the “change from baseline” of the IPSS score (p = 0.1464). The same applies to the analyses at 3 and 6 months where the p-values were 0.1156 and 0.1733 respectively.

Concerning the transparency of SF12 score, we observed no statistical difference between the 2 treatment groups (physical dimension, p = 0.6954 and 0.9878 at 6 weeks and 6 months respectively; mental dimension, p = 0.5139 and 0.9044 at 6 weeks and 6 months respectively). CONCLUSIONS: We observed no improvement in the SF12 and HZQ score from 6 weeks. This improvement was not significantly different between the 2 treatment groups. Under actual conditions of use, the various medical treatments gave similar improvements.

Methods: We collected data over 5 years on hospitalisation due to rotavirus infection in children < 5 years old before (2y) and after (3y) the introduction of vaccination in 9 Belgian hospitals. We split the annual data by age-group of 2 to 3 years, 4 to 5 years, and ≥ 6 years (men < 1 year old and by year thereafter over the period of the epidemic spread. We harmonised the data using Riskview software in Excel. The hypothetical future test are that the age-groups most vulnerable to the disease have the largest epidemic spread (highest number of weeks/season cases reported) and that the less vulnerable age-groups have their spread during the peak weeks of the most vulnerable ones. The latter should indicate a way of disease transmission between age-groups that could be confirmed with vaccination. RESULTS: Pre-vaccination data analysis indicates the widest spread of the disease in the age-group of 9 to 11 months (33 weeks/52) and the smallest ones in the very young (33 weeks/52) and the oldest ones (8 weeks/52). The data confirms the spread of the disease in the least vulnerable ones (younger and older ones) occurring during the peak moment of the season of the most vulnerable ones. Post-vaccination analysis shows the same pattern of dependency between the age-groups. CONCLUSIONS: Preferential spread of the disease starting from the 9 to 11 months age-group and the oldest ones can be deduced from the data analysis. This could give an explanation for the annual self-limiting spread of rotavirus disease.

Methods: We collected data over 5 years on hospitalisation due to rotavirus infection in children < 5 years old before (2y) and after (3y) the introduction of vaccination in 9 Belgian hospitals. We split the annual data by age-group of 2 to 3 years, 4 to 5 years, and ≥ 6 years (men < 1 year old and by year thereafter over the period of the epidemic spread. We harmonised the data using Riskview software in Excel. The hypothesized test are that the age-groups most vulnerable to the disease have the largest epidemic spread (highest number of weeks/season cases reported) and that the less vulnerable age-groups have their spread during the peak weeks of the most vulnerable ones. The latter should indicate a way of disease transmission between age-groups that could be confirmed with vaccination. RESULTS: Pre-vaccination data analysis indicates the widest spread of the disease in the age-group of 9 to 11 months (33 weeks/52) and the smallest ones in the very young (33 weeks/52) and the oldest ones (8 weeks/52). The data confirms the spread of the disease in the least vulnerable ones (younger and older ones) occurring during the peak moment of the season of the most vulnerable ones. Post-vaccination analysis shows the same pattern of dependency between the age-groups. CONCLUSIONS: Preferential spread of the disease starting from the 9 to 11 months age-group and the oldest ones can be deduced from the data analysis. This could give an explanation for the annual self-limiting spread of rotavirus disease.

Methods: We collected data over 5 years on hospitalisation due to rotavirus infection in children < 5 years old before (2y) and after (3y) the introduction of vaccination in 9 Belgian hospitals. We split the annual data by age-group of 2 to 3 years, 4 to 5 years, and ≥ 6 years (men < 1 year old and by year thereafter over the period of the epidemic spread. We harmonised the data using Riskview software in Excel. The hypothesized test are that the age-groups most vulnerable to the disease have the largest epidemic spread (highest number of weeks/season cases reported) and that the less vulnerable age-groups have their spread during the peak weeks of the most vulnerable ones. The latter should indicate a way of disease transmission between age-groups that could be confirmed with vaccination. RESULTS: Pre-vaccination data analysis indicates the widest spread of the disease in the age-group of 9 to 11 months (33 weeks/52) and the smallest ones in the very young (33 weeks/52) and the oldest ones (8 weeks/52). The data confirms the spread of the disease in the least vulnerable ones (younger and older ones) occurring during the peak moment of the season of the most vulnerable ones. Post-vaccination analysis shows the same pattern of dependency between the age-groups. CONCLUSIONS: Preferential spread of the disease starting from the 9 to 11 months age-group and the oldest ones can be deduced from the data analysis. This could give an explanation for the annual self-limiting spread of rotavirus disease.

Methods: We collected data over 5 years on hospitalisation due to rotavirus infection in children < 5 years old before (2y) and after (3y) the introduction of vaccination in 9 Belgian hospitals. We split the annual data by age-group of 2 to 3 years, 4 to 5 years, and ≥ 6 years (men < 1 year old and by year thereafter over the period of the epidemic spread. We harmonised the data using Riskview software in Excel. The hypothesized test are that the age-groups most vulnerable to the disease have the largest epidemic spread (highest number of weeks/season cases reported) and that the less vulnerable age-groups have their spread during the peak weeks of the most vulnerable ones. The latter should indicate a way of disease transmission between age-groups that could be confirmed with vaccination. RESULTS: Pre-vaccination data analysis indicates the widest spread of the disease in the age-group of 9 to 11 months (33 weeks/52) and the smallest ones in the very young (33 weeks/52) and the oldest ones (8 weeks/52). The data confirms the spread of the disease in the least vulnerable ones (younger and older ones) occurring during the peak moment of the season of the most vulnerable ones. Post-vaccination analysis shows the same pattern of dependency between the age-groups. CONCLUSIONS: Preferential spread of the disease starting from the 9 to 11 months age-group and the oldest ones can be deduced from the data analysis. This could give an explanation for the annual self-limiting spread of rotavirus disease.

Methods: We collected data over 5 years on hospitalisation due to rotavirus infection in children < 5 years old before (2y) and after (3y) the introduction of vaccination in 9 Belgian hospitals. We split the annual data by age-group of 2 to 3 years, 4 to 5 years, and ≥ 6 years (men < 1 year old and by year thereafter over the period of the epidemic spread. We harmonised the data using Riskview software in Excel. The hypothesized test are that the age-groups most vulnerable to the disease have the largest epidemic spread (highest number of weeks/season cases reported) and that the less vulnerable age-groups have their spread during the peak weeks of the most vulnerable ones. The latter should indicate a way of disease transmission between age-groups that could be confirmed with vaccination. RESULTS: Pre-vaccination data analysis indicates the widest spread of the disease in the age-group of 9 to 11 months (33 weeks/52) and the smallest ones in the very young (33 weeks/52) and the oldest ones (8 weeks/52). The data confirms the spread of the disease in the least vulnerable ones (younger and older ones) occurring during the peak moment of the season of the most vulnerable ones. Post-vaccination analysis shows the same pattern of dependency between the age-groups. CONCLUSIONS: Preferential spread of the disease starting from the 9 to 11 months age-group and the oldest ones can be deduced from the data analysis. This could give an explanation for the annual self-limiting spread of rotavirus disease.

Methods: We collected data over 5 years on hospitalisation due to rotavirus infection in children < 5 years old before (2y) and after (3y) the introduction of vaccination in 9 Belgian hospitals. We split the annual data by age-group of 2 to 3 years, 4 to 5 years, and ≥ 6 years (men < 1 year old and by year thereafter over the period of the epidemic spread. We harmonised the data using Riskview software in Excel. The hypothesized test are that the age-groups most vulnerable to the disease have the largest epidemic spread (highest number of weeks/season cases reported) and that the less vulnerable age-groups have their spread during the peak weeks of the most vulnerable ones. The latter should indicate a way of disease transmission between age-groups that could be confirmed with vaccination. RESULTS: Pre-vaccination data analysis indicates the widest spread of the disease in the age-group of 9 to 11 months (33 weeks/52) and the smallest ones in the very young (33 weeks/52) and the oldest ones (8 weeks/52). The data confirms the spread of the disease in the least vulnerable ones (younger and older ones) occurring during the peak moment of the season of the most vulnerable ones. Post-vaccination analysis shows the same pattern of dependency between the age-groups. CONCLUSIONS: Preferential spread of the disease starting from the 9 to 11 months age-group and the oldest ones can be deduced from the data analysis. This could give an explanation for the annual self-limiting spread of rotavirus disease.