vivo and in Cells
Among target molecules of the four positive compounds,

GGTase has not been reported as a direct regulator of the

Wnt canonical pathway. Therefore, we attempted to confirm

the specific activity of GGTase inhibitors in suppressing this

pathway. GGTases are members of a protein prenyltransferase

family that includes farnesyltransferase (FTase), GGTase I, and

GGTase II. They posttranslationally attach farnesyl or geranyl-

geranyl groups to the C-terminal proximal cysteine residues

of their distinct substrate proteins (Zhang and Casey, 1996).

Therefore, inhibition of different prenylating enzymes should

lead to specific outcomes of the chemical rescue assay in
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the zebrafish system. To confirm specific contributions of

GGTase I, the inhibitory effect of GGTI-286 on the Wnt canon-

ical pathway was compared with that of FTase inhibitor 276

(FTI-276) (Figure S2A). FTI-276 did not restore eye develop-

ment and b-catenin/TCF-dependent transcription, in contrast

to the reproducible suppression of Wnt/b-catenin signaling by

GGTI-286 in zebrafish embryos (Figure 3A) or in CHO cells (Fig-

ure 3B). Higher concentrations of GGTI-286 reduced posterior

structures in zebrafish embryos without BIO treatment (Fig-

ure S2B). Native agonist Wnt3A-induced transcriptional activa-

tion of the b-catenin/TCF complex was also diminished by

GGTI-286 (Figure 3C) and its derivative GGTI-2147 (Figure 3D)

in MDA-MB-231 cells, a human breast cancer cell line without

cadherin expression (Figure S2E). However, GGTI-286 did not

inhibit serum-induced activator protein 1 transcriptional activity

(Figure S2C). Cyclin D1 and Axin2, endogenous target gene

products of b-catenin/TCF, were decreased in a similar range

of inhibitory concentration of Rac1 membrane localization, a

GGTase-dependent process (Figures 3E and 3F). These data

indicate that GGTase inhibitors specifically reduce the Wnt ca-

nonical pathway in vivo and in cells. Colon cancer cell lines with

endogenous E-cadherin were less sensitive to GGTI-286 than
Ltd All rights reserved



Figure 2. A Zebrafish Chemical Screening Identifies Inhibitors against GGTase, Akt, Telomerase, and K+ Channel as Chemical Suppressors

of the Wnt/b-catenin Pathway

(A) Compounds from SCADS chemical libraries were classified into subcategories of the target molecules.

(B) The 20 mm GGTI-286, Akt inhibitor IV (AKTiIV), dequalinium, and b-rubromycin rescued the BIO-induced eyeless phenotype. Images were taken at 30 hpf.

(C) GGTI-286, AKTiIV, dequalinium, and b-rubromycin reduced b-catenin/TCF-dependent transcriptional activity in CHO cells. Cells were transiently

cotransfected with Super 8 x TOPFlash for monitoring b-catenin/TCF-dependent transcriptional activity and with pRL-CMV for normalizing transfection effi-

ciency. The cells were pretreated with 10 mM compounds for 30 min to 6 hr and treated with 2 mM BIO for 18 hr. Cells were lysed, assayed for firefly luciferase

activity, and then assayed for Renilla luciferase activity. Normalized relative luciferase activities are shown as fold activation to DMSO-treated cells. Values are ±

SEM (n = 3). AU, arbitrary units.

(D) Structures and known target molecules of the positive compounds are summarized.
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cadherin-free MDA-MB-231 cells (Figure 3E; Figures S2D

and S2E).

Because small molecule compounds might show off-target

effects, we asked whether GGTase I is involved in the Wnt ca-

nonical pathway using small interfacing RNA (siRNA) knockdown

against the protein GGTase I b subunit gene, pggt1b. Reduction

in pggt1b gene expression resulted in a decrease in the protein

GGTase I b subunit (PGGT1B) expression level and in Wnt-

induced b-catenin/TCF transcriptional activity (Figure 4A).

Reconstitution with exogenous pggt1b reversed siRNA-medi-

ated inhibition in the b-catenin/TCF transcriptional activity (Fig-

ure 4B). In vivo pggt1b gene knockdown was also performed

using two antisensemorpholino oligomers (MOs) against pggt1b

gene (Cao et al., 2009; Eisa-Beygi et al., 2013). BIO treatment

expands the expression of goosecoid gene, a downstream

target gene of the Wnt canonical pathway. However, pggt1b

gene knockdown retracted the BIO-induced expansion of
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goosecoid expression (Figure 4C). These data indicate that

GGTase I participates in the Wnt signaling pathway.

GGTase Inhibition Reduces Nuclear Localization of
b-catenin
To understand the mechanism of Wnt pathway suppression by

GGTase inhibition, the effects of GGTI-286 on nuclear localiza-

tion of b-catenin were analyzed by cell fractionation. Upon BIO

treatment, b-catenin accumulated in both the cytoplasmic and

the nuclear fractions in CHO cells. In the presence of GGTI-

286, whereas the cytoplasmic b-catenin amount was largely

unchanged, the nuclear b-catenin amount was greatly reduced

(Figure 5A), suggesting that GGTI-286 inhibited the nuclear

localization of b-catenin. The inhibition in nuclear localization

of b-catenin was also confirmed by immunocytochemistry

in MDA-MB-231 cells. Wnt3A-induced nuclear localization of

b-catenin was reduced by GGTI-286 treatment (Figure 5B).
530–540, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 533



Figure 3. GGTIs Specifically Inhibit the Wnt Canonical Pathway

(A) GGTI-286 rescued the eyeless phenotype in zebrafish embryos, but FTI-276, a farnesyltransferase inhibitor, did not. Embryos were pretreated with 100 mM

GGTI-286 or 100 mM FTI-276 at 50% epiboly, treated with 2 mM BIO at the shield stage, and then incubated for another 24 hr. Images were taken at 30 hpf.

(B) GGTI-286 inhibited b-catenin/TCF-dependent transcriptional activity, but FTI-276 did not. CHO cells were transiently transfected with the TOPFlash reporter

plasmids. The cells were pretreated with 3, 10, or 30 mMGGTI-286 or FTI-276 for 2 hr and treated with 2 mM BIO for 18 hr. Firefly and Renilla luciferase activities

were measured. Normalized relative luciferase activities are shown as fold activation to DMSO-treated cells.

(C and D) GGTI-286 (C) or GGTI-2174 (D) inhibited Wnt3A-induced transcriptional activation of the b-catenin/TCF complex. MDA-MB-231 cells were transiently

transfected with the reporter plasmids. The cells were pretreated with 10 mM GGTI-286 or 30 mM GGTI-2174 for 6 hr and treated with 50 ng/ml Wnt3A for 18 hr.

Firefly and Renilla luciferase activities were measured. Normalized relative luciferase activities are shown as fold activation to the absence of Wnt3A. Values are ±

SEM (n = at least 3).

(E) GGTI-286 diminished expression levels of cyclin D1 and Axin2 in MDA-MB-231 cells. The cells were pretreated with 1 to 30 mMGGTI-286 for 6 hr and treated

with 50 ng/ml Wnt3A for 18 hr. Cell lysates were analyzed by Western blotting with antibodies against cyclin D1, Axin2, and actin.

(F) GGTI-286 reducedmembrane localization of Rac1 inMDA-MB-231 cells. The cells were pretreated with 1 to 30 mMGGTI-286 for 6 hr and treatedwith 50 ng/ml

Wnt3A for 18 hr. Cell lysates were fractionated into the cytoplasmic and membrane fractions by ultracentrifuge and analyzed byWestern blotting with antibodies

against Rac1, Na, K-ATPase a1 subunit, and glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
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These data suggest that GGTI-286 suppresses the Wnt canoni-

cal pathway by reducing the nuclear localization of b-catenin.

To further rationalize the identification of GGTase inhibitors as

Wnt signaling chemical suppressors, we hypothesized possible

crosstalk between GGTase I and the Wnt canonical pathway.

GGTase I attaches a geranylgeranyl group to the C terminus

of Rho family GTPases, such as RhoA, Rac1, and Rac3 (Allal

et al., 2000; Joyce and Cox, 2003). Protein prenylation, such

as geranylgeranylation and farnesylation, is an essential process

for proper localization and functions of GTPases (Zhang and

Casey, 1996). Rac1 has been reported to promote nuclear

localization of b-catenin through phosphorylation at Ser191 by

a downstream effector kinase, JNK (Wu et al., 2008). Therefore,
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GGTI-286 may inhibit nuclear localization of b-catenin through

reduction in geranylgeranylation of Rac and in phosphorylation

of b-catenin Ser191. Nuclear localization and transcriptional ac-

tivity of b-catenin became resistant to GGTI-286 in cells express-

ing a phospho-mimicking b-catenin, S191D (Figures 6A and 6B).

These data support a model in which GGTI-286 inhibits b-cate-

nin accumulation in the nucleus by interfering with Rac and

b-catenin Ser191 phosphorylation (Figure S3).

DISCUSSION

In the present study, we developed an in vivo chemical suppres-

sor screening method to identify inhibitors of the Wnt/b-catenin
Ltd All rights reserved



Figure 4. GGTase Is Required for Wnt/b-catenin Signaling

(A) Knockdown of the b subunit of PGGT1B reduced Wnt3A-induced transcriptional activation of the b-catenin/TCF complex. MDA-MB-231 cells were trans-

fected with a mixture of four siRNAs for PGGT1B and the reporter plasmids. The cells were treated with 50 ng/ml Wnt3A for 18 hr. Cont., control.

(B) Reconstitution of PGGT1Bwith Flag-tagged PGGT1B reversed PGGT1B knockdown-mediated reduction in transcriptional activation of b-catenin/TCF.MDA-

MB-231 cells were transfected with a siRNA targeting the 30 untranslated region (30 UTR) of pggt1b gene, an expression vector for Flag-tagged PGGT1B deleted

the 30 UTR, and the reporter plasmids. The cells were treated with 50 ng/ml Wnt3A for 18 hr. Fold activation to the absence of Wnt3A is shown. Values are ± SEM

(n = at least 3). PGGT1B expression levels were analyzed by Western blotting with antibodies against PGGT1B and actin.

(C) Knockdown of PGGT1B inhibited BIO-induced goosecoid expression in zebrafish embryos. Embryos were injected with antisenseMOs that target translation

(ATG MO) or splicing (SP MO) of the zebrafish pggt1b gene at the one-cell stage and treated with 30 mM BIO or DMSO for 8 min at 32- to 64-cell stage. At 50%

epiboly, embryos were fixed and subjected to in situ hybridization with an antisense goosecoid probe. Embryos are animal pole view, dorsal up if it can be

distinguished. Arrowheads indicate tips of the goosecoid expression area. The central angles of goosecoid expression area were measured and scored into four

classes: 0� to 90�, 90� to 180�, 180� to 270�, and 270� to 360� (n = at least 56).
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signaling pathway using an analogy to genetic suppressor

screening in model organisms. Candidate compounds were

identified by monitoring suppression of the eyeless phenotype

in embryos with chemically induced b-catenin accumulation. A

pilot screening identified GGTI-286 as a chemical suppressor

of the Wnt/b-catenin pathway in addition to known Wnt pathway

inhibitors. We found that GGTI-286 diminished b-catenin/TCF-

dependent transcriptional activity by reducing nuclear localiza-

tion of b-catenin in mammalian cells. Genetic suppression of

GGTase I confirmed functional interaction between GGTase I

and the Wnt canonical pathway. Thus, our chemical suppressor

screeningwith zebrafish embryo has been validated as amethod

for identifying Wnt/b-catenin pathway inhibitors and has classi-

fied GGTase I as a potential therapeutic target for b-catenin-

dependent human diseases.
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Our simple chemical suppressor screening with zebrafish em-

bryo identified candidate compounds of Wnt/b-catenin pathway

inhibitors. We developed a chemical suppressor screening

method that is a phenotype-based assay with restriction in the

target signaling pathway. In the present study, the screening

identified inhibitors of AKT, calcium-activated potassium chan-

nel, and telomerase (Figure 2) in addition to known Wnt/b-cate-

nin pathway inhibitors (Figure 1B). Identification of inhibitors of

a negative regulator of GSK3 (Cross et al., 1995), a calcium ion

level modulator (Kuum et al., 2012), and a transcriptional coacti-

vator of b-catenin (Park et al., 2009) reinforces verification of our

screening for chemical suppressors against the eyeless pheno-

type as a Wnt/b-catenin pathway inhibitor screening. However,

these results do not necessarily mean that modulating functions

of known targets are the sole mechanisms of Wnt/b-catenin
530–540, April 24, 2014 ª2014 Elsevier Ltd All rights reserved 535



Figure 5. GGTI-286 Inhibits Nuclear Accu-

mulation of b-catenin

(A) GGTI-286 diminished b-catenin nuclear accu-

mulation. CHO cells were pretreated with 10 mM

GGTI-286 for 2 or 4 hr, treated with 2 mM BIO for

2 hr, and thenmechanically lysed and fractionated.

The nuclear (Nuc) or cytoplasmic (Cyto) fractions

of b-catenin were analyzed by Western blotting

with an antibody against b-catenin. An anti-actin

antibody was used for the loading control.

(B) GGTI-286 reduced Wnt3A-induced nuclear

accumulation of b-catenin. MDA-MB-231 cells

were pretreated with 30 mM GGTI-286 for 4 hr,

treated with 50 ng/ml Wnt3A for 18 hr, and

then stained with an anti-b-catenin antibody,

Hoechst33342, and phalloidin. Fluorescent im-

ages were observed under a confocalmicroscope.

Scale bars represent 10 mm.
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inhibition. For example, an AKT inhibitor may affect translation

of b-catenin. Another example is telomerase inhibition, which

causes only modest homeotic phenotypes in Tert knockout

mice in comparison with the more severe phenotypes in embry-

onic stem cells or in Xenopus embryos (Park et al., 2009).

Although the difference in severities among systems can be ex-

plained by developmental compensation in germline knockout,

the importance of telomerase for the Wnt/b-catenin pathway

has not yet been confirmed in our system. These issues will be

addressed in future studies. Although a phenotype-based assay

expands the variety of therapeutic targets, target identification is

generally challenging and sometimes unsuccessful. However,

the chemical suppressor screening efficiently enriched known

inhibitors of regulators of the Wnt/b-catenin signaling pathway

upregulated by pharmacological GSK3 inhibition, just like ge-

netic modifier screening, in which a signaling pathway of interest

is genetically manipulated. Because our method requires only

wild-type zebrafish and a GSK3 inhibitor but does not need

mutants or transgenic fish lines, which necessitate genotyping

and large-scale fish facilities, application of the chemical sup-

pressor screening may provide opportunities for phenotype-

based screening to small-scale laboratories.

The zebrafish chemical suppressor screening repositioned

GGTase inhibitors (GGTIs) as Wnt/b-catenin pathway inhibitors.

The BIO-induced eyeless phenotype in zebrafish embryos

was chemically suppressed by GGTI-286 (Figures 2B and

3A). Furthermore, GGTI-286 and GGTI-2147 inhibited BIO- or

Wnt3A-induced b-catenin/TCF transcriptional activation and

endogenous target gene expression (Figures 2C and 3B–3E),

and GGTI-286 reduced nuclear localization of b-catenin in cad-

herin-free cells (Figure 5). On the other hand, HEK293 and colon

cancer cells did not respond toGGTI-286 (Figures S1A andS2D).

Sensitivity to GGTIs seems to depend on cadherin expression

(Figure S1). b-catenin is a well-known component of cadherin-

dependent adherens junctions. Perturbation of cytoskeletal

integrity by GGTI-mediated inhibition in Rho family GTPases
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may decrease the cadherin-bound b-cat-

enin, and increasing the cytoplasmic pool

of b-catenin may desensitize to GGTI-

286. Protein-prenylating enzymes, such
as FTase and GGTase, have already been recognized as poten-

tial therapeutic targets for human cancers (Berndt et al., 2011).

Inhibition of the phosphatidylinositol-3-OH kinase/AKT pathway

(Dan et al., 2004) and accumulation of p27Kip1 in the nucleus

(Kazi et al., 2009) have been reported as target pathways for

GGTase I. Although blockage of these pathways may contribute

to growth suppression of cancer cells, our studies indicate that

GGTIs neutralize activatedWnt/b-catenin signaling. Thus, inhibi-

tion in the Wnt/b-catenin pathway can be added to the pharma-

cological activities of GGTIs as well as known mechanisms.

The catalytic subunit of GGTase I functionally interacts with

the Wnt/b-catenin pathway. In addition to pharmacological inhi-

bition of GGTase I, pggt1b gene knockdown also attenuated

the Wnt/b-catenin signaling. Knockdown of pggt1b reduced

Wnt3A-induced b-catenin/TCF transcriptional activation in a

breast cancer cell line, MDA-MB-231 (Figures 4A and 4B). Injec-

tion of antisense MOs against pggt1b also resulted in reduction

in goosecoid expression, which was expanded by BIO (Fig-

ure 4C). These data indicate that PGGT1B is a component of

regulatory systems for Wnt/b-catenin signaling. Furthermore,

a pseudophosphorylated b-catenin (S191D) reversed GGTI-

286-mediated inhibition of nuclear localization of b-catenin

and b-catenin/TCF transcriptional activation (Figure 6). GGTase

I posttranslationally modifies Rho GTPases such as RhoA

(Yoshida et al., 1991) and Rac1 (Kinsella et al., 1991) and is

essential for proper functions of these GTPases (Zhang and

Casey, 1996). JNK, a downstream kinase of Rac, phosphory-

lates b-catenin S191 and promotes nuclear localization of

b-catenin (Wu et al., 2008). This suggests that reduced S191

phosphorylation resulting from the blockage of GGTase is a

cause of Wnt/b-catenin pathway inhibition by GGTIs (Figure S3).

Phosphorylation of b-catenin S675 by p21-activated kinase

(Zhu et al., 2012) also promotes the nuclear function of b-cate-

nin. Although the PAK-dependent phosphorylation stabilizes

the cytoplasmic b-catenin, the level of cytoplasmic b-catenin

was largely unaffected by GGTI-286 (Figure 5A). Therefore,



Figure 6. b-catenin S191D, a Phospho-MimickingMutant of b-catenin, Overcomes GGTI-286-mediated Inhibition inWnt/b-catenin Signaling

(A) b-catenin S191D, a pseudophosphorylated mutant of b-catenin Ser191, reversed GGTI-286-mediated inhibition of b-catenin nuclear localization. CHO cells

were transiently transfected with expression vectors for EGFP-fusion b-catenin wild-type (WT) or S191D. The cells were treated with 30 mM GGTI-286 for 18 hr

and stained with Hoechst33342 and phalloidin. Fluorescent images were observed under a confocal microscope. Scale bars represent 10 mm.

(B) b-catenin S191D reversed GGTI-286-mediated inhibition of b-catenin/TCF-dependent transcriptional activation. CHO cells were transiently transfected with

expression vectors for b-catenin WT or S191D and the reporter plasmids. The cells were treated with 2 mM BIO for 18 hr. Luciferase activities were measured.

Normalized relative luciferase activities are shown as fold activation to the absence of BIO. Values are ± SEM (n = at least 3).
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relative sensitivity to GGTIs of b-catenin S191 phosphorylation

seems to be higher than that of S675 phosphorylation. Our

data indicate that GGTase functionally interacts with the Wnt

canonical pathway and suggest GGTase as a potential thera-

peutic target for b-catenin-dependent malignant cancers that

lack cadherin expression.

Our chemical suppressor screening is a 96-well plate-

formatted vertebrate whole-animal screening. The system may

be useful not only for evaluating pharmacologic effects but

also for predicting possible toxicity. GGTI-2418 is a GGTI that

significantly inhibits the growth of breast tumors in animal

models (Kazi et al., 2009) and was advanced to a phase I study

(O’Dwyer et al., 2010). Although we do not know the exact

reason for the discontinuation of the clinical study, GGTI-2418

is very well tolerated, with minimal side effects, at least accord-

ing to an interim report of the phase I study (O’Dwyer et al., 2010).

Zebrafish whole-animal screening may become a powerful

method to select less toxic compounds from ‘‘safety unknown’’

chemical libraries. Applying the system to other target pathways

expands the possibility of vertebrate chemical genetics and can

accelerate the discovery of lead compounds and drug develop-

ment with toxicity information in vertebrates.

SIGNIFICANCE

Screening for genetic modifiers, such as dominant sup-

pressors or enhancers, in model organisms has identified

and characterized important signaling pathways. Likewise,

a phenotype induced by a chemical compound can be sup-
Chemistry & Biology 21,
pressed or enhanced by another compound. In this study,

we developed a screening method to identify chemical sup-

pressors of the chemically induced Wnt/b-catenin pathway

in a vertebrate model organism, zebrafish. Although a

phenotype-based assay expands the variety of thera-

peutic targets, target identification of a chemical inhibitor

is generally challenging and sometimes unsuccessful.

Because our chemical suppressor screening restricts the

target signaling by upregulating the Wnt/b-catenin pathway

with a GSK3 inhibitor, targets of all the ‘‘hit’’ compounds

were placed in the Wnt/b-catenin pathway, resembling a

genetic modifier screening that identifies genes func-

tioning in a signaling pathway of interest. Because our

method requires only wild-type zebrafish and does not

need mutants or transgenic fish lines, which demand gen-

otyping and large-scale fish facilities, application of this

chemical suppressor screening may provide opportunities

for phenotype-based screening to small-scale laboratories

interested in broad fields of chemical biology and com-

pound screening. Furthermore, the zebrafish whole-animal

screening may become a powerful method to select

less toxic compounds from ‘‘safety unknown’’ chemical

libraries. Applying the system to other target pathways ex-

pands the possibility of vertebrate chemical genetics and

can accelerate the discovery of seed compounds and

drug development with toxicity information in vertebrates.

Our zebrafish system for inhibitors of the Wnt/b-catenin

pathway exemplifies a successful chemical suppressor

screening in vertebrates.
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EXPERIMENTAL PROCEDURES

Maintenance of Zebrafish

Zebrafish RIKEN wild-type strain was obtained from the National Bioresource

Project of Japan andmaintained under a 12-hr day/12-hr night cycle at 28.5�C.
Fertilized eggs were obtained by mating adult fish soon after the light was

turned on. Embryos were staged according to hours postfertilization (hpf)

and morphological criteria. At our university, approval from the institutional

committee for animal experiments is not necessary when fish are used as

experimental animals.

Cell Culture and Reagents

HEK293, CHO, and MDA-MB-231 cells were grown according to instructions

from The American Type Culture Collection (http://www.atcc.org). Wnt-3A

was purchased from R&D Systems. Super 8x TOPFlash, Super 8x FOPFlash,

and expression vectors for wild-type b-catenin-enhanced green fluorescent

protein (EGFP) were obtained from Addgene. An expression vector for the

b-catenin S191D-EGFP was generated by site-directed mutagenesis. Gene-

specific siRNA oligonucleotides for human GGTase I b subunit (GGT1B)

were purchased from Qiagen. Antisense morpholino oligonucleotide for

GGT1B (ATG MO: 50-AAT CCA CCG ACT CAA AAT CCG CCA T-30 [Cao

et al., 2009]; splicing MO: 50-CAC GCG GTG TGT GGA CTC ACG GTC A-30

[Eisa-Beygi et al., 2013]) were synthesized by Gene Tools. Pyrvinium pamoate

and BIO (Meijer et al., 2003) were purchased from Sigma. ICG-001, XAV939,

and IWR-1 were purchased from Tocris Bioscience. GGTI-286 and FTI-276

were purchased from Merck. Inhibitor kits 1 to 3 were provided by the

Screening Committee of Anticancer Drugs (SCADS) in the Scientific Support

Programs for Cancer Research Grant-in-Aid for Scientific Research on Innova-

tive Areas from the Ministry of Education, Culture, Sports, Science and Tech-

nology of Japan.

Small Molecule Screening

Five zebrafish embryos at 4.5 hpf were arrayed in each well of round-bottomed

96-well plates in 50 ml of embryo medium (13.7 mM NaCl, 0.5 mM KCl, 25 mM

Na2HPO4, 44 mM KH2PO4, 1.3 mM CaCl2, 1 mM MgSO4, 4.2 mM NaHCO3).

Compounds (in DMSO) from the SCADS inhibitor kits were transferred into

the wells with arrayed embryos at the 50% epiboly stage. Embryos were incu-

bated in 50 ml of 40 mM test compounds at 28.5�C for approximately 30 min. At

shield stage, 50 ml of 4 mM BIO was added to the wells containing embryos

treated with the test compounds. Embryos were incubated in a humidified

box at 28.5�C and were screened for rescue of BIO-induced eyeless pheno-

type at 30 hpf under a dissecting microscope.

Whole-Mount In Situ Hybridization

One-cell stage embryos were injected with 10 ng of control or GGT1B MOs,

treated with 30 mM BIO or DMSO for 8 min at 32- to 64-cell stage, and incu-

bated at 28.5�C until 50% epiboly. Whole-mount in situ hybridization was

carried out essentially as described previously (Westerfield, 1995). Digoxige-

nin-labeled RNA probes were transcribed using RNA digoxigenin labeling

mix, T7 RNA polymerase, and pBluescript goosecoid (Addgene) as a template

plasmid. The central angles of goosecoid expression area were measured

using ImageJ software.

Cell Fractionation

MDA-MB-231 cells were treated with GGTI-286 or DMSO for 18 hr. Cells were

harvested in ice-cold PBS, resuspended in cell disruption buffer containing

10 mM HEPES (pH 7.0), 3.5 mM MgCl2, 100 mM KCl, 3 mM NaCl, 1.25 mM

EGTA, 1 mM NaF, 1 mM Na vanadate, and protease inhibitors and disrupted

by sonication. Disrupted cells were centrifuged at 5003 g for 5 min to remove

nuclei and fractionated into S100 and P100 fractions by centrifugation

at 100,000 3 g for 1 hr. S100 and P100 were treated as cytoplasmic and

membrane fractions, respectively.

Nuclear Protein Extraction

HEK293 cells were grown in a six-well plate for 24 hr and then treated with

GGTI-286 or DMSO for indicated periods. The cells were washed with ice-

cold PBS and centrifuged. The cell pellet was resuspended in hypotonic buffer

containing 10 mM HEPES (pH 7.9), 1.5 mM MgCl2, 10 mM KCl, 0.5 mM
538 Chemistry & Biology 21, 530–540, April 24, 2014 ª2014 Elsevier
dithiothreitol (DTT), 1 mM NaF, 1 mM Na vanadate, and protease inhibitors

and incubated on ice for 30 min. The cells were then lysed by stroking through

27G needles ten times. After centrifugation (16,000 3 g for 5 min at 4�C), the
supernatant was kept as a cytoplasmic fraction. The cell pellet was washed

twice with the hypotonic buffer and resuspended in nuclear extracting buffer

(20 mM HEPES [pH 7.9], 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 25%

glycerol, 0.5 mMDTT, 1 mMNaF, 1 mMNa vanadate, and protease inhibitors).

After incubation at 4�C for 30 min, the extraction mixture was centrifuged

(16,000 3 g at 4�C for 5 min), and the supernatant was isolated as a nuclear

fraction.

Western Blotting

The following primary antibodies were used for Western blot: antibodies

against GGT1B (1:1,000; Cell Signaling Technology), actin (1:1,000; Sigma),

b-catenin (1:1,000; Sigma), cyclin D1 (1:1,000; Cell Signaling Technology),

axin2 (1:1,000; Cell Signaling Technology), Rac1 (1:1,000; Millipore),

sodium-potassium adenosine triphosphatase (Na,K-ATPase) a1 subunit

(1:2,000; GeneTex), GFP (1:1,000; Santa Cruz Biotechnology). Horseradish

peroxidase-conjugated antimouse immunoglobulin G (IgG) or antirabbit

IgG antibodies were used as secondary antibodies (1:10,000; Amersham

Biosciences), and the ECL Plus Western Blotting Detection Kit (Amersham

Biosciences) was used for detection.

Luciferase Reporter Assay

Luciferase reporter assays were carried out in six-well plates in the presence of

1% fetal bovine serum. DNA per well was as follows: Super 8x TOPFlash (firefly

luciferase), 0.9 mg; pRL-CMV or pRL-SV40 (Renilla luciferase) as reference,

0.1 mg; and expression vectors for wild-type or S191D b-catenin, 1 mg. Firefly

luciferase activity was normalized toRenilla luciferase activity for each sample,

and then all results were normalized to negative controls. Data were expressed

as mean ± SEM from at least three independent experiments.

Statistical Analysis

The error bars represent the SEM.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures and can be found with this
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