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Abstract

We investigate the possibility of performing new reduction strategies with the Geometry of Interaction
Machine (GOIm). To this purpose, we appeal to Lévy’s labelled lambda calculus whose labels describe: a)
the path that the GOIm will follow in the graph of a term and b) the operations that the GOIm requires
to compute the multiplicative part from the Multiplicative and Exponential Linear Logic encoding that the
machine uses. Our goal is to unveil the missing exponential information in the structure of the labels. This
will provide us with a tool to talk about strategies for computing paths with the GOIm.
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1 Introduction

There is a well established connection between labels in Lévy’s labelled λ-calculus

and paths in the graph of a term [1,4,2]. If we compute the normal form of a term in

the labelled λ-calculus, then the resulting label will describe a path in the graph of

the term. The Geometry Of Interaction Machine [12], which is an implementation

of Girard’s Geometry of Interaction semantics for Linear Logic [10], will follow

exactly the path induced by the label. The investigation of the structure of the

labels allowed the identification of the call-return symmetry [4], which has led to

optimisations [6,7] where the length of the path to be traversed is significantly

reduced. However:

• The structure of the labels is different from the structure of paths: labels talk

about redex contractions whereas paths in the GOIm about the dynamics of

Linear Logic cut elimination.
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• The structure of the paths depends on the choice of translation of the λ-calculus

into Linear Logic proof nets (call-by-value or call-by-name).

• Many equivalences are known to date but properties found in the labels have to

be transposed to paths and vice versa.

Our goal is to identify structure in the labels that will allow us to reason about

new ways for computing paths with the GOIm. Therefore, we investigate a new set

of labels, which corresponds closer to the paths.

2 Background and Motivation

In this section we set up the conventions that we will use in the rest of the paper.

Our point of departure is Lévy’s labelled λ calculus [11] whose labels give a simple

notion for a “path in a term”.

Definition 2.1 The set of labels is formed by the following grammar:

α, β := a | αβ | α | α

where (Latin) a is an atomic label. Labelled terms are terms of the λ-calculus where

each sub-term T has a label attached on it: Tα. Subterms in the initial form of a

term receive a distinct atomic label. Labelled β-reduction is given by

((λx.M)αN)β → βα • M [α • N/x]

where • concatenates labels with labelled terms, defined by β • Tα = T βα. Substi-

tution is implicit and operates as follows

xα[N/x] = α • N

yα[N/x] = yα

(λy.M)α[N/x] = (λy.M [N/x])α

(MN)α[P/x] = (M [P/x]N [P/x])α

Example 2.2 The term III, I = (λx.x) reduces as follows:
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If we reverse the underlines then the resulting label induces a path that the

GOIm will compute without reducing the term. However, the GOIm does not

act on syntax trees of the λ-calculus but on graphs, which are translations of the
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λ-calculus into Linear Logic proof-nets [9]. Computation then follows the idea

of a token traversing the edges of the graph. Here we provide the call-by-value

translation T (·) with which we will work throughout this paper [12].

Definition 2.3 The general form of a term is given by

M

a

...

M

a

≡

where we attach an atomic label to the root of each sub-term. Edges at the bottom

of the structure denote the free variables of the term. The translation is given by

the following recursive definition:

T (x) = T (λx.M) =

T (M)

�

? ?

!

T (MN) =

D

⊗

T (M) T (N)

R S

T (M)

�

? ?

!

W

x /∈ FV (M)

... ...

... ...

Some remarks are in order: In T (λx.M), we assume that the bound variable

x is at the leftmost edge of the free variables of T (M). We attach a node W if

x �∈ fv(M). Intuitively, the box structure can be thought of as “the scope” of a

function. In terms of Linear Logic, it is a net that can be used in a non-linear way.

The graphs presented here are proof nets, which are oriented in a way that closely

resembles λ-calculus syntax trees. Notice that axiom and cut links are hidden within

the structures. We distinguish between two kinds of nodes:

(i) Multiplicative nodes: Tensor (⊗), Par(�)

(ii) Exponential nodes: Of Course (!), Dereliction (D), Weakening (W ), Why Not

(?), Contraction (R,S)

The arrows on the nodes are not standard proof net notation but we place them

in order to keep track of the original orientation of the nets. This idea is borrowed

from Interaction Net notation where arrows are used to indicate principal ports of

nets. We will not require the full power of MELL cut elimination but only Closed

MELL cut elimination, which we present in Figure 1 with the original orientation

of the nets. We refer the reader to [13] for a more formal treatment.

The overlining and underlining in Lévy’s labelled λ-calculus captures redexes

that have been contracted during reduction. In other words, these labels mark the

points of contact of the (virtual) redexes in a term. If we transpose this information

to proof-nets then overlining and underlining hints about where the multiplicative

nodes are located in the labels. This is also the case for the call-by-name translation,

which we do not consider here.
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Fig. 1. Closed Cut Elimination

In the next section we show that it is possible to add the missing exponential

information during labelled reduction where we make use of a weak, α-conversion

free λ-calculus. A weak λ-calculus is also studied in [5], which has been related to

Wadsworth’s graph representations. In section 4 we relate the structure obtained

from the labels with Linear Logic cut elimination where we make the notion of

“connectivity” important (see for instance [3]). In section 5 we comment on how

the extra structure helps in understanding and exploring new strategies for the
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GOIm.

3 Paths in the calculus of closed functions

Our approach is similar to Lévy’s labelled reduction where we attach labels to terms

and capture information during reduction. The labelled β-rule can provide some

information about the location of the exponential nodes. In the call-by-value trans-

lation, it is trivial to identify the location of D-nodes and !-nodes since these live

beneath the multiplicative nodes. This is because the translation of a redex involves

multiplicative nodes, which are intercepted by a D and a !-node. Unfortunately, the

β-reduction step cannot help further; we have to focus on the substitutions in order

to identify the locations of the remaining exponential nodes. However, substitutions

are propagated exhaustively and in an uncontrolled way. For instance, it is known

that paths can be copied but this is not resembled by copying the substitution in:

(MN)α[P/x] = (M [P/x]N [P/x])α

The explicit substitution calculi in [8] overcome these deficiencies. In this section

we provide a labelled version of the “calculus of closed functions” (λcf ), which will

allow us to obtain explicit paths for the call-by-value translation.

Definition 3.1 Terms in the λcf -calculus are λ-terms with explicit constructs for

copying (δ) and erasing (ε) and are presented along with their variable constraints.

Term Variable Constraint Free variables

x - {x}

λx.M x ∈ fv(M) fv(M) − {x}

MN fv(M) ∩ fv(N) = ∅ fv(M) ∪ fv(N)

εx.M x �∈ fv(M) fv(M) ∪ {x}

δy,z
x .M x �∈ fv(M), y �= z, {y, z} ⊆ fv(M) (fv(M) − {y, z}) ∪ {x}

M [N/x] x ∈ fv(M), (fv(M) − {x}) ∩ fv(N) = ∅ (fv(M) − {x}) ∪ fv(N)

Definition 3.2 Lambda terms are compiled into this set of terms (λc) via the

translation 〈〈·〉〉. We assume compilation of closed terms:
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〈〈x〉〉 = x

〈〈MN 〉〉 = 〈〈M〉〉〈〈N〉〉

〈〈λx.M 〉〉 = λx.[[x]]〈〈M〉〉 if x ∈ fv(M)

= λx.εx.〈〈M〉〉 otherwise

We define [[·]]:

[[x]]x = x

[[x]](λy.M) = λy.[[x]]M

[[x]](MN) = δy,z
x .[[y]](M [x := y])[[z]](N [x := z]) x free inM andN (y, z fresh)

= ([[x]]M)N x free in M only

= M([[x]]N) x free in N only

[[x]](εy.M) = εy.[[x]]M

[[x]](δu,v
y .M) = δu,v

y .[[x]]M

Example 3.3 Here we provide some example terms that are yielded by the com-

pilation:

• 〈〈λx.λy.x〉〉 = λx.λy.εy.x

• 〈〈(λx.xx)(λx.x)〉〉 = (λx.δy,z
x .yz)(λx.x)

Notice that the compilation does not apply to open terms. For instance,

〈〈(λx.x)(yy)〉〉 = (λx.x)(yy)

but the translated application (yy) does not satisfy the variable constraints of λc-

terms. We refer the reader to [8] for the full version of the compilation.

Definition 3.4 Labelled terms are λc-terms where every sub-term T has a label:

Tα. The set of labels is defined by the following grammar:

α, β := a | αβ | α | α | C; C :=
−→
E |

←−
E ; E := D | ! | ? | R | S | W ;

This is the same set as the set of Lévy’s labels where we add (atomic) markers

for exponential nodes, each of which has an associated direction. Multiplicative

information is kept implicit via overlining and underlining.

Definition 3.5 The Beta rule of the labelled calculus λlcf is defined by

Beta: ((λx.M)αN)β →λlcf
β
−→
Dα

←−
! • M [(

−→
Dα

←−
! )r • N/x]

where we impose the condition that fv((λx.M)α) = ∅. The operator • and the
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function (·)r which reverses labels are defined as follows::

(a)r = a β • xα = xβα

(αβ)r = (β)r · (α)r β • (λx.M)α = (λx.M)βα

(α)r = (α)r β • (MN)α = (MN)βα

(α)r = (α)r α • (δy z
x .M) = (δy z

x .α • M)

(
−→
E )r =

←−
E α • (εx.M) = (εx.α • M)

(
←−
E )r =

−→
E

Substitution rules (σ) are placed at the same level as the Beta rule and are pre-

sented below.

Rule Reduction Condition

Lam (λy.M)α[N/x] →λlcf
(λy.M [

−→
? • N/x])α fv(N) = ∅

App1 (MN)α[P/x] →λlcf
(M [P/x]N)α x ∈ fv(M)

App2 (MN)α[P/x] →λlcf
(MN [P/x])α x ∈ fv(N)

Cpy1 (δy z
x .M)[N/x] →λlcf

M [
−→
R • N/x][

−→
S • N/x] fv(N) = ∅

Cpy2 (δy z
x .M)[N/x′] →λlcf

(δy z
x .M [N/x′]) ˜

Ers1 (εx.M)[N/x] →λlcf
M, {

−→
W • N} ∪ B fv(N) = ∅

Ers2 (εx.M)[N/x′] →λlcf
(εx.M [N/x′]) ˜

Var xα[N/x] →λlcf
α • N ˜

Cmp M [P/y][N/x] →λlcf
M [P [N/x]/y] x ∈ fv(P )

Remark 3.6 The only rule that creates a substitution is the Beta rule. The rule

Lam captures the situation where the substitution has to leave the function scope

of the abstraction in which the substitution has been originally created and enters

a sub-function scope. The controlled copying and erasing (Cpy1 and Ers1) of

substitutions allows the identification of paths that start from contraction nodes

and weakening nodes respectively. Erased paths are kept in a set B. Notice that

explicit labelling on copying (δ) and erasing (ε) constructs is omitted: these are used

just to guide the substitutions. We inherit a number of properties from λcf : our

calculus is α-conversion free and closed substitutions do not remain blocked. On

the other hand, the calculus is weak but is adequate for the evaluation of programs

(closed terms).

A closer look at how the calculus operates will be presented via the graphical

representation of the rewrite rules. For this reason, we define a translation for λc
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terms into Linear Logic proof nets, which we present below:

G(M)

...

W

G(M)

G(N)

...

...

G(M)

R S

...

G(x) = G(λx.M) = G(MN) =

G(δy,z

x
.M) =

G(M)

�

? ?

!

...

...

D

⊗

G(M) G(N)

...

G(εx.M) = G(M [N/x]) =

Example 3.7 Here is the graphical representation of the left and right hand sides

of the Beta rule. There are two cut elimination steps involved in order to achieve

this rewrite: 1) a closed dereliction cut and 2) a multiplicative cut.

G(M)

�

!

D

⊗

G(N)
G(M)

G(N)

G(LHS) = G(RHS) =

β−→

Dα←−

!

(−→Dα←−

! )r

β

α

...

...

The rules Cpy1 and Ers1 behave as follows:

G(LHS) =

G(M)

R S

G(N)

G(RHS) =

G(M)

G(N) G(N)

−→

R
−→

S

G(LHS) =

G(N)

G(RHS) =

−→

W

W

G(M)

G(N)

G(M)

⋃
B

...... ...

{ }

α α α αα

Remark 3.8 There are many paths in a program and the task of the GOIm is to
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find the path that survives the process of reduction. In other words, there exist

erased sub-paths that are not part of the normal form of a program. However,

when studying strategies for the GOIm, it is of interest to identify paths that lead

to discarded arguments. Since substitutions are discarded in a controlled way, we

keep these paths in the set B.

Example 3.9 We provide an example path yielded by the reduction of (λxy.xy)II,

I = (λx.x).

(((λx.(λy.(xayb)c)d)e(λx.xf )g)h(λx.xi)j)k →∗

λlcf
(λx.xi)φ

where

φ = k
−→
Dh

−→
De

←−
! d

←−
! c

−→
Da

−→
?
−→
! e

←−
D g

←−
! f

−→
! g

−→
De

←−
!
←−
? a

←−
D b

−→
! d

−→
! e

←−
Dh

←−
D j

The corresponding graph is presented below:

�

!

D

⊗

�

⊗

!

�

D

?

!

D

⊗

�

!

k

h

e

d

c

a

b

j

i

f

g

In the remainder of this section we show that the labelled case preserves con-

fluence. The proofs presented here are an adaption from [8] to the labelled case.

Lemma 3.10 For • and substitution we have (β • M)[N/x] = β • (M [N/x]).

Proof. By induction on the structure of M . We show the case for δ-terms:

M = (δy z
x .P ). The lhs is

(β • (δy z
x .P ))[N/x] = (δy z

x .(β • P ))[N/x] by definition of •

→λlcf
(β • P )[

−→
R • N/y][

−→
S • N/z]

= β • (P [
−→
R • N/y])[

−→
S • N/z] by IH

and the rhs:

β • ((δy z
x .P )a1 [N/x]) →λlcf

β • P [
−→
R • N/y][

−→
S • N/z]
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where substitution associates to the left. �

Lemma 3.11 (local confluence) There are seven criticalpairs in λlcf all of which

are joinable.

Proof. We distinguish the cases which are interesting w.r.t. the labels.

(i) Superposition of Beta-App2: ((λy.M)αN)β [P/x], where x ∈ fv(N), gives rise

to the critical pair c1 ≈ c2 with

c1 = β
−→
Dα

←−
! • M [

−→
! αr←−

D • N/y][P/x] c2 = ((λy.M)α(N [P/x]))β

which converges as shown below:

c1 →Cmp β
−→
Dα

←−
! • M [

−→
! α

←−
D • N [P/x]/y]

c2 →Beta β
−→
Dα

←−
! • M [

−→
! α

←−
D • (N [P/x])/y]

and c1 = c2 by the previous lemma.

(ii) For yα[N/y][P/x], c1 = α •N [P/x] and c2 = yα[N [P/x]/y]. After one applica-

tion of the rule Beta we have c2 → α • N [P/x] = c1

The remaining critical pairs arise from superpositions between App1-Cmp, App2-

Cmp, Cpy2-Cmp, Ers2-Cmp and Cmp-Cmp. Additionally, these critical pairs

converge without requesting label sensitive rules (Beta, Lam, Cpy1, Ers1, and

Var). �

Remark 3.12 The conditions on the rewrite rules are essential. If we drop the

condition of the beta rule then the overlap ((λy.M)αN)β[P/x], x ∈ M gives rise

to a critical pair which is not joinable:

((λy.M)αN)β [P/x]

β
−→
Dα

←−
! • M [

−→
! αr

←−
D • N/y][P/x]

((λy.M)α[P/x]N)β

β
−→
Dα

←−
! • M [

−→
? • P/x][

−→
! αr

←−
D • N/y]

((λy.M [
−→
? • P/x])αN)β

≡?

In this case, searching for a property of commutation of substitutions would not

help because there is still a
−→
? in the branch on the right to deal with.

In order to show confluence, we will split λlcf into two relations: →σ and ⇒beta.

Then we will make use of Rosen’s lemma, which states that the union of two rewrite

systems is confluent if both are confluent and commute.

• The first system consists of all σ-rules in λlcf . Notice that the critical pairs of →σ

are the ones presented earlier except the first one. Additionally, these critical pairs

do not the request the Beta rule and therefore →σ is locally confluent. Moreover,

there are no infinite reduction sequences in →σ. Hence, →σ is confluent.
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• ⇒beta is defined to be the Beta rule of λlcf which contracts in parallel all

beta redices at any position in a λlcf -term. To obtain confluence we show that

⇒beta has the diamond property (strong confluence), that is, if M ⇒beta M ′ and

M ⇒beta M ′′ then there exists N such that M ′
⇒beta N and M ′′

⇒beta N . The

proof is by induction on M ⇒beta M ′. Clearly, →beta⊆⇒beta and →∗

beta=⇒
∗

beta,

which also makes the original beta rule confluent.

Proposition 3.13 (commutation of ⇒ /σ) If M ⇒
∗

beta M ′ and M →∗

σ M ′′ then

there exists N such that M ′ →∗

σ N and M ′′
⇒

∗

beta N .

Proof. We first show that the diagram weakly commutes by induction on the def-

inition of ⇒beta . We distinguish the following cases:

• Let M = ((λy.P )αO)β ; ⇒beta applies at the root of the term, M ′ = β
−→
Dα

←−
! •

Pb[
−→
! αr←−D • Ob/x], P →beta Pb, O →beta Ob; →σ is internal to P or O, M ′′ =

((λy.Pσ)O)β or M ′′ = ((λy.P )Oσ)β whenever P →σ Pσ or O →σ Oσ. By IH ,

there exists a term Pv such that Pb →σ Pv and Pσ →beta Pv or there exists a term

Ov such that Ob →σ Ov and Oσ →beta Ov . Take N = Pv[Ob/x] for the first case

and N = Pb[Ov/x] for the second case.

• Let M = P [O/x], M ′ = Pb[Ob/x], M ′′ = Pσ [O/x] or M ′′ = P [Oσ/x], where a

σ-rule does not apply at the root of M and all reductions are internal to P or

O. Hence the property holds by IH. On the other hand, if a σ-rule is applicable

at the root of M then we have to consider different cases: a) we may have an

overlap between a Beta rule (P is a beta redex) and the σ-rule. In this case

only App2 can be applied since the functional part of the beta redex has to be

closed. This case is similar to the first critical pair presented earlier where the

pair converges at N . b) In any other case, take P to be the lhs (L) of one of

the σ-rules, M = L[O/x], M ′ = L[Ob/x] , M ′′ = R[O/x]; the diagram commutes

with N = R[Ob/x].

Commutation is obtained by induction on the length of the derivation M ⇒
∗

Beta

M ′. Since →∗

beta=⇒
∗

beta we close the diagram and conclude that λlcf is confluent

by Rosen’s lemma. �

4 Structure of the labels

The markers in the labels add only positions of exponential information to the

paths, that is, we still only know about the points of contact between multiplicative

nodes (and consequently D−! nodes). This is understood as an interaction between

the functional part of the redex and the argument. The question we try to answer

in this section is whether it is possible to mark the remaining exponential points of

contact in the labels. The problem is that the remaining rules describe interactions

between terms and substitutions. In particular, we would like to treat interactions

in the rewrite rules Lam, Cpy1 and Ers1 as interactions with abstractions. We

remind that all exponential cut rules involve a box structure which, in case of

the lambda calculus translation, is an abstraction. A solution to our problem is
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to substitute only evaluated terms (i.e. simulate a call by value strategy) and

ensure that substitutions evaluate to abstractions. It has been shown in [8] that

closed terms in λcf evaluate to weak head normal form by simulating a call-by-value

strategy. Notice that weak head normal forms of closed terms are also closed terms

and thus the only possible results are abstractions. The conditions of the rules of

interest require that substitutions are closed and this allows us to treat rules Cpy1,

Lam and Ers1 as desired. Additionally, we remind that the rule Beta also involves

a closed dereliction cut and this completes the picture of exponential cut elimination

steps that we can simulate via our reasoning.

Example 4.1 In the following example we show how to apply these ideas to the

rule Lam: we first evaluate the substitution of the left hand side of the rewrite

rule and then move to the right hand side of the rule. This simulates a closed

commutative cut elimination step and we can capture this situation in the label as

follows:

G(N ′) =

G(M)

�

?

!

G(N)

G(M)

�

!

G(N ′)

−→

? β←−

!

?

?

α α

G(M)

�

?

!

?

α

G(N ′′)

�

!

β

We usually add labels to the paths once nodes have been removed from the graph.

For this example only, we slightly abuse this intuition and add a trailing Of Course

label to mark the points of contact. Notice that the root of the box in G(N ′) has

survived the reduction and is subject to further exponential cut elimination steps

until the box gets involved with a dereliction cut.

However, it is not necessary to simulate a call-by-value strategy to identify these

points of contact. It turns out that the structure of the multiplicative overlining and

underlining provides enough information to recover the exponential connectivity. As

in Lévy’s calculus, overlining and underlining does not only add connectivity to the

labels but also depth.

Definition 4.2 We define depth(φ) to be the overall nesting of a label. This is the

total number of overlines and underlines that surround a label.

By adding depth to a label, we achieve to place the sub-label that is irrelevant

to further Beta reductions into history.

Lemma 4.3 Let L(M) denote the external label of a term. By using only the rules
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in σ, if M →∗

σ M ′ then depth(L(M)) = depth(L(M ′))

Proof. Substitutions add only positions for Why Not, Contraction and and Weak-

ening nodes. It is the Beta rule that adds depth to the labels. �

Additionally, due to confluence of σ, the positions in which these markers are

recorded do not depend on the order in which we apply the substitutions.

Proposition 4.4 (Virtual Cuts) Let γ be an overlined (resp. underlined) sub-

label at depth k and let Exp be the multiset of all atomic exponential markers at

depth k + 1. The multiplicity of
−→
! ∈ Exp (resp.

←−
! ∈ Exp) is 1. Each exponential

marker other than the Of Course marker in the multiset forms a virtual exponential

cut with that Of Course marker.

Proof (Sketch) From the previous discussion, it follows that only labels with

depth 0 play a role in further Beta reductions. We consider the situation where

we apply σ-rules only in which case exponential markers ?, W and R (resp. S) are

added at depth 0 and retain this depth by the previous lemma. The ! marker that

forms the other end of the cut has to be located in a relevant portion of the label,

that is, at depth 0. But this marker is provided only during a Beta rewrite step,

which also places a D marker at depth 0 (marking the final dereliction cut that

destroys the box) and then increments all depths by surrounding the label with an

overline / underline. �

Example 4.5 Here we repeat the example of the labelled reduction of (λxy.xy)II

where we now add exponential connectivity to the paths.

(((λx.(λy.(xayb)c)d)e(λx.xf )g)h(λx.xi)j)k →∗

λlcf
(λx.xi)φ

with

φ = k
−→
Dh

−→
De

←−
! d

←−
! c

−→
Da

−→
?
−→
! e

←−
D g

←−
! f

−→
! g

−→
De

←−
!
←−
? a

←−
D b

−→
! d

−→
! e

←−
Dh

←−
D j

where we highlight the boundaries of the box and the virtual commutative (!−?) cut.

Notice that the direction of the arrow of each Of Course marker faces the direction

of the arrow of the exponential marker with which it forms a cut. A slightly more

complicated example is the reduction of the term (λx.xx)(II)I, which shows how

information flows through contraction nodes:

(((λx.(δp,o
x (paob)c))d((λx.xe)f (λx.xg)h)i)j(λx.xk)l)m →∗

λlcf
(λx.xk)φ

with φ = mψgψrl and ψ is given below:

−→
D j

−→
Dd

←−
! c

−→
Da

−→
R
−→
! d

←−
D i

−→
Df

←−
! e

−→
! f

←−
Dh

←−
! g

−→
! h

−→
Df

←−
! e

−→
! f

←−
D i

−→
Dd

←−
!
←−
R a

←−
D b

−→
S
−→
! d

←−
D i

−→
Df

←−
! e

−→
! f

←−
Dh

←−
!

We have split the contraction nodes into R and S in order to capture the different

routes that paths can take through contraction nodes. The corresponding graph is

presented in Figure 2.
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Fig. 2. Translation of (λx.xx)(II)I

5 Towards Closed Reduction in the GOIm

The main interest in examining strategies for the GOIm comes from the fact that the

length of the paths to be traversed can be significantly reduced. The reader should

notice that strategy here means computing the same paths differently. For instance,

the Jumping Abstract machine presented in [6] shortcuts paths that are underlined:

these are the same as the overlined paths, but in reverse order. The Call-By-Value

GOIm presented in [7] adds on top of this idea and shortcuts sub-redundancies like

the exponential virtual cuts, which are highlighted in our second example. These

sub-redundancies describe repeated evaluations of arguments. Notice that this level

of redundancy is not immediately present in Lévy’s labels.

A common approach that has been adopted to achieve these optimisations is to

borrow features from environment machines. The Jumping Abstract machine and

the Call-By-Value GOIm have been related to Krivine’s (call-by-name) machine

and to the Categorical Abstract Machine (CAM) respectively. The approach is to

take “snapshots” of the environment during the traversal of the graph such that

this environment is restored at the time a shortcut is taken. The price to pay is

that copying and discarding environments is an expensive operation. On the other

hand, the Geometry of Interaction machine is free from these deficiencies but does

not take any shortcuts.

Our interest in focusing on a closed strategy is in that the dynamics of closed

cut elimination are much simpler than in the full case but powerfull enough for

implementing functional languages. An important point to notice is that the Call-

By-Value GOIm demonstrates that one has not to follow the paths exactly in the

same order as they appear in the labels (from left to right).

Here we provide an informal description on how a closed strategy acts. Com-

putation is initialised by following a normal flow in the traversal of the graph but

once the strategy detects the appearance of ?-nodes in boxes, the normal flow is put

on hold in order to deal with the ?-nodes first. The goal is to remove ?-nodes from
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the graph by installing shortcuts such that ?-nodes are practically invisible once

the normal flow of the computation resumes. In terms of Linear Logic, the strategy

tries to close boxes as soon as possible in order to allow only closed cut elimination

steps to take place.

We recall the graph and the label from our first example (4.5) for a more concrete

situation: Computation starts by traversing the edges kDhDe!d. Up to this point,

we follow exactly what the label φ dictates. Since we arrive at a box that contains

a ?-node we have to initialise a search starting from that ?-node to find the !-node

with which it forms a virtual commutative cut. The path that we traverse is ?!eDg

which leads us to the matching !-node. Now we rewire the edge a of the ?-node with

the root of the matching !-node and resume the normal flow of the computation.

This was at edge d. The path that we traverse from now and on is exactly what the

label φ dictates but now we jump all virtual commutative cuts that are highlighted

in the label.

6 Conclusion

In this work we presented a calculus whose labels provide sufficient structure in order

to experiment with new strategies for the Geometry Of Interaction machine. The

calculus unveils a fine grained level of redundancy in the labels and also provides

us with a tool that will help to prove properties of a closed GOI machine.

It is important to note that our calculus can only capture exponential informa-

tion for the call-by-value translation. If we try to use the call-by-name translation of

Linear Logic instead, then our calculus would run into problems. This is because the

call-by-name translation places the exponential box structure in argument positions.

As pointed out earlier, the multiplicative information in the labels is not affected

by this change but the exponential markers will have to reflect the new situation.

An extension of the labels to the call-by-name translation and the comparison of

the structures obtained from both approaches is left for future work.
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