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Abstract

In this paper we generalize the concepts of well-posedness to equilibrium problems and to optimization problems with
equilibrium constraints. We establish some metric characterizations of well-posedness for equilibrium problems and for
optimization problems with equilibrium constraints. We prove that under suitable conditions, the well-posedness is equivalent
to the existence and uniqueness of solutions. The corresponding concepts of well-posedness in the generalized sense are also
introduced and investigated for equilibrium problems and for optimization problems with equilibrium constraints.
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1. Introduction

The importance of well-posedness is widely recognized in the theory of variational problems. The first concept
of well-posedness was introduced by Tykhonov [1] for a global minimization problem having a unique solution,
which has been known as Tykhonov well-posedness. The concept of Tykhonov well-posedness in the generalized
sense was also introduced for a global minimization problem having more than one solution. Roughly speaking,
the Tykhonov well-posedness of a global minimization problem means the existence and uniqueness of minimizers,
and the convergence of every minimizing sequence toward the unique minimizer, and the Tykhonov well-posedness
in the generalized sense means the existence of minimizers and the convergence of some subsequence of every
minimizing sequence toward a minimizer. There are in the literature a very large number of papers dealing with
the well-posedness of global minimization problems. For details, we refer readers to [1–6] and the references therein.
The concept of well-posedness has also been generalized to several related variational problems: variational inequality
problems [7–10], Nash equilibrium problems [11–16], and fixed point problems [17,18]. A more general formulation
for the above variational problems is the equilibrium problem, which has recently had a deep development and impact
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in variational analysis. For details, we refer readers to [19–21]. But, to the best of our knowledge, the well-posedness
issue of equilibrium problems has not been extensively studied yet. So it is interesting and important to study the
well-posedness of equilibrium problems.

On the other hand, optimization problems with constraints defined by variational problems have been attracting
increasing attentions of mathematician in past years since they provide unified mathematical models for some
important problems arising in economics and engineering science. Such problems include bilevel programming
problems [22,23], optimization problems with variational inequality constraints [8,24,25], optimization problems with
Nash equilibrium constraints [26,27], optimization problems with equilibrium constraints [28,29], etc. Morgan [22]
investigated the well-posedness of bilevel programming problems. Lignola and Morgan [8] studied the well-
posedness of optimization problems with variational inequality constraints. Recently, Lignola and Morgan [27] further
investigated the well-posedness of optimization problems with Nash equilibrium constraints.

Motivated and inspired by the above works, in this paper we shall investigate the well-posedness of equilibrium
problems and of optimization problems with equilibrium constraints. We establish some metric characterizations of
well-posedness. We also show that under suitable conditions, the well-posedness is equivalent to the existence and
uniqueness of solutions, and that the well-posedness in the generalized sense is equivalent to the existence of solutions.

2. Preliminaries and notations

Let E be a real Banach space, K be a nonempty subset of E , and ϕ : K × K → R be a bifunction. Blum and
Oettli [19] understood the equilibrium problem (denoted by EP) by finding

u ∈ K such that ϕ(u, v) ≥ 0, ∀v ∈ K .

The equilibrium problem provides a very general formulation of variational problems such as:

• Minimization problem: find u ∈ K such that f (u) ≤ f (v) for all v ∈ K , where f : K → R is a functional. In this
case, we define ϕ(u, v) = f (v) − f (u) for all u, v ∈ K .

• Variational inequality: find u ∈ K such that

〈Au, v − u〉 ≥ 0, ∀v ∈ K ,

where A : K → X∗ is a map and X∗ denotes the topological dual of X . In this case, we define ϕ(u, v) = 〈Au, v−u〉

for all u, v ∈ K .

Now we recall some concepts and results.

Definition 2.1 ([19]). A bifunction ϕ : K × K → R is said to be

(i) monotone iff for all u, v ∈ K ,

ϕ(u, v) + ϕ(v, u) ≤ 0.

(ii) strictly monotone iff it is monotone and the equality holds if and only if u = v.
(iii) hemicontinuous iff for each x, y ∈ K ,

lim sup
t→0+

ϕ(x + t (y − x), y) ≤ ϕ(x, y).

Lemma 2.1 ([19]). Let K be convex, ϕ : K × K → R be a monotone and hemicontinuous bifunction. Assume that

(i) ϕ(u, u) ≥ 0 for all u ∈ K .
(ii) for every u ∈ K , ϕ(u, ·) is convex.

Then for given u∗
∈ K ,

ϕ(u∗, v) ≥ 0, ∀v ∈ K

if and only if

ϕ(v, u∗) ≤ 0, ∀v ∈ K .
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Lemma 2.2 ([19]). Let K be a compact and convex subset of E and ϕ : K × K → R be a monotone and
hemicontinuous bifunction. Assume that

(i) ϕ(u, u) = 0 for all u ∈ K .
(ii) for every u ∈ K , ϕ(u, ·) is lower semicontinuous and convex.

Then there exists u∗
∈ K such that

ϕ(u∗, v) ≥ 0, ∀v ∈ K .

In addition, if ϕ is strictly monotone, the solution is unique.

Next we recall the formulation of optimization problems with equilibrium constraints. Let X be a nonempty closed
subset of a parametric normed space, f : X × K → R, h : X × K × K → R. The optimization problem with an
equilibrium constraint (denoted by OPEC) is formulated as:

min f (x, u) s.t. (x, u) ∈ X × K and u ∈ T (x),

where T (x) is the solution set of the parametric equilibrium problem EP(x) defined by, u ∈ T (x) iff

h(x, u, v) ≥ 0, ∀v ∈ K .

When EP(x) reduces to a parametric minimization problem, OPEC coincides with the bilevel programming
problems [22,23]. When EP(x) reduces to a parametric variational inequality problem, OPEC coincides with the
optimization problems with variational inequality constraints [8,24,25].

We also need the concepts of noncompactness measure and Hausdorff metric.

Definition 2.2 (See [30]). Let A be a nonempty subset of E . The measure of noncompactness µ of the set A is defined
by

µ(A) = inf{ε > 0 : A ⊂ ∪
n
i=1 Ai , diam Ai < ε, i = 1, 2, . . . , n},

where diam means the diameter of a set.

Definition 2.3. Let A, B be nonempty subsets of E . The Hausdorff metric H(·, ·) between A and B is defined by

H(A, B) = max{e(A, B), e(B, A)},

where e(A, B) = supa∈A d(a, B) with d(a, B) = infb∈B ‖a − b‖. Let {An} be a sequence of nonempty subsets of E .
We say that An converges to A in the sense of Hausdorff metric if H(An, A) → 0. It is easy to see that e(An, A) → 0
if and only if d(an, A) → 0 for all selection an ∈ An . For more details on this topic, we refer readers to [31,30].

3. Well-posedness for equilibrium problems

In this section we shall investigate the well-posedness of equilibrium problems. With notations of Section 2 we
consider the following parametric equilibrium problem:

EP(x): find u ∈ K such that h(x, u, v) ≥ 0, ∀v ∈ K .

Denote by EP the family {EP(x): x ∈ X}.

Definition 3.1. Let x ∈ X and {xn} ⊂ X with xn → x . A sequence {un} ⊂ K is said to be approximating for EP(x)

corresponding to {xn} iff, there exists εn > 0 with εn → 0 such that

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N .

Definition 3.2. We say that EP is well-posed iff for every x ∈ X , EP(x) has a unique solution ux , and for every
sequence {xn} with xn → x , every approximating sequence for EP(x) corresponding to {xn} converges strongly to
ux , and that EP is well-posed in the generalized sense iff for every x ∈ X , EP(x) has a nonempty solution set Sx ,
and for every sequence {xn} with xn → x , every approximating sequence for EP(x) corresponding to {xn} has some
subsequence which converges strongly to some point of Sx .
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Remark 3.1. (i) When EP(x) reduces to the parametric minimization problem, Definitions 3.1 and 3.2 reduce to the
corresponding definitions of [5,6].

(ii) When EP(x) reduces to the parametric variational inequality problem, Definition 3.1 coincides with Definition
2.1 of [8], and Definition 3.2 coincides with Definition 2.2 of [8].

The approximating solution set of EP(x) is defined by

Ωx (δ, ε) =

⋃
x ′∈B(x,δ)

{u ∈ K : h(x ′, u, v) + ε ≥ 0, ∀v ∈ K }, ∀δ, ε ≥ 0,

where B(x, δ) denotes the closed ball centered at x with radius δ.
The following theorem shows that the well-posedness of EP can be characterized by considering the behavior of

the diameter of the approximating solution set.

Theorem 3.1. Let K be a nonempty, closed and convex subset of E and h : X × K × K → R. Assume that

(i) h(x, u, u) ≥ 0 for all x ∈ X, u ∈ K .
(ii) for every x ∈ X, h(x, ·, ·) is monotone and hemicontinuous.

(iii) for every (x, u) ∈ X × K , h(x, u, ·) is convex.
(iv) for every u ∈ K , h(·, u, ·) is lower semicontinuous.

Then EP is well-posed if and only if for every x ∈ X,

Ωx (δ, ε) 6= ∅, ∀δ, ε > 0, and diam Ωx (δ, ε) → 0 as (δ, ε) → (0, 0). (1)

Proof. Suppose that EP is well-posed. Then EP(x) has a unique solution ux for all x ∈ X . Clearly Ωx (δ, ε) 6= ∅ since
ux ∈ Ωx (δ, ε) for all δ, ε > 0. If diam Ωx (δ, ε) 6→ 0 as (δ, ε) → (0, 0), then there exist l > 0 and δn > 0, εn > 0
with δn → 0, εn → 0, and un, vn ∈ Ωx (δn, εn) such that

‖un − vn‖ > l, ∀n ∈ N . (2)

Since un, vn ∈ Ωx (δn, εn), for each n ∈ N , there exist xn, yn ∈ B(x, δn) such that

h(xn, un, v) + εn ≥ 0, ∀v ∈ K

and

h(yn, vn, v) + εn ≥ 0, ∀v ∈ K .

So {un} and {vn} are approximating sequences for EP(x) corresponding to {xn} and {yn} respectively. By the well-
posedness of EP , they have to converge strongly to the unique solution ux of EP(x), a contradiction to (2).

Conversely, suppose that condition (1) holds. Let xn → x ∈ X and {un} ⊂ K be an approximating sequence for
EP(x) corresponding to {xn}. Then there exists εn > 0 with εn → 0 such that

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N . (3)

This yields that un ∈ Ωx (δn, εn) with δn = ‖xn − x‖ → 0. It follows from (1) that {un} is a Cauchy sequence and so
it converges strongly to a point ū ∈ K . It follows from (3) and conditions (ii) and (iv) that

h(x, v, ū) ≤ lim inf
n→∞

h(xn, v, un) ≤ lim inf
n→∞

{−h(xn, un, v)} ≤ lim inf
n→∞

εn = 0, ∀v ∈ K .

This together with Lemma 2.1, ū solves EP(x).
To complete the proof, it is sufficient to prove that EP(x) has a unique solution. If EP(x) has two distinct solutions

u1 and u2, it is easily seen that u1, u2 ∈ Ωx (δ, ε) for all δ, ε > 0. It follows that

0 < ‖u1 − u2‖ ≤ diam Ωx (δ, ε) → 0,

a contradiction to (1). �

Remark 3.2. Theorem 3.1 generalizes Proposition 2.3 of [8].
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For the well-posedness in the generalized sense, we give the following characterization by considering the
noncompactness of approximate solution set.

Theorem 3.2. Let X be finite dimensional and K be closed. Let h : X × K × K → R be such that h(·, ·, u) is upper
semicontinuous for every u ∈ K . Then EP is well-posed in the generalized sense if and only if for every x ∈ X,

Ωx (δ, ε) 6= ∅, ∀δ, ε > 0, and µ(Ωx (δ, ε)) → 0 as (δ, ε) → (0, 0). (4)

Proof. Suppose that EP is well-posed in the generalized sense. Let Sx be the solution set of EP(x) for all x ∈ X .
Then Sx is nonempty compact. Indeed, let {un} be any sequence in Sx . Then {un} is an approximating sequence for
EP(x). By the well-posedness in the generalized sense of EP , {un} has a subsequence which converges strongly to
some point of Sx . Thus Sx is compact. Clearly Ωx (δ, ε) ⊃ Sx for all δ, ε > 0. Now we show that

µ(Ωx (δ, ε)) → 0 as (δ, ε) → (0, 0).

Observe that for every δ, ε > 0,

H(Ωx (δ, ε), Sx ) = max{e(Ωx (δ, ε), Sx ), e(Sx ,Ωx (δ, ε))} = e(Ωx (δ, ε), Sx ).

Taking into account the compactness of Sx , we get

µ(Ωx (δ, ε)) ≤ 2H(Ωx (δ, ε), Sx ) + µ(Sx ) = 2e(Ωx (δ, ε), Sx ).

To prove (4), it is sufficient to show

e(Ωx (δ, ε), Sx ) → 0 as (δ, ε) → (0, 0).

If e(Ωx (δ, ε), Sx ) 6→ 0 as (δ, ε) → (0, 0). Then there exist l > 0 and δn > 0, εn > 0 with δn → 0, εn → 0, and
un ∈ Ωx (δn, εn) such that

un 6∈ Sx + B(0, l), ∀n ∈ N . (5)

As un ∈ Ωx (δn, εn), {un} is an approximating sequence for EP(x). By the well-posedness in the generalized sense of
EP , there exists a subsequence {unk } of {un} converging strongly to some point of Sx . This contradicts (5) and so

e(Ωx (δ, ε), Sx ) → 0 as (δ, ε) → (0, 0).

Conversely, assume that (4) holds. We first show that Ωx (δ, ε) is closed for all δ, ε > 0. Let un ∈ Ωx (δ, ε) with
un → u. Then, for each n ∈ N , there exists xn ∈ B(x, δ) such that

h(xn, un, v) + ε ≥ 0, ∀v ∈ K .

Without loss of generality, we can suppose that xn → x̄ ∈ B(x, δ) since X is finite dimensional. By the upper
semicontinuity of h(·, ·, v), we get

h(x̄, u, v) + ε ≥ 0, ∀v ∈ K ,

which together with x̄ ∈ B(x, δ) yields u ∈ Ωx (δ, ε) and so Ωx (δ, ε) is nonempty closed for all δ, ε > 0. Observe
that

Sx =

⋂
δ>0,ε>0

Ωx (δ, ε).

Since

µ(Ωx (δ, ε)) → 0,

the theorem on p. 412 in [30] can be applied and one concludes that Sx is nonempty, compact, and

e(Ωx (δ, ε), Sx ) = H(Ωx (δ, ε), Sx ) → 0 as (δ, ε) → (0, 0).

Let xn → x ∈ X and {un} ⊂ K be an approximating sequence for EP(x) corresponding to {xn}. Then there exist
δn > 0, εn > 0 with δn → 0, εn → 0 such that

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N .
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This means that un ∈ Ωx (δn, εn) with δn = ‖xn − x‖. It follows from (4) that

d(un, Sx ) ≤ e(Ωx (δn, εn), Sx ) → 0.

Since Sx is compact, there exists ūn ∈ Sx such that

‖un − ūn‖ = d(un, Sx ) → 0.

Again from the compactness of Sx , {ūn} has a subsequence {ūnk } converging strongly to ū ∈ S. Hence the
corresponding subsequence {unk } of {un} converges strongly to ū. Thus EP is well-posed in the generalized sense. �

Remark 3.3. Theorem 3.3 generalizes Theorem 4.2 of [10].

The following theorem shows that under suitable conditions, the well-posedness of EP is equivalent to the existence
and uniqueness of the solution.

Theorem 3.3. Let E be finite dimensional, K be a nonempty, closed and convex subset of E and h : X ×K ×K → R.
Assume that

(i) h(x, u, u) ≥ 0 for all x ∈ X, u ∈ K .
(ii) for every x ∈ X, h(x, ·, ·) is monotone and hemicontinuous.

(iii) for every (x, u) ∈ X × K , h(x, u, ·) is convex.
(iv) for every u ∈ K , h(·, u, ·) is continuous.

Then EP is well-posed if and only if for every x ∈ X, EP(x) has a unique solution.

Proof. The necessity is obvious. For the sufficiency, suppose that EP(x) has a unique solution ux for all x ∈ X . Let
x ∈ X , xn → x and {un} ⊂ K be an approximating sequence for EP(x) corresponding to {xn}. Then there exists
εn > 0 with εn → 0 such that

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N . (6)

We assert that {un} is bounded. Indeed, if {un} is unbounded, without loss of generality, we can suppose that
‖un‖ → +∞. Let tn =

1
‖un−ux ‖

and wn = ux + tn(un − ux ). Without loss of generality, we can suppose that
tn ∈ (0, 1) and wn → w( 6=ux ) since E is finite dimensional. Since h(xn, ·, ·) is monotone, from (6) we get

h(xn, v, un) ≤ −h(xn, un, v) ≤ εn, ∀v ∈ K .

It follows from conditions (iii) and (iv) that

h(x, v, w) = lim
n→∞

h(xn, v, wn)

≤ lim
n→∞

{tnh(xn, v, un) + (1 − tn)h(xn, v, ux )}

≤ lim
n→∞

{tnεn + (1 − tn)h(xn, v, ux )}

= h(x, v, ux ), ∀v ∈ K . (7)

Since ux solves EP(x), from Lemma 2.1 we obtain

h(x, v, ux ) ≤ 0, ∀v ∈ K ,

which together with (7) implies that

h(x, v, w) ≤ 0, ∀v ∈ K .

Again from Lemma 2.1, w is a solution of EP(x). This is a contradiction to the uniqueness of solution. Thus {un} is
bounded.

Let {unk } be any subsequence of {un} such that unk → ū as k → ∞. It follows that

h(x, v, ū) = lim
k→∞

h(xnk , v, unk ) ≤ − lim
k→∞

h(xnk , unk , v) ≤ lim
k→∞

εnk = 0, ∀v ∈ K .

This together with Lemma 2.1 yields that ū solves EP(x). By the uniqueness of the solution to EP(x), we have ū = ux .
Thus un converges to ux . Therefore, EP is well-posed. �
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Remark 3.4. Theorem 3.3 generalizes Proposition 2.8 of [8] and Theorem 5.2 of [10].

For the well-posedness in the generalized sense, we have the following result.

Theorem 3.4. Let E be finite dimensional, K be a nonempty, closed and convex subset of E and h : X ×K ×K → R.
Assume that

(i) h(x, u, u) ≥ 0 for all x ∈ X, u ∈ K .
(ii) for every x ∈ X, h(x, ·, ·) is monotone and hemicontinuous.

(iii) for every (x, u) ∈ X × K , h(x, u, ·) is convex.
(iv) for every u ∈ K , h(·, u, ·) is continuous.

If for each x ∈ X there exists some ε > 0 such that Ωx (ε, ε) is nonempty and bounded, then EP is well-posed in
the generalized sense.

Proof. Let x ∈ X , xn → x and {un} be an approximating sequence for EP(x) corresponding to {xn}. Then there exists
εn > 0 with εn → 0 such that

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N . (8)

Let ε > 0 be such that Ωx (ε, ε) is nonempty bounded. Then there exists n0 such that un ∈ Ωα(ε, ε) for all n > n0,
and so {un} is bounded. Then there exists a subsequence {unk } of {un} such that unk → ū as k → ∞. By the same
arguments as Theorem 3.3, ū solves EP(x). Thus EP is well-posed in the generalized sense. �

Remark 3.5. Theorem 3.4 says nothing but that, under suitable conditions, the well-posedness in the generalized
sense of EP is equivalent to the existence of solutions.

As applications of Theorems 3.3 and 3.4, we give some classes of functionals that ensure this type of well-
posedness.

Theorem 3.5. Let E be finite dimensional, K be a nonempty, compact and convex subset of E and h : X × K × K →

R. Assume that

(i) h(x, u, u) = 0 for all x ∈ X, u ∈ K .
(ii) for every x ∈ X, h(x, ·, ·) is monotone and hemicontinuous.

(iii) for every (x, u) ∈ X × K , h(x, u, ·) is convex.
(iv) for every u ∈ K , h(·, u, ·) is continuous.

Then EP is well-posed in the generalized sense. In addition, if h(x, ·, ·) is strictly monotone for all x ∈ X, then
EP is well-posed.

Proof. The conclusion follows directly from Lemma 2.2 and Theorems 3.3 and 3.4. �

4. Well-posedness for optimization problems with equilibrium constraints

With notations of Section 2 we consider the well-posedness of the optimization problem with an equilibrium
constraint (denoted by OPEC):

min f (x, u) s.t. (x, u) ∈ X × K and u ∈ T (x),

where T (x) is the solution set of the parametric equilibrium problem EP(x) defined by, u ∈ T (x) iff

h(x, u, v) ≥ 0, ∀v ∈ K .

We first give some concepts.

Definition 4.1. A sequence {(xn, un)} ⊂ X × K is called an approximating sequence for OPEC iff:

(i) lim supn→∞ f (xn, un) ≤ infy∈X,v∈T (y) f (y, v).
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(ii) there exists εn > 0 with εn → 0 such that

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N .

Definition 4.2. We say that OPEC is well-posed iff OPEC has a unique solution, and every approximating sequence
for OPEC converges strongly to the unique solution, and that OPEC is well-posed in the generalized sense iff OPEC
has a nonempty solution set S, and every approximating sequence for OPEC has some subsequence which converges
strongly to some point of S.

Remark 4.1. When the constraint EP(x) reduces to the parametric variational inequality problem, Definitions 4.1 and
4.2 collapse to the corresponding definitions of optimization problems with variational inequality constraints [8].

To obtain metric characterizations of well-posedness of OPEC, consider the following approximating solution set
of OPEC:

M(δ, ε) = {(x, u) ∈ X × K : f (x, u) ≤ inf
y∈X,v∈T (y)

f (y, v) + δ, and h(x, u, v) + ε ≥ 0, ∀v ∈ K }.

Theorem 4.1. Let K be a nonempty, closed and convex subset of E, f : X × K → R and h : X × K × K → R.
Assume that

(i) h(x, u, u) ≥ 0 for all x ∈ X, u ∈ K .
(ii) for every x ∈ X, h(x, ·, ·) is monotone and hemicontinuous.

(iii) for every (x, u) ∈ X × K , h(x, u, ·) is convex.
(iv) for every u ∈ K , h(·, u, ·) is lower semicontinuous.
(v) f is lower semicontinuous.

Then OPEC is well-posed if and only if

M(δ, ε) 6= ∅, ∀δ, ε > 0, and diam M(δ, ε) → 0 as (δ, ε) → (0, 0). (9)

Proof. Let OPEC be well-posed and (x∗, u∗) be the unique solution of OPEC. Clearly (x∗, u∗) ∈ M(δ, ε) 6= ∅ for all
δ, ε > 0. If diam M(δ, ε) 6→ 0 as (δ, ε) → (0, 0), then there exist l > 0 and δn > 0, εn > 0 with δn → 0, εn → 0,
and (xn, un), (yn, vn) ∈ M(δn, εn) such that

‖(xn, un) − (yn, vn)‖ > l, ∀n ∈ N . (10)

Taking into account (xn, un), (yn, vn) ∈ M(δn, εn), both {(xn, un)} and {(yn, vn)} are approximating sequences
for OPEC. Since OPEC is well-posed, they have to converge strongly to the unique solution (x∗, u∗) of OPEC, a
contradiction to (10).

For the converse, let {(xn, un)} ⊂ X × K be an approximating sequence for OPEC. Then there exists εn > 0 with
εn → 0 such that{

lim sup
n→∞

f (xn, un) ≤ inf
y∈X,v∈T (y)

f (y, v),

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N .

This means that (xn, un) ∈ M(δn, εn) for some δn → 0. By (9), {(xn, un)} is a Cauchy sequence in X × K and so it
converges strongly to a point (x̄, ū) ∈ X × K . By the same arguments as in Theorem 3.1, we have

h(x̄, ū, v) ≥ 0, ∀v ∈ K . (11)

Since f is lower semicontinuous,

f (x̄, ū) ≤ lim inf
n→∞

f (xn, un) ≤ lim sup
n→∞

f (xn, un) ≤ inf
y∈X,v∈T (y)

f (y, v).

This together with (11) implies that (x̄, ū) solves OPEC.
To complete the proof, it is sufficient to prove that OPEC has a unique solution. Let (y∗, v∗) be another solution of

OPEC. It is easily see that {(x̄, ū), (y∗, v∗)} ⊂ M(δ, ε) for all δ, ε > 0. It follows from (9) that

0 < ‖(x̄, ū) − (y∗, v∗)‖ ≤ diam M(δ, ε) → 0.

This yields (x̄, ū) = (y∗, v∗) and so OPEC has a unique solution. �
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For the well-posedness in the generalized sense, we have the following characterization by considering the
noncompactness of the approximate solution set of OPEC.

Theorem 4.2. Let X be finite dimensional and K be closed. Let f : X×K → R be a lower semicontinuous functional
and h : X × K × K → R be such that h(·, ·, u) is upper semicontinuous for every u ∈ K . Then OPEC is well-posed
in the generalized sense if and only if

M(δ, ε) 6= ∅, ∀δ, ε > 0, and µ(M(δ, ε)) → 0 as (δ, ε) → (0, 0).

Proof. The conclusion follows from similar arguments as in Theorem 3.2. �

The following results show that the well-posedness of EP is closely related to the well-posedness of OPEC.

Theorem 4.3. Assume that X is compact, K is closed, f is lower semicontinuous, and OPEC has at least one solution.
If EP is well-posed in the generalized sense, then OPEC is well-posed in the generalized sense.

Proof. Let {(xn, un)} ⊂ X × K be an approximating sequence for OPEC. Then there exists εn > 0 with εn → 0 such
that {

lim sup
n→∞

f (xn, un) ≤ inf
y∈X,v∈T (y)

f (y, v),

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N .
(12)

Since X is compact, there exists a subsequence {xnk } of {xn} such that xnk → x̄ as k → ∞. By (12), {unk } is an
approximating sequence for EP(x̄) corresponding to {xnk }. Since EP is well-posed in the generalized sense, {unk } has
a subsequence (with loss of generality, denoted still by {unk }), such that unk → ū as k → ∞, where ū ∈ T (x̄). Since
f is lower semicontinuous, it follows from (12) that

f (x̄, ū) ≤ lim inf
k→∞

f (xnk , unk ) ≤ lim sup
k→∞

f (xnk , unk ) ≤ inf
y∈X,v∈T (y)

f (y, v).

This together with ū ∈ T (x̄) implies that (x̄, ū) solves OPEC. Thus {(xn, un)} has a subsequence which converges
strongly to some solution of OPEC and so OPEC is well-posed in the generalized sense. �

Theorem 4.4. Assume that X is compact, K is closed, f is lower semicontinuous, and OPEC has a unique solution.
If EP is well-posed in the generalized sense, then OPEC is well-posed.

Proof. Let (x̄, ū) be the unique solution of OPEC and let {(xn, un)} ⊂ X × K be an approximating sequence for
OPEC. Taking into account the uniqueness of the solution to OPEC, by the same arguments as in Theorem 4.3, we
can prove that {(xn, un)} has a subsequence which converges strongly to (x̄, ū). Since any convergent subsequence of
{(xn, un)} is convergent to (x̄, ū), the whole sequence {(xn, un)} is convergent to (x̄, ū). So OPEC is well-posed. �

Remark 4.2. Theorem 4.3 generalizes Theorem 3.4 of [8] and Theorem 4.4 generalizes Theorem 3.5 of [8].

The following theorem shows that under suitable conditions, the well-posedness of OPEC is equivalent to the
existence and uniqueness of solutions.

Theorem 4.5. Let X be closed, convex and finite dimensional, E be finite dimensional, K be a nonempty, closed and
convex subset of E, f : X × K → R and h : X × K × K → R. Assume that

(i) h(x, u, u) ≥ 0 for all x ∈ X, u ∈ K .
(ii) for every x ∈ X, h(x, ·, ·) is monotone and hemicontinuous.

(iii) for every u ∈ K , h(·, u, ·) is convex and lower semicontinuous.
(iv) f is convex and lower semicontinuous.

Then OPEC is well-posed if and only if it has a unique solution.
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Proof. The necessity is obvious. For the sufficiency, suppose that OPEC has a unique solution (x∗, u∗). It follows that{
f (x∗, u∗) = inf

y∈X,v∈T (y)
f (y, v),

h(x∗, u∗, v) ≥ 0, ∀v ∈ K , ∀n ∈ N .
(13)

Let {(xn, un)} ⊂ X × K be an approximating sequence for OPEC. Then there exists εn > 0 with εn → 0 such that{
lim sup

n→∞

f (xn, un) ≤ inf
y∈X,v∈T (y)

f (y, v),

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N .
(14)

If {(xn, un)} is unbounded, without loss of generality, we can suppose that ‖(xn, un)‖ → +∞. Let tn =
1

‖(xn ,un)−(x∗,u∗)‖
and

(zn, wn) = (x∗, u∗) + tn[(xn, un) − (x∗, u∗)] = (x∗
+ tn(xn − x∗), u∗

+ tn(un − u∗)).

Without loss of generality, we can suppose that tn ∈ (0, 1) and (zn, wn) → (z, w)(6=(x∗, u∗)) since both X and E
are finite dimensional. Taking into account the closedness and convexity of X and K , one has (zn, wn) ∈ X × K and
(z, w) ∈ X × K . It follows from (iv) and (14) that

f (z, w) ≤ lim inf
n→∞

f (zn, wn) ≤ lim sup
n→∞

f (zn, wn)

≤ lim sup
n→∞

{tn f (xn, un) + (1 − tn) f (x∗, u∗)}

≤ lim sup
n→∞

tn f (xn, un) + lim sup
n→∞

(1 − tn) f (x∗, u∗)

= f (x∗, u∗). (15)

Further, it follows from conditions (ii)–(iii) and (13) and (14) that

h(z, v, w) ≤ lim inf
n→∞

h(zn, v, wn)

≤ lim inf
n→∞

{tnh(xn, v, un) + (1 − tn)h(x∗, v, u∗)}

≤ lim inf
n→∞

{−tnh(xn, un, v) − (1 − tn)h(x∗, u∗, v)}

≤ lim inf
n→∞

tnεn = 0, ∀v ∈ K .

This together with Lemma 2.1 implies

h(z, w, v) ≥ 0, ∀v ∈ K . (16)

By (15) and (16), (z, w) solves (OPEC), a contradiction.
So {(xn, un)} is bounded. Let {(xnk , unk )} be any subsequence of {(xn, un)} such that (xnk , unk ) → (x̄, ū) as

k → ∞. It follows that

h(x̄, v, ū) ≤ lim inf
k→∞

h(xnk , v, unk ) ≤ lim inf
k→∞

{−h(xnk , unk , v)} ≤ lim inf
k→∞

εnk = 0, ∀v ∈ K .

This together with Lemma 2.1 yields

h(x̄, ū, v) ≥ 0, ∀v ∈ K . (17)

Since f is lower semicontinuous, it follows from (14) that

f (x̄, ū) ≤ lim inf
k→∞

f (xnk , unk ) ≤ lim sup
k→∞

f (xnk , unk ) ≤ inf
y∈X,v∈T (y)

f (y, v),

which together with (17) means that (x̄, ū) solves OPEC. Taking into account the uniqueness of the solution, we have
(x̄, ū) = (x∗, u∗). Thus (xn, un) converges to (x∗, u∗). Therefore, OPEC is well-posed. �

Theorem 4.6. Let X be closed, convex and finite dimensional, E be finite dimensional, K be a nonempty, closed and
convex subset of E, f : X × K → R and h : X × K × K → R. Assume that
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(i) h(x, u, u) ≥ 0 for all x ∈ X, u ∈ K .
(ii) for every x ∈ X, h(x, ·, ·) is monotone and hemicontinuous.

(iii) for every u ∈ K , h(·, u, ·) is convex and lower semicontinuous.
(iv) f is convex and lower semicontinuous.

If there exists some ε > 0 such that M(ε, ε) is nonempty and bounded, then OPEC is well-posed in the generalized
sense.

Proof. Let {(xn, un)} ⊂ X × K be an approximating sequence for OPEC. Then there exists εn > 0 with εn → 0 such
that {

lim sup
n→∞

f (xn, un) ≤ inf
y∈X,v∈T (y)

f (y, v),

h(xn, un, v) + εn ≥ 0, ∀v ∈ K , ∀n ∈ N .

Let ε > 0 be such that M(ε, ε) is nonempty and bounded. Then there exists n0 such that (xn, un) ∈ M(ε, ε) for all
n ≥ n0. Taking into account the boundedness of M(ε, ε), there exists some subsequence {(xnk , unk )} of {(xn, un)}

such that (xnk , unk ) → (x̄, ū) as k → ∞. As proved in Theorem 4.5, (x̄, ū) solves OPEC. Therefore, OPEC is
well-posed in the generalized sense. �
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