Secret sharing based on a hard-on-average problem

P. Caballero-Gil*, C. Hernández-Goya 1

DEIOC, University of La Laguna, Astrofísico Francisco Sanchez, 38271 La Laguna, Tenerife, Spain

Received 26 September 2005; accepted 31 October 2005
Available online 20 December 2005
Submitted by R.A. Brualdi

Abstract

The main goal of this work is to propose the design of secret sharing schemes based on hard-on-average problems. It includes the description of a new multiparty protocol whose main application is key management in networks. Its unconditionally perfect security relies on a discrete mathematics problem classified as Dist-NP-Complete under the average-case analysis, the so-called distributional matrix representability problem. Thanks to the use of the search version of the mentioned decision problem, the security of the proposed scheme is guaranteed. Although several secret sharing schemes connected with combinatorial structures may be found in the bibliography, the main contribution of this work is the proposal of a new secret sharing scheme based on a hard-on-average problem, which allows to enlarge the set of tools for designing more secure cryptographic applications.

© 2005 Elsevier Inc. All rights reserved.

AMS classification: 94A60; 94A62

Keywords: Cryptography; Secret sharing; Matrices; Computational complexity

1. Introduction

When a group of nodes in an open network wants to use standard security services such as authentication, confidentiality or data integrity, they usually have to share a common secret piece of information called session key. In order to build a highly secure key management service in...
wireless ad hoc networks, threshold cryptography based on secret sharing schemes has been yet proposed in the literature [16]. Since the standard approach of replication is not suitable for these particularly vulnerable networks, the distribution of trust among the set of nodes seems to be the most robust solution. In this work, a new secret sharing scheme is proposed in order to increase the security level of known secret sharing schemes by basing them on hard-on-average problems.

When choosing a specific problem as basis of a cryptographic application, one of the most important characteristics we have to look for is that, on the one hand, finding a solution must not be computationally feasible, whereas on the other hand, generating pairs formed by (instance, solution) can be efficiently accomplished. Another usual property of the selected problem is that the verification procedure for any solution should be as simple as possible.

The previous reasons justify the widespread use of problems belonging to the worst-case \(NP \) and \(NP\text{-complete} \) classes in the area of the design of cryptographic applications. However, \(NP\text{-completeness} \) only guarantees that there is no polynomial-time algorithm to solve a problem in the worst case. Furthermore, with the development of the computational complexity theory, and concretely thanks to the advances made on the average-case analysis, it has been proved that many \(NP\text{-complete} \) problems may be efficiently solved when the instance is randomly generated [9]. So, our proposal to solve this problem is to choose as base problems those whose difficulty is guaranteed by the average-case analysis. In this paper, the first (to the knowledge of the authors) secret sharing scheme based on a problem catalogued as \(NP\text{-complete} \) from the point of view of the average-case analysis is proposed. The problem that has been chosen as base for the protocol proposed here is the so-called \emph{distributional matrix representability Problem} [15], which is hard-on-average.

The structure of the present work is as follows. The next section discusses the underlying problem in the framework of average-case complexity whereas Section 3 locates the proposal in the existing context of secret sharing. The proposed scheme is described in detail in Section 4. Finally, several conclusions and open problems concludes the paper.

2. The underlying problem

The average-case analysis is based on the concept of distributional decision problem [11], which is formed by a decision problem and a probability distribution defined on the set of instances. In this context, the choice of the probability distribution plays an important role since to fix a probability distribution could directly influence the practical complexity of the problem. In fact, it has been proved the existence of \(NP\text{-complete} \) problems solvable in polynomial time when the instances are randomly generated under certain distributions.

The distributional class analogous to \(NP \) in the hierarchy associated to the average-case analysis is the \(\text{DistNP} \) class. It is formed by pairs containing a decision problem belonging to the \(NP \) class and a polynomially computable probability distribution. As in worst-case complexity theory, a distributional problem is said to be average-case \(NP\text{-complete} \) (or \(\text{DistNP}\text{-complete} \)) if it is in \(\text{DistNP} \) and every distributional problem in \(\text{DistNP} \) is reducible to it. The first problem catalogued as \(\text{DistNP}\text{-complete} \) was the distributional tiling problem, whose formal proof of membership may be found in [11]. Later, a few works containing the description of new average-case \(NP\text{-complete} \) problems have been published [14,13,6,15].

The main difficulty when trying to use problems belonging to this category in practical applications is the artificiality of their specifications. So, the principal reason why we have chosen the distributional matrix representability problem as base for the secret sharing scheme here proposed is its naive formulation.
The original distributional matrix representability problem can be roughly defined in the following way. All the matrices in the problem are square and with integer entries. Given an \(r \times r \) matrix \(A \) and a set of matrices with the same size \(\{A_1, A_2, \ldots, A_k\} \), it should be decided whether \(A \) can be expressed as a product of matrices in the given set.

In the present work a bounded version of such a problem for \(20 \times 20 \) matrices is proposed to be used. In this case the instance consists of a matrix \(A \), a set of \(k \) distinct matrices \(\{A_1, A_2, \ldots, A_k\} \) and a positive integer \(n \leq k \), and the question to answer may be stated as follows: is it possible to express \(A \) as a product of \(n \) matrices belonging to the set \(\{A_1, A_2, \ldots, A_k\} \). This bounded version of the problem was shown to be average-case NP-complete by Venkatesan and Rajagopalan [14]. The distribution considered to generate the integers \(k \) and \(n \) and the integer entries of the matrices is the uniform distribution.

The proposed scheme uses the search version of the above distributional problem, which consists in finding \(n \) matrices in \(\{A_1, A_2, \ldots, A_k\} \) whose product is \(A \). The difficulty of such a version is equivalent to that of the original distributional decision problem as may be deduced from the general result stated in [1], according to which, search and decision distributional problems are equivalent from the average-case analysis point of view.

3. Secret sharing schemes

Secret sharing multiparty protocols solve usual practical situations where it is necessary the distribution of a particular secret \(A \) among a set of users \(M \). Such a context may be illustrated with the problem of secret key management. The main objective of secret sharing schemes is to guarantee that only pre-designated subsets of participants are able to reconstruct the secret by collectively combining their shares (or shadows) of \(A \). The specification of all the subsets of participants which are authorized to recreate the secret is called the access structure of the secret sharing scheme. An access structure is said to be monotone if any set which contains a subset that can recover the secret can itself recover the secret. A general methodology to design secret sharing schemes for arbitrary monotone access structure was given in [2,7]. However, such results were not useful for the secret sharing scheme proposed here because the access structure is not monotone.

The first secret sharing schemes were independently proposed in 1979 [3,12]. Later it was demonstrated that both proposals can be considered described in a common general scheme due to their basis on the same principles of linear algebra [10]. Many different mathematical structures such as polynomials, geometric configurations, block designs, Reed–Solomon codes, vector spaces, matroids, complete multipartite graphs, orthogonal arrays and Latin squares have been used to model secret sharing schemes. The scheme here described is based on the generation of a secret matrix as product of matrices with the same size. Another scheme based also in matrices was proposed in [8], but there the secret is a solution to a system of linear equations.

In general, the structure of most secret sharing schemes is based on two phases. In the initialization phase, a third trusted party called the dealer, distributes shares of the secret to authorized participants through a secure channel. In the reconstruction phase, the authorized participants of a subset in the access structure combine their shares to reconstruct the secret. In the initialization of the secret sharing scheme proposed here the dealer will publish all the shares and the only secret information that is revealed to each participant is a pointer to a concrete share and the names of the other parties in the same access structure.

Secret sharing schemes which do not reveal any information about the shared secret to unauthorized individuals are called perfect. On the other hand, a concept extensively used in secret sharing schemes is the unconditional security of perfect schemes. A secret sharing scheme is considered
unconditionally secure against cheaters if the probability of successfully cheating does not depend on the computational abilities of the cheaters. The secret sharing scheme proposed in the following section is perfect and unconditionally secure.

4. A secret sharing scheme based on an average-case intractable problem

In the following secret sharing scheme, the participation of a third trusted party is only necessary during the first off-line initialization stage of the generation of the secret.

Since within the protocol many products of matrices have to be carried out, it is advisable that all those products are carried out using the algorithm proposed in [4] due to its efficiency. On the other hand, the Monte Carlo algorithms described by Freivalds [5] for the verification of the product of two matrices may be used to achieve the fraud detection process. The error probability in these algorithms is bounded by 2^{-t}, where t is the number of iterations to be performed.

In order to simplify the general description of the protocol it will be split into two phases: initialization and reconstruction.

4.1. Initialization

This set-up stage consists of the generation of the secret, task that is equivalent to the generation of an instance of the underlying problem. It should be carried out privately by the third trusted party.

It starts with the random generation of two integers k and n such that $n \leq k$, where n indicates the number of participants.

Then, k 20×20 matrices $A_i, i = 1, \ldots, k$ with integer entries are randomly generated. All the matrices form a public set denoted by M and are identified by indices of their positions in this set. An ordered subset of n matrices constitutes the access structure and their product, A, is the secret information.

In this phase the existence of a secure communication channel is necessary because each authorized participant has to learn from the third trusted party which is his or her secret shadow in M, and who is his or her neighbor in the product ordering. The main problem of this stage is usually the bandwidth necessary to transfer the shadows. However, such a difficulty is here avoided by sending to each authorized participant user only the index pointing to the corresponding matrix in the access structure.

Finally, the third trusted party sends to the ith participant a random binary vector U_i with Hamming weight greater than 1 and the same dimension that the matrices intervening in the protocol. The corresponding product vectors between these random vectors and the secret matrix $A, U'_i = A \cdot U_i$, are then published. In this way, each pair of vectors U_i and U'_i is only available to ith participant, who cannot obtain the secret A from such information since both vectors define a system of 20 linear equations in 400 unknowns.

4.2. Reconstruction

This stage begins with a verification that allows the following two things: Detect the presence of cheaters among the shadow holders, and guarantee the correctness of the secret construction.

In order to allow the verification step, the n different circular shifts of the original order of the participants set $\{P(i), P(i+1), \ldots, P(i+n-1)\}$ (where all the sub-indices are $\text{(mod}(n+1))$ are considered). Such shifts establish the order in which the verification is developed. The participant
designated in first place according to the shift $(P(i))$ computes the product between his or her shadow and the random binary vector U_i, then he or she sends the obtained result to the next participant $(P(i+1))$ determined by the permutation. In this way, $P(i+1)$ computes the product determined by his or her shadow and the vector provided by $P(i)$, $(A(i+1)A(i)U_i)$, and so on. Only if all the participants have been honest, the last participant obtains U'_i. After comparing it with the published vector, he or she communicates the result of the verification to the others. According to this process, if some participant tries to forge his or her shadow, the forgery is always detected by the last participant.

Once passed the verification stage, according to the same permutations as before, each first participant P_i has to choose randomly a secret integer 20×20 matrix X_i and to reveal publicly the product between his or her shadow and X_i to the following user. The receiver multiplies his or her shadow by the received information and sends the result to the following user, and so on. Finally, the last participant has to give what he or she received to the first user, who will be able to recover the secret from $A(i−1)A(i−2)\cdots A_1A_nA_{n−1}\cdots A_iX_i$. In order to do it, he or she has to multiply such a matrix by $(A_nA_{n−1}\cdots A_iX_i)^{-1}$ by the right, and by $(A_nA_{n−1}\cdots A_iX_i)(X_i)^{-1}$ by the left.

4.3. Comments

The main parameter of secret sharing schemes is the number of necessary participants to recover the secret, known as the cardinality of the privilege users in the access structure. In the proposed scheme, such a number, denoted by n, must be large enough to avoid that an exhaustive search attack may be successful. With respect to this point, note that in the original description of the scheme it is assumed that $n<20$ so that the participants cannot find A without executing the algorithm. In general, for any number of participants n, the size of matrices should be $r>n$ in order to guarantee the security of the scheme.

On the other hand, since the search space for the exhaustive search is formed by all possible products of n matrices in the set M, and has cardinality $\binom{k+n-1}{n}$, the number k should also be well chosen. The integer x is another important parameter that should be randomly selected in order to guarantee the security of the system.

Within the generation of the vector U the binary vectors with Hamming weight 1 should be discarded, because otherwise the vector U' will coincide with a column of the secret matrix A. Thus, the cardinality of the set of possible binary vectors is $2^{20}−20$.

The security of the proposed scheme is guaranteed by the difficulty of the distributional matrix represent the ability problem because any unauthorized individuals only know the public set of k matrices $\{A_1, A_2, \ldots, A_k\}$ and a positive integer $n \leq k$, and from that knowledge they cannot guess which is the subset that produces the secret A. On the other hand, if the size of matrices is $r>n$, any group of less than n authorized individuals only know a part of the subset that produces A, and have not enough information to find the remaining matrices.

The described procedure allows to carry out a secure multiparty computation of the secret information without revealing any valuable information about the shared secret to unauthorized individuals, so the scheme is perfect. Also, the proposed scheme is unconditionally secure because the probability of successfully cheating does not depend on the computational abilities of the cheaters. On the other hand, the distribution of computation among all the participants is balanced, which turn them into ideal candidates as primitive tools for designing key management schemes in wireless ad hoc networks.
5. Conclusions

In this paper we have proposed a secret sharing scheme based on an average-case NP-complete problem, the so-called distributional matrix representability problem. The proposal does not reveal any valuable information about the shared secret matrix to unauthorized parties, and the size of each share equals the size of the secret, so the scheme is ideal. Also, since the distribution of computation among all the participants is balanced, the proposal seems a useful primitive for defining a key management protocol in wireless ad hoc networks. The study of concrete constructions of difficult instances of the problem that are adequate according to the design of the scheme is part of a work in progress.

Acknowledgments

The authors are thankful for the valuable comments of the anonymous reviewer.

References