
Discrete Optimization 6 (2009) 292–298

Contents lists available at ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

A fast preemptive scheduling algorithm with release times and inclusive
processing set restrictions
Yumei Huo a, Joseph Y.-T. Leung b,∗, Xin Wang b
a Department of Computer Science, CUNY at Staten Island, Staten Island, NY 10314, United States
b Department of Computer Science, New Jersey Institute of Technology, Newark, NJ 07102, United States

a r t i c l e i n f o

Article history:
Received 10 December 2007
Received in revised form 16 February 2009
Accepted 18 February 2009
Available online 19 March 2009

Keywords:
Preemptive scheduling
Release time
Inclusive processing set
Makespan minimization
Polynomial-time algorithms

a b s t r a c t

We consider the problem of preemptively scheduling n independent jobs on m parallel
machines so as to minimize the makespan. Each job Jj has a release time rj and it can only
be processed on a subset of machinesMj. Themachines are linearly ordered. Each job Jj has
a machine index aj such thatMj = {Maj ,Maj+1, . . . ,Mm}. We first show that there is no
1-competitive online algorithm for this problem. We then give an offline algorithm with a
running time of O(nk log P +mnk2+m3k), where k is the number of distinct release times
and P is the total processing time of all jobs.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We consider the problem of preemptively scheduling n independent jobs on m parallel machines so as to minimize
the makespan. Each job Jj has a release time rj and it can only be processed on a subset of machines Mj. The machines
are linearly ordered. Each job Jj has a machine index aj such thatMj = {Maj ,Maj+1, . . . ,Mm}. We denote this problem as
P |Mj(inclusive), rj, pmtn | Cmax.
Scheduling problems with inclusive processing set restrictions occur quite often in practice. Hwang et al. [1] give a

scenario occurring in the service industry inwhich a service provider has customers categorized as platinum, gold, silver, and
regular members, where ‘‘higher-level customers’’ receive better services. One method of providing such a differentiated
service is to label servers and customers with prespecified grade of service (GoS) levels and allow a customer to be served
only by a server with GoS level less than or equal to that of the customer. Glass and Kellerer [2] describe a situation of
assigning jobs to computers with memory capacity. Each job has a memory requirement and each computer has a memory
capacity. A job can only be assigned to a computerwith enoughmemory capacity. Ou et al. [3] consider the process of loading
and unloading cargoes of a vessel, where there aremultiple nonidentical loading/unloading cranes operating in parallel. The
cranes have the same operating speed but different weight capacity limits. Each piece of cargo can be handled by any crane
with a weight capacity limit no less than the weight of the cargo.
We consider the case where jobs are released at different times. We first consider online scheduling algorithms;

i.e., algorithms that schedule jobs without knowledge of future job arrivals. We show that there does not exist a
1-competitive online algorithm. An online algorithm is said to be 1-competitive if it performs as well as an optimal offline
algorithm. We then give a fast offline algorithmwith a running time of O(nk log P +mnk2+m3k), where k is the number of
distinct release times and P is the total processing time of all jobs.

∗ Corresponding address: Department of Computer Science, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, United States.
Tel.: +1 973 596 3387; fax: +1 973 596 5777.
E-mail addresses: huo@mail.csi.cuny.edu (Y. Huo), joseph.y.leung@njit.edu (J.Y.-T. Leung), xw37@njit.edu (X. Wang).

1572-5286/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.disopt.2009.02.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82519193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/disopt
http://www.elsevier.com/locate/disopt
mailto:huo@mail.csi.cuny.edu
mailto:joseph.y.leung@njit.edu
mailto:xw37@njit.edu
http://dx.doi.org/10.1016/j.disopt.2009.02.002


Y. Huo et al. / Discrete Optimization 6 (2009) 292–298 293

1.1. Background and related work

The problem P | Mj(inclusive), rj, pmtn | Cmax is a natural generalization of the classical problem P | pmtn | Cmax which
can be solved byMcNaughton’s rule [4]. McNaughton’s rule first computes a deadlineDwhich is the larger of two quantities.
The first quantity is the maximum processing time of all the jobs, while the second quantity is the sum of the processing
times of all the jobs divided by the number of machines. The jobs are then scheduled, one by one, from time 0 until time D.
If a job finishes beyond time D, then it will be preempted at time D and continues on another machine from time 0 until it
finishes. Hong and Leung [5] have given an optimal algorithm to solve P | pmtn, rj | Cmax. Their algorithm is based on the
idea of McNaughton’s rule.
The problem we study is a special case of the general problem where Mj can be any arbitrary subset, denoted by

P | Mj, rj, pmtn | Cmax, which in turn is a special case of R | rj, pmtn | Cmax. (The processing time of job j on machine
Mi is pj if Mi is in Mj; otherwise, it is ∞.) Lawler and Labetoulle [6] have given a linear programming algorithm to
solve R | rj, pmtn | Cmax and hence P | Mj, rj, pmtn | Cmax. Brucker et al. [7] give a network flow algorithm to solve
P | Mj, rj, pmtn | Cmax with a running time of O(n3(n + m)3 log P), where P is the total processing time of all jobs.
The running time of their algorithm can be improved to O(mn2k2 log n log P) if we use the fast network flow algorithm
of Goldberg and Tarjan [8]. In this paper we give a faster algorithm for P |Mj(inclusive), rj, pmtn | Cmax with a running time
of O(nk log P +mnk2 +m3k), where k is the number of distinct release times and P is the total processing time of all jobs.
For nonpreemptive scheduling, P | Mj(inclusive), rj | Cmax is NP-hard in the strong sense, since P || Cmax is. If all jobs

are released at time 0, there are several approximation algorithms for P | Mj(inclusive) | Cmax. The first approximation
algorithm is the Modified Largest Processing Time first algorithm given by Hwang et al. [1]. They show that the algorithm
obeys a bound of 54 form = 2 and 2−

1
m−1 form ≥ 3. Subsequently, Glass and Kellerer [2] give a

3
2 -approximation algorithm

for this problem. Recently, Ou et al. [3] give an improved algorithm with a worst-case bound of 43 + ε, where ε is any given
positive number. They also give a polynomial time approximation scheme (PTAS) for this problem. Most recently, Li and
Wang [9] give a PTAS for P |Mj(inclusive), rj | Cmax.

1.2. The model and main results

Suppose the machines are labeled from 1 to m. We are given a set of machine intervals MI = {MI1, . . . ,MIz}, where
MIi = {Mi1 ,Mi1+1, . . . ,Mm} is the set of machines with consecutive labels. Each job Jj, 1 ≤ j ≤ n, can be represented by a
triple (pj, Sj, rj), where pj is the processing time of the job, Sj is the machine interval such that Sj ∈ MI , and rj is the release
time of the job. Job Jj can only be scheduled on the machines in Sj. The objective is to minimize the makespan Cmax. For each
machine intervalMIi, we define J(MIi) to be the set of jobs whose machine interval is exactlyMIi. That is,

J(MIi) = {Jj|Sj = MIi}.
The organization of the paper is as follows. In the next section, we show that there does not exist a 1-competitive online

algorithm for P | Mj(inclusive), rj, pmtn | Cmax. In Section 3, we give the offline algorithm for P | Mj(inclusive), rj, pmtn |
Cmax. Finally, we draw some concluding remarks in Section 4.

2. Online algorithm

In this section we will show that there does not exist a 1-competitive online algorithm for P | Mj(inclusive), rj, pmtn |
Cmax. This is in sharp contrast with P | rj, pmtn | Cmax which admits a 1-competitive online algorithm due to Hong and
Leung [5].
We consider the following example. Let m = 4 and let there be two machine intervals MI1 = {M1,M2,M3,M4} and

MI2 = {M2,M3,M4}. At time t = 0, eight jobs are released: J1 = J2 = J3 = J4 = J5 = J6 = (3,MI2, 0) and
J7 = J8 = (5,MI1, 0). Suppose that there is a 1-competitive online algorithm A. An adversary will observe the schedule
produced by A until time t = 6. There are two cases to consider.
Case 1: If the first six jobs are all completed by time t = 6, then machinesM2,M3 andM4 are fully occupied by the six jobs
in the time interval [0, 6]. In this case the makespan of the schedule produced by algorithm A is at least 8. (Algorithm A can
schedule three time units each for jobs J7 and J8 in the time interval [0, 6], and the remaining two units of time in the time
interval [6, 8].) However, the optimal schedule has makespan 7. Therefore, algorithm A cannot be 1-competitive.
Case 2: If some job(s) among the first six jobs are not completed by time t = 6, then the adversary releases 12 jobs with
processing time one unit and these 12 jobs can only be scheduled on the machines in MI2. It is clear that the makespan of
the schedule produced by algorithm A is strictly greater than 10. However, the optimal schedule has makespan 10. Again,
algorithm A cannot be 1-competitive.

3. Offline algorithm

In this section, we give a fast offline algorithm for inclusive processing set when jobs have different release times. Let
r0 < r1 < · · · < rk−1 be the k distinct release times.Without loss of generality, wemay assume that r0 = 0. An upper bound
for the optimal makespan is U = rk−1+

∑n
j=1 pj and an obvious lower bound is L = rk−1. We conduct a binary search in the

interval [L,U], searching for the optimal makespan C∗. For each value C obtained in the binary search, we test if there is a
feasible schedule with makespan C .



294 Y. Huo et al. / Discrete Optimization 6 (2009) 292–298

For convenience of presentation, we let rk = C . For each 0 ≤ i ≤ k− 1, let TSi denote the time segment [ri, ri+1]. We first
do some preprocessing of the jobs. For any job Jl released at time ri, if pl is greater than ri+1 − ri, we cut it into two pieces:
a job J ′l released at ri with processing time ri+1 − ri, and a job J

′′

l released at time ri+1 with processing time pl − (ri+1 − ri). If
the processing time of J ′′l is still greater than ri+2 − ri+1, we again cut it into two pieces, and so on. After the preprocessing
step, we may assume that for any job released at time ri, its processing time is less than or equal to ri+1 − ri. We use the
array T (l, i), 1 ≤ l ≤ n and 0 ≤ i ≤ k − 1, to store the processing time of job l in the time segment TSi. Clearly, T (l, i) = 0
if the release time of job l is larger than ri. When we construct the optimal schedule, we will update T (l, i) so that it reflects
the amount of processing of job l done in the time segment TSi in the optimal schedule. Once we get the updated T (l, i), the
optimal schedule can be obtained byMcNaughton’s [4] wraparound rule segment by segment, and within each segment the
jobs are scheduled from the outermost machine interval to the innermost one.
We assume that there are z machine intervals in the job set: MI1 ⊃ MI2 ⊃ · · · ⊃ MIz . For each machine interval MIj,

1 ≤ j ≤ z−1, let Yj denote themachines inMIj−MIj+1, and let Yz denote all themachines inMIz . We use the array IDLE(j, i),
1 ≤ j ≤ z and 0 ≤ i ≤ k − 1, to store the total idle time of the machines in Yj during the time segment TSi. With a slight
abuse of notation, we say that we schedule jobs in the idle time in IDLE(j, i) tomean that jobs are scheduled on themachines
in Yj during the idle time in the time segment TSi. From now on, we assume that for every time segment, we have exactly z
machine intervals. We use the symbol J(MIj, i) to denote the set of jobs withmachine intervalMIj released at time ri. Clearly,
J(MIj, i) = ∅ if there is no job with machine intervalMIj released at time ri.
In the next subsection, we will give a test to see if there is a feasible schedule with makespan C . In the following

subsection, we will describe an algorithm to obtain an optimal schedule once the optimal makespan C∗ is determined.

3.1. Feasibility test

The algorithm works backwards in time. The time segment TSk−1 = [rk−1, rk] can be easily determined. We schedule
the jobs by McNaughton’s rule, starting with the jobs in the outermost interval and ending with the jobs in the innermost
interval. If some jobs cannot be feasibly scheduled, we declare that it is impossible to have a schedule with makespan C .
Otherwise, we compute IDLE(j, k− 1) for all 1 ≤ j ≤ z. We let βj = IDLE(j, k− 1) for all 1 ≤ j ≤ z.
Suppose we have determined that the jobs in the time segment [ri+1, ri+2] can be feasibly scheduled. We now consider

the jobs released at time ri. We will consider the jobs from the outermost interval to the innermost interval. For each MIj,
1 ≤ j ≤ z, let extraj be the total idle time of the machines in Yj (i.e., the total idle time in the interval [ri, ri+1] plus the total
idle time in the interval [ri+1, rk], minus the total processing time of the jobs in J(MIj, i)). If extraj < 0, then some jobs in this
machine interval have to be scheduled on some other machines of an inner interval.
After we computed extraj, the following procedure (Algorithm Compute-Idle-and-Test-Feasibility) can be used to compute

the amount of processing times needed to be moved between any pair of Yj’s. The variable move(p, q) is used to store the
amount of processing times needed to be moved from the machines in Yp to the machines in Yq. We also update extraj for
1 ≤ j ≤ z. Finally, we let βj = extraj for 1 ≤ j ≤ z.

Algorithm:Compute-Idle-and-Test-Feasibility1

Input: ri: release time; β1, . . . , βz computed at ri+1.
for j = 1 to z do2
extraj = |Yj| · (ri − ri+1)+ βj− (total processing time of the jobs in J(MIj, i));3

q = 2;4
for j = 1 to z do5

while extraj < 0 do6
if q > z then stop and output ‘‘Not Feasible";7
if extraq > 0 then8
move(j, q) = min(extraq,−extraj);9
extraq = extraq −move(j, q);10
extraj = extraj +move(j, q);11
if extraq = 0 then q = q+ 1;12

else13
q = q+ 1;14

15

16

for j = 1 to z do17
βj = extraj;18

output ‘‘Feasible’’;19

The running timeof AlgorithmCompute-Idle-and-Test-Feasibility for one time segment isO(m+ni), whereni is the number
of jobs released at ri. The for-loop in Steps 2 to 3 takes O(m+ni) time. The for-loop in Steps 5 to 16 takes O(m) time because



Y. Huo et al. / Discrete Optimization 6 (2009) 292–298 295

in each iteration, we either increase the value of p, or the value of q, and the algorithm will terminate when either p or
q reaches z. The for-loop in Steps 17 to 18 takes O(m) time. Thus, the overall running time for testing k time segments is
O((m + n)k). Since we may assume that n > m, the running time becomes O(nk). To find the optimal makespan, the time
needed is O(nk log P), where P =

∑n
j=1 pj.

The above algorithm determines if there is enough room to schedule the jobs released at ri. But there is one issue that
needs to be resolved. It is possible that a job released at ri is the same job as the jobs released at ri+1, . . . , rk−1, due to
the preprocessing step. Therefore, the jobs released at ri must be scheduled carefully so that there is no overlap with the
same jobs in subsequent time segments. Fortunately, we can show that the jobs can indeed be feasibly scheduled if the jobs
released at ri pass the test of Algorithm Compute-Idle-and-Test-Feasibility. In the next subsection, we will give an algorithm
to construct an optimal schedule.

3.2. Obtaining an optimal schedule

As was mentioned in Section 3.1, to obtain an optimal schedule, all we need to do is to compute T (l, i)which stores the
amount of processing of job l done in the time segment TSi in an optimal schedule. Initially, T (l, i) is the processing time
of job l in the time segment TSi. We compute T (l, i) backwards in time, starting with the time segment TSk−1. T (l, k − 1)
is exactly the initial value. We then schedule the jobs in the time segment TSk−1 by McNaughton’s rule, starting with the
jobs in the outermost interval and ending with the jobs in the innermost interval. From the schedule, we set IDLE(j, k− 1),
1 ≤ j ≤ z, to be the total idle time of the machines in Yj during the time segment TSk−1. We let αj = IDLE(j, k − 1) for
1 ≤ j ≤ z.
Suppose we have computed T (l, i + 1) for the jobs in the time segment TSi+1. We now consider the jobs released at

time ri. For each machine interval MIj, let αj =
∑k−1
x=i+1 IDLE(j, x); i.e., αj is the total idle time of the machines in Yj after

time ri+1. We then invoke Algorithm Compute-Idle-and-Test-Feasibility to test feasibility for this time segment. Algorithm
Compute-Idle-and-Test-Feasibility will compute extraj and move(p, q), in addition to testing feasibility; see the algorithm in
Section 3.1.
After AlgorithmCompute-Idle-and-Test-Feasibility is called, if extraj ≥ αj, thenwedonot need to fill any job in the idle time

in IDLE(j, x), i+ 1 ≤ x ≤ k− 1. The jobs in J(MIj, i)will be scheduled exclusively on the machines of Yj in the time segment
[ri, ri+1]. On the other hand, if extraj < αj, then besides scheduling all the machines of Yj in the time segment [ri, ri+1], we
need to fill in an amount of processing time equal to fillj = αj − extraj in the idle time in IDLE(j, x), i + 1 ≤ x ≤ k − 1. Let
fillj = max{αj − extraj, 0} for all 1 ≤ j ≤ z.
If fillj = 0 for each machine interval MIj, then we will schedule all the jobs released at time ri in the time segment TSi.

Thus, T (l, i) will be the same as the initial value. We use McNaughton’s rule to construct a schedule in this segment. From
the schedule, we can update IDLE(j, i) for all 1 ≤ j ≤ z.
If fillj > 0 for some machine interval Yj, then we need to fill some jobs released at time ri in the idle time in IDLE(j, x),

i + 1 ≤ x ≤ k − 1. It is possible that a job released at ri is the same job as the jobs released at ri+1, . . . , rk−1, due to the
preprocessing step. Therefore, the jobs released at ri must be scheduled carefully so as to avoid any overlap with the same
job in subsequent time segments. In the following we will describe how to schedule these jobs. The basic idea is that we
first schedule jobs with total processing time equal to fillj in the idle time in IDLE(j, x), i + 1 ≤ x ≤ k − 1. After we finish
this step for all the machine intervals, we then schedule the remaining jobs in the time segment TSi by McNaughton’s rule.
Finally, we update IDLE(j, i) for all 1 ≤ j ≤ z.
Suppose fill1 > 0. Then we schedule the jobs of J(MI1, i) with total processing time equal to fill1 in the idle time in

IDLE(1, x), i+ 1 ≤ x ≤ k− 1, on the machines of Y1. We schedule the jobs in the following manner. For any job l ∈ J(MI1, i),
we try to schedule this job in the idle time in IDLE(1, i+ 1) if IDLE(1, i+ 1) > 0. We can schedule job l for an amount equal
to min{fill1, IDLE(1, i + 1), T (l, i), ri+2 − ri+1 − T (l, i + 1)} in the time segment TSi+1. Then we update fill1, IDLE(1, i + 1),
T (l, i) and T (l, i+ 1). If job l is completely scheduled and IDLE(1, i+ 1) is still greater than 0, we try to schedule another job
of J(MI1, i) in the idle time in IDLE(1, i + 1) using the same method. If job l still has some processing time not scheduled,
we try to schedule it in IDLE(1, i + 2) and so on. We will show later in Lemma 1 that we can always schedule the jobs of
J(MI1, i) with total processing time equal to fill1 in the idle time in IDLE(1, x), i + 1 ≤ x ≤ k − 1, without producing any
overlap.
Now, consider the next machine interval Yj with fillj > 0 and j > 1. We first find the maximummachine interval index p

such that no processing time need to bemoved from Ya to Yb for any 1 ≤ a ≤ p−1 and p ≤ b ≤ j; i.e.,move(a, b) = 0 for all
1 ≤ a ≤ p−1 and p ≤ b ≤ j. Then, for each pair of indexes c and d such that p ≤ c < d−1 ≤ j−1 andmove(c, d) > 0, we
add the valuemove(c, d) to each itemmove(c, c+1),move(c+1, c+2), . . ., andmove(d−1, d). Finally, we setmove(c, d)
to be 0.
Then, from g = p to j − 1, we try all jobs of J(MIg , i) to fill in a total amount up to at most min{fillj,move(g, g + 1),

move(g + 1, g + 2), . . . ,move(j − 1, j)} in the idle time in IDLE(j, x), i + 1 ≤ x ≤ k − 1, on the machines of Yj. Each job
is filled in the order of IDLE(j, i + 1), IDLE(j, i + 2), . . . , IDLE(j, k − 1). Let ρg be the total processing time among all jobs
of J(MIg , i) that are filled in. We update the sequencemove(g, g + 1),move(g + 1, g + 2), . . . ,move(j− 1, j) by reducing
ρg from them, and we update the array T (·, ·) and IDLE(j, x), i + 1 ≤ x ≤ k − 1. We stop when either fillj = 0 or we have
tried all jobs of J(MIp, i), J(MIp+1, i), . . ., and J(MIj−1, i). In the latter case, we then try all jobs of J(MIj, i) to fill in an amount



296 Y. Huo et al. / Discrete Optimization 6 (2009) 292–298

equal to fillj in the idle time in IDLE(j, x), i+1 ≤ x ≤ k−1, on the machines of Yj, and update the array T (·, ·) and IDLE(j, x).
(Again, the jobs are filled in the order of IDLE(j, i + 1), IDLE(j, i + 2), . . . , IDLE(j, k − 1).) We will show later in Lemma 1
that we can always schedule jobs of J(MIj, i)with total processing time fillj in the idle time in IDLE(j, x), i+ 1 ≤ x ≤ k− 1,
without producing any overlap.
After we consider all the machine intervals MIj with fillj > 0 by the above procedure, every machine interval MIj must

have fillj = 0. Then we schedule the remaining jobs T (l, i), 1 ≤ l ≤ n, in the time segment TSi by McNaughton’s rule. From
the schedule, we can update IDLE(j, i), 1 ≤ j ≤ z. The process described above is shown in Algorithm Schedule-Inclusive-
Intervals-with-Release-Time.

Input: T (l, y) and IDLE(j, y)1 ≤ l ≤ n, i+ 1 ≤ y ≤ k− 1 and 1 ≤ j ≤ z
Output: T (l, i): the amount of processing of job Jl done in the time segment TSi
IDLE(j, i) = |Yj| · (ri+1 − ri) for 1 ≤ j ≤ z;1

αj =
∑k−1
x=i+1 IDLE(j, x) for 1 ≤ j ≤ z;2

Call Algorithm Compute-Idle-and-Test-Feasibility to computemove(·, ·) and extraj for all 1 ≤ j ≤ z;3
For each 1 ≤ j ≤ z, fillj = max{αj − extraj, 0};4
Let J(MIj, i) be the set of jobs with machine intervalMIj released at ri, 1 ≤ j ≤ z;5
j = 1;6
repeat7

if fillj > 0 then8
Let p be the maximum index such thatmove(a, b) = 0 for all 1 ≤ a ≤ p− 1 and p ≤ b ≤ j;9
foreach pair of c and d such that p ≤ c < d− 1 < j and move(c, d) > 0 do10

for x = c to d− 1 do11
move(x, x+ 1) = move(x, x+ 1)+move(c, d)12

move(c, d) = 0;13

g = p;14
while fillj > 0 and g < j do15
For each job l of J(MIg , i), fill in an amount up to min{move(g, g + 1), . . .,move(j− 1, j), fillj} in the idle16
time in IDLE(j, x), i+ 1 ≤ x ≤ k− 1.
Update fillj, T (·, ·), and IDLE(j, x), i+ 1 ≤ x ≤ k− 1;17
Let ρ be the total processing time filled in;18
for x = g to j− 1 do move(x, x+ 1) = move(x, x+ 1)− ρ;19
g = g + 1;20

if fillj > 0 then21
For each job l of J(MIj, i), fill in an amount up to fillj in the idle time in IDLE(j, x) for i+ 1 ≤ x ≤ k− 1.22
Update fillj, T (l, i), T (l, x) and IDLE(j, x);

23

j = j+ 1;24

until j > z;25
Schedule the remaining jobs of J(MIj, i) in the time segment TSi by McNaughton’s rule and update IDLE(j, i) for26
1 ≤ j ≤ z.

Algorithm 1: Schedule-Inclusive-Intervals-with-Release-Time

We repeat the procedure for all time segments. After we finish all time segments, we get T (l, i) for any job l and any
0 ≤ i ≤ k− 1. Then we can obtain a feasible schedule by McNaughton’s rule, segment by segment.

Lemma 1. Suppose the jobs released at time ri passed the test of Algorithm Compute-Idle-and-Test-Feasibility. For eachmachine
interval MIj, we can fill in exactly fillj amount of processing time in the idle time in IDLE(j, x) for i + 1 ≤ x ≤ k − 1 by
Algorithm Schedule-Inclusive-Intervals-with-Release-Times without any overlap.
Proof. First, it is easy to see that no overlap can be produced by the above procedure and for each machine intervalMIj, no
more than fillj amount of processing time is filled in the idle time in IDLE(j, x) for i + 1 ≤ x ≤ k − 1. We now prove that
for each machine interval MIj, we can always fill in at least fillj amount of processing time in the idle time in IDLE(j, x) for
i+ 1 ≤ x ≤ k− 1 without producing any overlap.
For any set JS of jobs, let ρ(JS) denote the total processing time of all the jobs in JS. We will prove, by induction on j, the

following claim.

Claim 1. For anymachine interval MIj, 1 ≤ j ≤ z, with extraj ≤ αj, after Algorithm Compute-Idle-and-Test-Feasibility is called,
the following equation always holds:

ρ(J(MIj, i))+
j−1∑
x=1

move(x, j)−
z∑

x=j+1

move(j, x) = |Yj| ∗ (ri+1 − ri)+ fillj.



Y. Huo et al. / Discrete Optimization 6 (2009) 292–298 297

Recall that αj is the total idle time in IDLE(j, x) for i + 1 ≤ x ≤ k − 1 before Algorithm Compute-Idle-and-Test-Feasibility
is called in this iteration, and extraj is the total idle time in IDLE(j, x) for i ≤ x ≤ k − 1 after Algorithm Compute-Idle-and-
Test-Feasibility is called in this iteration. So the claim means that after Algorithm Compute-Idle-and-Test-Feasibility is called,
for any machine interval MIj in which at least |Yj| ∗ (ri+1 − ri) of processing time can be filled, the total processing time
of J(MIj, i) plus the total processing time that needs to be moved into Yj minus the total processing time that needs to be
moved out of Yj is exactly equal to the total idle time in Yj in the time segment TSi plus fillj.
We will prove the claim by induction on j. For the base case j = 1, if fill1 = 0, the claim clearly holds. On the other hand,

if fill1 > 0, we must have

ρ(J(MI1, i))−
z∑
x=2

move(1, x) = |Y1| ∗ (ri+1 − ri)+ fill1.

We now show that we can always schedule the jobs of J(MI1, i)with total processing time fill1 in the idle time in IDLE(1, x)
for i + 1 ≤ x ≤ k − 1 on the machines of Y1. Suppose not. Then there must be a time segment b, i + 1 ≤ b ≤ k − 1,
such that some idle time of IDLE(1, b) cannot be filled. Since ρ(J(MI1, i)) ≥ |Y1| ∗ (ri+1 − ri), we must have at least |Y1|
jobs in J(MI1, i). Since all these jobs cannot be filled in IDLE(1, b), they must have been scheduled in the time segment TSb
for a duration equal to rb+1 − rb. But this means that there is no idle time on the machines of Y1 in the time segment TSb,
contradicting the fact that IDLE(1, b) > 0.
After fill1 amount of processing time is filled in the idle time in IDLE(1, x), i + 1 ≤ x ≤ k − 1, J(MI1, i) is updated

by removing the scheduled jobs or parts of the jobs, and fill1 is updated to 0. So ρ(J(MI1, i)) −
∑z
x=2move(1, x) =

|Y1| ∗ (ri+1 − ri)+ fill1 still holds.
Assume that the claim holds for the first j− 1 machine intervals. We want to prove that it also holds for the jth interval.

If fillj = 0, the claim obviously holds. If fillj > 0, then we must have extraj < αj. So ρ(J(MIj, i)) +
∑j−1
x=1move(x, j) −∑z

x=j+1move(j, x) = |Yj| ∗ (ri+1 − ri) + fillj. Let p be the maximum index such that no processing time need to be moved
from Ya to Yb for any 1 ≤ a ≤ p − 1 and p ≤ b ≤ j. Then for each pair of indexes c and d, p ≤ c < d ≤ j, such that
move(c, d) > 0, wemust have for all c ≤ u ≤ d−1, extrau = 0 and ρ(J(MIu, i))+

∑u−1
x=1 move(x, u)−

∑z
x=u+1move(u, x) =

|Yu|∗(ri+1−ri)+fillu. So, afterwe consider all such pairs of c and d, p ≤ c < d ≤ j, such thatmove(c, d) > 0,wemust have for
all p ≤ u ≤ j−1, the following equation holds:ρ(J(MIu, i))+

∑u−1
x=1 move(x, u)−

∑z
x=u+1move(u, x) = |Yu|∗(ri+1−ri)+fillu.

For each pair of indexes c and d, p ≤ c < d−1 ≤ u−1, such thatmove(c, d) > 0, we addmove(c, d) to each of the items
move(c, c+1),move(c+1, c+2), . . .,move(d−1, d), and setmove(c, d) = 0. So, after we consider all such pairs, wemust
have for all p ≤ u < j,move(u, u+1) > 0 and ρ(J(MIu, i))+move(u−1, u)−

∑z
x=u+1move(u, x) = |Yu| ∗ (ri+1− ri)+ fillu.

In our algorithm, from g = p to j− 1, we try all jobs of J(MIg , i) to schedule up to min{move(g, g + 1),move(g + 1, g +
2), . . . ,move(j−1, j), fillj} amount of processing time in the idle time in IDLE(j, x), i+1 ≤ x ≤ k−1, on themachines of Yj.
Letρ be the total processing time that is filled.Weupdate the sequencemove(g, g+1),move(g+1, g+2), . . . ,move(j−1, j)
by reducing ρ from each of them. Furthermore, fillj is also updated in the course of scheduling the jobs. Finally, we update
J(MIg , i) by removing all the scheduled jobs or parts of the jobs. Since both move(j − 1, j) and fillj are reduced by ρ and
other items are not changed, the following equation still holds: ρ(J(MIj, i)) + move(j − 1, j) −

∑z
x=j+1move(j, x) =

|Yj| ∗ (ri+1 − ri) + fillj. Similarly, since both move(g, g + 1) and ρ(J(MIg , i)) are reduced by ρ and other items are not
changed, the following equation still holds: ρ(J(MIg , i))+move(g − 1, g)−

∑z
y=x+1move(g, y) = |Yg | ∗ (ri+1 − ri)+ fillg .

Notice that fillg = 0 now. There is no change in other machine intervals, so all the equations still hold.
We stop when either fillj = 0 or we have tried all jobs of J(MIp, i), J(MIp+1, i), . . ., and J(MIj−1, i). If, after we have tried all

jobs of J(MIp, i), J(MIp+1, i), . . ., and J(MIj−1, i), fillj is still greater than 0,we then try all jobs of J(MIj, i) to schedule fillj amount
of processing time in the idle time in IDLE(j, x) for i+1 ≤ x ≤ k−1 on themachines of Yj, andweupdate J(MIj, i) by removing
all the scheduled jobs or parts of the jobs. Since bothρ(J(MIj, i)) and fillj are reduced by the same amount and the other items
are not changed, the following equation still holds: ρ(J(MIj, i))+move(j−1, j)−

∑z
x=j+1move(j, x) = |Yj|∗(ri+1−ri)+ fillj.

We now show that after we tried all the jobs of J(MIj, i), filljmust be 0. Suppose not. Letw be the last machine index such
that move(w,w + 1) = 0. That is, from w + 1 on, each time we try to fill min{fillj,move(x, x + 1), . . . ,move(j − 1, j)},
x > w, of processing time in the idle time in IDLE(j, x), i + 1 ≤ x ≤ k − 1, on the machines of Yj, we were able to fill only
δ < min{fillj,move(x, x + 1), . . . ,move(j − 1, j)} of processing time in the idle time in IDLE(j, x), i + 1 ≤ x ≤ k − 1, on
the machines of Yj. That means we have tried all the jobs in J(MIx, i), w + 1 ≤ x ≤ j, to fill in the idle time in IDLE(j, x),
i+ 1 ≤ x ≤ k− 1. Since we still have fillj > 0, there must be a time segment b, i+ 1 ≤ b ≤ k− 1, such that some idle time
in IDLE(j, b) cannot be filled.
Since for eachw + 1 ≤ u ≤ j, we have

ρ(J(MIu, i))+move(u− 1, u)−
z∑

x=u+1

move(u, x) = |Yu| ∗ (ri+1 − ri)+ fillu

and

move(w,w + 1) = 0,



298 Y. Huo et al. / Discrete Optimization 6 (2009) 292–298

we must have

ρ(J(MIw+1, i))−
z∑

x=w+2

move(w + 1, x) = |Yw+1| ∗ (ri+1 − ri)+ fillw+1

and

ρ(J(MIw+1, i))+ ρ(J(MIw+2, i))+ · · · + ρ(J(MIj, i))
+move(w + 1, w + 2)+move(w + 2, w + 3)+ · · · +move(j− 1, j)

−

(
z∑

x=w+2

move(w + 1, x)+
z∑

x=w+3

move(w + 2, x)+ · · · +
z∑

x=j+1

move(j, x)

)
≥ (|Yw+1| + |Yw+2| + · · · + |Yj|) ∗ (ri+1 − ri)+ fillw+1 + · · · + fillj.

Notice that fillu = 0 for all w + 1 ≤ u ≤ j − 1. Thus, we have ρ(J(MIw+1, i)) + ρ(J(MIw+2, i)) + · · · + ρ(J(MIj, i)) ≥
(|Yw+1| + |Yw+2| + · · · + |Yj|) ∗ (ri+1 − ri)+ fillj.
Since each of these jobs has length atmost (ri+1−ri), theremust be at least |Yw+1|+|Yw+2|+· · ·+|Yj| jobs in J(MIw+1, i),

J(MIw+2, i), . . ., and J(MIj, i). Since all these jobs cannot be filled in the idle time in IDLE(j, b), these jobs must have been
scheduled in the time segment TSb for a duration equal to (rb+1−rb). Therefore, there should be no idle time in time segment
TSb on the machines of Yj, contradicting the fact that IDLE(j, b) > 0.
So, formachine intervalMIj, the claim still holds andwe can fill exactly fillj of processing time in the idle time in IDLE(j, x),

i+ 1 ≤ x ≤ k− 1, on the machines of Yj. �

Algorithm 1 constructs the schedule for one time segment. Steps 1 to 6 take O(n + m) time. Step 9 takes O(m) time for
each machine interval MIj. Since there are at most m machine intervals, Step 9 takes a total of O(m2) time. Steps 10 to 13
take O(m3) time since there are O(m2) pairs of c and d. Steps 15 to 22 take O(mnk) time. Therefore, the total time needed
for one time segment is O(mnk+m3). Hence the total time for k time segment is O(mnk2+m3k). After we update the array
T (·, ·), we can obtain a schedule by McNaughton’s rule which takes O(nk) time. Thus, we have the following theorem.

Theorem 1. For the inclusive processing set restrictions, we can obtain an optimal schedule in time O(nk log P +mnk2 +m3k).

4. Conclusion

In this paper we show that there is no 1-competitive online algorithm for the preemptive scheduling problem with
different release times and inclusive processing set restrictions. For future research, it will be interesting to develop an
online algorithmwith a small competitive ratio. For the offline case, we give a fast algorithm for the inclusive processing set
restriction. For future research, it will be interesting to see if there are evenmore efficient algorithms than the one presented
in this paper.

Acknowledgements

The first author’s work was supported in part by the PSC-CUNY research fund and second author’s work was supported
in part by the NSF grant DMI-0556010.

References

[1] H.-C. Hwang, S.Y. Chang, K. Lee, Parallel machine scheduling under a grade of service provisions, Computers & Operations Research 31 (2004)
2055–2061.

[2] C.A. Glass, H. Kellerer, Parallel machine scheduling with job assignment restrictions, Naval Research Logistics 54 (2007) 250–257.
[3] J. Ou, J.Y.-T. Leung, C.-L. Li, Scheduling parallel machines with inclusive processing set restrictions, Naval Research Logistics 55 (2008) 328–338.
[4] R. McNaughton, Scheduling with deadlines and loss functions, Management Science 6 (1959) 1–12.
[5] K.S. Hong, J.Y.-T. Leung, On-line scheduling of real-time tasks, IEEE Transactions on Computers 41 (1992) 1326–1331.
[6] E.L. Lawler, J. Labetoulle, On preemptive scheduling of unrelated parallel processors by linear programming, Journal of ACM 25 (1978) 612–619.
[7] P. Brucker, B. Jurisch, A. Kramer, Complexity of scheduling problems with multi-purpose machines, Annals of Operations Research 70 (1997) 57–73.
[8] A.V. Goldberg, R.E. Tarjan, A new approach to the maximum flow problem, Journal of ACM 35 (1988) 921–940.
[9] C.-L. Li, X.Wang, Scheduling parallel machines with inclusive processing set restrictions and job release times,Working Paper, Department of Logistics,
The Hong Kong Polytechnic University, Kowloon, Hong Kong.


	A fast preemptive scheduling algorithm with release times and inclusive processing set restrictions
	Introduction
	Background and related work
	The model and main results

	Online algorithm
	Offline algorithm
	Feasibility test
	Obtaining an optimal schedule

	Conclusion
	Acknowledgements
	References


