Sex Differences in Opioid-Induced Enhancement of Contact Hypersensitivity

Jay C. Elliott,* Mitchell J. Picker, * † Christina J. Nelson,* Kelly A. Carrigan,* and Donald T. Lysle* †

*Biological Psychology Program, Department of Psychology; and †Curriculum in Neurobiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA

Previous research has demonstrated that, in male rats, the magnitude of contact hypersensitivity (CHS) can be enhanced by morphine treatment. The present experiments test the hypothesis that the μ-opioids morphine, etorphine, and buprenorphine would produce significant sex differences in the magnitude of 2,4-dinitrofluorobenzene-induced CHS. During tests conducted over a 192-h period, morphine, etorphine, and buprenorphine administered before elicitation of CHS on the external surface of the ear (pinna) potentiated the CHS response, and the magnitude of this enhancement was significantly greater in females than males. By contrast, morphine had no effect on croton oil-induced irritant contact dermatitis, indicating that morphine’s effects on CHS do not generalize to immunologically nonspecific forms of contact dermatitis. Activation of brain μ-opioid receptors is responsible for the effects of morphine on CHS, because intracerebroventricular treatment with the μ-opioid receptor antagonist β-funaltrexamine blocked morphine potentiation of CHS in females and males. The sex differences in morphine potentiation of CHS appear to be a result of the gonadal hormonal milieu, because castration enhanced the CHS response following vehicle and morphine treatment, whereas ovariectomy significantly attenuated the enhancement of CHS by morphine. Because ovariectomy had no effect on the CHS response following vehicle treatment, the presence of female gonadal hormones may underlie the sex differences in morphine potentiation of CHS in gonadally intact animals. Overall, these results support an increased sensitivity to the modulatory effects of opioids on the CHS response in females that depends on the interaction between gonadal hormones and the central μ-opioid system. Key words: contact dermatitis/morphine/etorphine/buprenorphine. J Invest Dermatol 121:1053–1059, 2003

Contact hypersensitivity (CHS) is a cutaneous form of delayed-type hypersensitivity that results in inflammation following multiple exposures to a haptenized chemical antigen. This prevalent condition accounts for 20% to 25% of all cases of contact dermatitis (Marks, 2002). Following initial exposure to the hapten (sensitization), proinflammatory cytokines such as interleukin-1β and tumor necrosis factor-α are rapidly produced (Enk and Katz, 1992) that activate Langerhans cells and stimulate antigen processing. In addition, these cytokines promote Langerhans cell migration to the skin-draining lymph nodes, where they present antigen to naïve T cells that differentiate into antigen-specific memory T cells (for a review see Grabbe and Schwarz, 1998). After subsequent exposure to the antigen (elicitation), a host of proinflammatory cytokines and chemokines are produced by local keratinocytes and monocytes at the elicitation site along with upregulation of major histocompatibility complex and adhesion molecules resulting in infiltration of other cells such as neutrophils and T lymphocytes (Grabbe and Schwarz, 1998). Like other delayed-type hypersensitivity responses, CHS has been classically viewed as Th1-mediated (Cher and Mosmann, 1987); however, recent evidence suggests the key involvement of both Th2 and CD8+ cells (Bour et al., 1995; Xu et al., 1996). Therefore, CHS is an immunologically complex, oligoclonal response to epicutaneously applied hapten that results in swelling, redness, and pain at the elicitation site.

Recent studies indicate that the magnitude of the CHS response can be dramatically altered in rodents by pharmacologic manipulations. Work in our laboratory has demonstrated that morphine given before elicitation of CHS (but not sensitization with antigen) significantly increases pinna swelling in a model of 2,4-dinitrofluorobenzene (DNFB)-induced CHS in male rats (Nelson et al., 1999). Follow-up work demonstrated the involvement of proinflammatory mediators, brain opioid receptors, and neurokinin-1 receptor activation in the ear in mediating the effects of morphine on the CHS response (Nelson and Lysle, 2001a, b). In addition to enhancing the CHS response, morphine has many other immunomodulatory effects including degranulating cutaneous mast cells (Marone et al., 1993; Di Bello et al., 1998), altering T and B lymphocyte proliferation (Lysle et al., 1993), and increasing nitric oxide production (Fecho et al., 1994). Taken together, these results demonstrate that morphine is an immunomodulatory drug that acts via central opioid receptors to potentiate CHS in male rats by increasing levels of various proinflammatory mediators at the site of CHS elicitation.

To date, the investigations of the effects of morphine on the CHS response have focused on male animals. Given identified sex differences in opioid-induced antinociception (Cicero et al.,...
indicated that the concentration of DNFB used to elicit CHS on the pinna (0.5%) produced no inflammation in unsensitized male or female rats (data not shown). Nevertheless, exposure to 0.5% DNFB in animals sensitized with 1% DNFB produced pinna inflammation under drug-free conditions that reached a peak of 30% to 40% above baseline at approximately 72 h after CHS elicitation and declined thereafter toward baseline values (Fig 1). Consistent with our hypotheses, there was no significant sex difference in the magnitude of the inflammatory response following vehicle treatment (Table 1). Therefore, our experimental protocol produced time-dependent inflammation in control animals that was specific to sensitized animals and did not differ between males and females.

Morphine: intact animals Morphine (F1,40 = 25.76, p < 0.001, Fig 1) significantly potentiated the inflammatory effects of DNFB in a dose-dependent manner as evidenced by increased pinna swelling for both males and females compared to vehicle controls. There was also a significant effect of sex (F1,40 = 26.33, p < 0.001), indicating that the pinnae of females swelled to a significantly greater extent than those of males. Importantly, a significant linear interaction between morphine and sex (F1,40 = 5.20, p = 0.028) was also observed, demonstrating that the magnitude of the difference between females and males became greater with increasing doses of morphine. Supporting

Results

CHS response: vehicle treatment Pilot data indicated that the concentration of DNFB used to elicit CHS on the pinna (0.5%) produced no inflammation in unsensitized male or female rats (data not shown). Nevertheless, exposure to 0.5% DNFB in animals sensitized with 1% DNFB produced pinna inflammation under drug-free conditions that reached a peak of 30% to 40% above baseline at approximately 72 h after CHS elicitation and declined thereafter toward baseline values (Fig 1). Consistent with our hypotheses, there was no significant sex difference in the magnitude of the inflammatory response following vehicle treatment (Table 1). Therefore, our experimental protocol produced time-dependent inflammation in control animals that was specific to sensitized animals and did not differ between males and females.

Morphine: intact animals Morphine (F1,40 = 25.76, p < 0.001, Fig 1) significantly potentiated the inflammatory effects of DNFB in a dose-dependent manner as evidenced by increased pinna swelling for both males and females compared to vehicle controls. There was also a significant effect of sex (F1,40 = 26.33, p < 0.001), indicating that the pinnae of females swelled to a significantly greater extent than those of males. Importantly, a significant linear interaction between morphine and sex (F1,40 = 5.20, p = 0.028) was also observed, demonstrating that the magnitude of the difference between females and males became greater with increasing doses of morphine. Supporting
this finding, post hoc analyses of the sex difference at each dose level revealed that, whereas pinna thickness in males and females did not differ following vehicle administration, at each dose of morphine tested females displayed significantly greater inflammation than males (Table I). It is also interesting to note that whereas treatment with 2.5 mg per kg morphine produced significant enhancement of inflammation in females compared to saline (t(40) = 3.25, p = 0.02), this dose of morphine produced no significant enhancement of inflammation over saline treatment in males (t(40) = 1.23, p = 0.23). Morphine did not cause generalized cutaneous inflammation independent of DNFB treatment, because there was no significant treatment effect on the thickness of the vehicle-treated left ear (F3,40 = 0.252, p = 0.86). Therefore, morphine produces greater peak inflammatory effects and is more potent in potentiating DNFB-induced CHS in females than males.

To control for differences in baseline ear thickness between male and female animals, analyses were also performed using raw difference from baseline scores (i.e., pinna thickness − baseline thickness). Using this approach, the pattern of results was similar to results obtained using percentage of change scores (data not shown), indicating that sex differences in response to morphine treatment were independent of differences in baseline pinna thickness.

Etorphine: intact animals Etorphine significantly enhanced pinna inflammation in both female and male rats (F3,40 = 39.66, p < 0.001, Fig 2A), and females displayed significantly greater inflammation than males across all treatment conditions (F1,40 = 14.93, p < 0.001). Nevertheless, as with morphine treatment, a significant linear interaction between etorphine treatment and sex was observed (F1,40 = 4.47, p = 0.041), indicating that the magnitude of the sex difference increased with greater doses of etorphine. Post hoc comparisons revealed that females displayed significantly greater inflammation than males following treatment with 0.01 and 0.005 mg per kg etorphine, but not following vehicle or the 0.001 mg per kg dose (Table I). Overall, the results obtained with etorphine are similar to those obtained with morphine in that etorphine produced dose-dependent enhancement of the CHS response in males and females, and etorphine was significantly more potent in producing proinflammatory effects in females than males.

Buprenorphine: intact animals The low-efficacy μ-opioid buprenorphine significantly enhanced DNFB-induced pinna swelling (F3,40 = 11.13, p < 0.001, Fig 2B), and consistent with other drugs tested, females displayed significantly greater inflammation than males (F1,40 = 16.74, p < 0.001). The magnitude of the sex difference grew with increasing doses of buprenorphine, as evidenced by a linear buprenorphine by sex interaction (F1,40 = 7.631, p = 0.009). Post hoc comparisons indicated that a significant sex difference was present following treatment with 0.1 and 1.0 mg buprenorphine, but not following vehicle or 0.01 mg per kg buprenorphine (Table I). These results demonstrate that like the other μ-opioids tested, buprenorphine produced significantly greater enhancement of DNFB-induced inflammation in females than males.

Morphine: effects on ICD To determine the specificity of sex differences in morphine potentiation of CHS, the effect of 15 mg per kg morphine given 1 h before application of 10% croton oil was assessed. Morphine did not significantly alter the ICD response (F1,19 = 0.77, p = 0.39, Fig 3), nor was there a significant sex difference (F1,19 = 0.344, p = 0.66) or morphine by sex interaction (F1,19 = 0.031, p = 0.92). Therefore, morphine's sexually dimorphic enhancing effects on CHS do not generalize to ICD, a common immunologically nonspecific form of cutaneous inflammation.

Central μ-opioid receptor antagonism Following intracerebroventricular pretreatment with 20 μg of the irreversible μ-opioid antagonist β-funaltrexamine, both male and female rats displayed complete antagonism of morphine (15 mg/kg) potentiation of CHS (F1,37 = 29.08, p < 0.001, Fig 4). These data demonstrate that morphine acts via μ-opioid receptors in the central nervous system and not those expressed on immunocytes to enhance CHS in male and female rats. There was no sex difference in the magnitude of antagonism (F1,37 = 0.60, p = 0.44), indicating that activation of brain μ-opioid receptors is
responsible for the effects of morphine on CHS in both males and females. Importantly, β-funaltrexamine had no effect on the CHS response following vehicle treatment ($t(20) = 0.439, p = 0.67$), demonstrating that functional brain μ-opioid receptors are not required for the elicitation phase of CHS.

Gonadectomy experiment

Females In ovariectomized and sham-operated animals, there was a significant effect of both morphine treatment ($F_{2,35} = 30.31, p < 0.001$) and hormonal status ($F_{1,35} = 13.31, p = 0.001$). There was also a significant linear interaction between morphine treatment and hormonal status ($F_{1,35} = 13.72, p = 0.001$), indicating that whereas there was no significant difference in the magnitude of inflammation between ovariectomized and sham-operated females following vehicle treatment, significant differences emerged following administration of increasing doses of morphine (Fig 5A). These results indicate a crucial role of female gonadal hormones in potentiating morphine's effects on the CHS response, but not the normal CHS response manifest in the absence of drug treatment.

Males In this experiment, morphine treatment ($F_{2,36} = 65.40, p < 0.001$) enhanced the CHS response in castrated and sham-operated males (Fig 5B). Additionally, there was a significant effect
of hormonal status ($F_{1,36} = 170.7$, $p < 0.001$) but not a morphine by hormonal status interaction ($F_{2,36} = 1.12$, $p = 0.337$). Therefore, castration produced an increase in the magnitude of the CHS response in males following both vehicle and morphine treatment. This finding suggests that the presence of male gonadal hormones suppresses the CHS response. Nevertheless, the presence of male gonadal hormones likely makes a limited contribution to the sex differences observed in gonadally intact animals following morphine treatment, because hormone status and morphine treatment do not interact to produce differential inflammatory responses in male animals.

DISCUSSION

This report demonstrates sex differences in opioid modulation of CHS and that gonadal hormones appear to play a critical role in mediating this effect. These experiments extend previous research showing that morphine enhances the CHS response in male rats (Nelson et al., 1999; Nelson and Lysle, 2001a) by demonstrating that µ-opioids with diverse pharmacologic properties produce significantly greater DNFB-induced cutaneous inflammation in females than males. By contrast, sex differences are not present following vehicle treatment, indicating that activation of the opioid system is required for the emergence of sex differences. The present data also establish the potential of the clinically used analgesic buprenorphine and the high-efficacy µ-opioid etorphine to alter cutaneous immune responses. In addition, these studies provide important insights into the mechanisms underlying morphine’s potentiation of CHS in that that morphine’s enhancement of the CHS response in both male and female rats does not generalize to croton oil-induced ICD and is mediated exclusively by activation of brain µ-opioid receptors. Finally, evidence that castration enhances whereas ovariectomy suppresses morphine enhancement of CHS suggests that the influence of gonadal hormone milieu is responsible for the sex differences observed in intact animals.

While it is clear that the magnitude of the CHS response is significantly greater in females than males following treatment with µ-opioid agonists at the time of CHS elicitation, it remains to be established which determinants of CHS are differentially altered in males and females in the presence of opioids. Previous research in male rats demonstrated that mRNA levels of the proinflammatory mediators inducible nitric oxide synthase, interleukin-6, and interferon-γ were upregulated in the DNFB-treated pinnae of morphine compared to saline-treated animals at various time periods in the first 24 h after elicitation of CHS (Nelson and Lysle, 2001b). In contrast, in the same investigations there was no treatment-related change in the anti-inflammatory Th2-derived cytokine interleukin-10 over the same time course. Therefore, it is possible that morphine preferentially potentiates the expression in females of either proinflammatory mediators such as those described above or other cytokines known to be involved in the expression of contact hypersensitivity such as interleukin-1β or tumor necrosis factor-α (Kondo et al., 1995; McHale et al., 1999). To address these possibilities, a time-course examination of relevant monocyte and T lymphocyte-derived cytokine levels in the pinna and their relation to sex and morphine treatment is required.

In addition to cytokine expression, several other immunologic and nonimmunologic mechanisms may prove to account for the observed sex differences. For instance, sex differences may exist in antigen processing or presentation, expression of cell adhesion molecules (e.g., selectins), or anti-DNP antibody production (Ray et al., 1983) following morphine treatment. Data from our laboratory have also demonstrated that local pretreatment of the pinna with the neurokinin-1 receptor antagonist WIN51,708 antagonizes morphine potentiation of the CHS response in male rats (Nelson and Lysle, 2001a). The endogenous neurokinin-1 ligand substance P appears to promote the induction of CHS (Nii-Zeki et al., 1999) and substance P agonists cause vasodilation and plasma extravasation from cutaneous vasculature by releasing histamine from cutaneous mast cells (Holzer, 1992). Therefore, sex differences in morphine enhancement of the CHS response may be due to differential modulation of the immunologic determinants or vasoactive mediators involved in the induction of CHS.

The present experiments also provide evidence suggesting putative mechanisms underlying sex differences in morphine enhancement of the CHS response. As evidenced by the failure of morphine to promote croton oil-induced irritation of the pinna, these data suggest that our findings do not generalize to other
forms of contact dermatitis. ICD accounts for 80% of cases of human contact dermatitis (Marks, 2002), does not require prior exposure to the irritant, and is believed to result from release of proinflammatory cytokines from T lymphocytes and keratinocytes owing to acute tissue injury (Baadsgaard and Wang, 1991). These data support previous research demonstrating that morphine does not alter the course of ICD in male Lewis rats (Nelson et al., 1999) and suggest that the greater enhancement of CHS in females by morphine occurs via interaction with antigen-specific effector mechanisms. Another important finding concerning mechanisms of morphine potentiation of CHS is that these effects occur owing to activation of brain μ-opioid receptors. Because morphine has been shown to alter immune responses via interaction with opioid receptors located in the brain (Mellon and Bayer, 1998) and those expressed on immunocytes (Eisenstein and Hilburger, 1998), it was of critical importance to determine the anatomic distribution and specific subtype of opioid receptor responsible for these effects. Therefore, future studies will focus on potential sex differences in central μ-opioid function that might account for sex differences in morphine's effects on CHS.

Our results demonstrate that ovariectomized females treated with morphine, but not vehicle, display attenuated CHS responses compared to intact females. In contrast, castration significantly enhances both the basal and the morphine-modulated CHS response in males. Together, these findings suggest that males and females have unique hormonal milieus that contribute differentially to the expression of CHS following morphine or vehicle treatment. Nevertheless, unlike the enhancing effect of castration in male animals which was relatively equivalent following both vehicle and morphine treatment, the dramatic inhibitory effect of ovariectomy on the CHS response is only apparent following morphine treatment. Therefore, the presence of female gonadal hormones is likely largely responsible for the sex differences in opioid-potentiated inflammation in intact animals. This parallel in opposite opposing effects of female and male gonadal hormones on immune parameters (Leposavic et al., 1996; Travi et al., 2002) and responses to opioids (Terner et al., 2002) has been well established in other investigations. Nevertheless, the unique feature of the current investigations is that the effects of gonadectomy, and in particular ovariectomy, on CHS emerged in the presence of morphine treatment. Although the goal of the present studies was not to determine the hormonal locus of these effects, gonadectomy produces a marked suppression of circulating prolactin levels (Shaar et al., 1975), an anterior pituitary hormone whose plasma levels are increased by morphine (Baumann et al., 2000). Because prolactin produces proinflammatory effects by promoting a Th1 cytokine profile, it will be important to consider the potential role of this hormone in sex difference in morphine modulation of CHS (Whitacre et al., 1999; McMurray, 2001).

A final key feature of these investigations is that the increased sensitivity to morphine observed in females generalized to other μ-opioid drugs with varying pharmacologic properties. For instance, whereas morphine and etorphine are both highly selective μ-opioid agonists (Aceto et al., 1997; Emmerson et al., 1994), buprenorphine also displays activity as an antagonist at κ and δ receptors (Negus and Dykstra, 1988; Tschentke, 2002). Furthermore, buprenorphine is classified as a low-efficacy agonist at the μ-opioid receptor (Tschentke, 2002), because it antagonizes the action of higher-efficacy opioid agonists such as morphine or etorphine. Morphine, etorphine, and buprenorphine also have different half-lives in plasma, with an order of buprenorphine > morphine > etorphine (Aceto et al., 1997; Gades et al., 2000). These differences in selectivity, efficacy, and pharmacokinetics demonstrate that sex differences in opioid modulation of the CHS response are generalizable across a range of μ-opioids and are not specific to the unique pharmacologic properties of one μ-opioid drug. Nevertheless, such pharmacologic differences may account for the discrepancy in time course and magnitude of CHS enhancement following treatment with morphine, etorphine, and buprenorphine (see Figs 1, 2).

The present findings represent a significant contribution to the literature concerning sex differences in cutaneous immune responses and pharmacologic modulation of the CHS response. Our studies demonstrate that although there are no significant sex differences in the CHS response following vehicle treatment, there are profound differences in sensitivity to opioids with females demonstrating significantly potentiated inflammation compared to males across a broad range of doses of morphine, buprenorphine, and etorphine. These effects appear specific to DNFB-induced CHS because morphine has no effect on croton oil-induced inflammation. Furthermore, morphine enhancement of CHS depends on the activation of brain μ-opioid receptors and on gonadal hormone milieu. Similar sex differences have been reported in both morphine's physiologic effects (Sarton et al., 1999; Sarton et al., 2000; Zun et al., 2002) and the magnitude of the CHS response (Rees et al., 1989) in humans. Given the apparently similar dynamic in morphine sensitivity between humans and our rat model, these data suggest the likelihood that morphine may exacerbate cutaneous allergic responses to a greater extent in women than men. Because CHS is widely studied as a prototype delayed-type hypersensitivity response, it is possible that opioids may produce sexually dimorphic modulation of a range of delayed-type hypersensitivity-dependent immune responses, including host defense and autoimmune susceptibility. Overall, these data suggest the need to consider sex as a determinant of opioid-induced immunomodulation.

The authors thank Stephanie Ijames and Ryan Lanier for their expert technical assistance. These experiments were supported by NIH Grants DA 07481 and IS709 to D.T.L. and DA 10277 to M.J.P. J.C.E. was supported by a William N. Reynolds Fellowship at the University of North Carolina at Chapel Hill.

REFERENCES

Rees JL, Friedmann PS, Matthews JN: Sex differences in susceptibility to development of contact hypersensitivity to dinitrochlorobenzene (DNCB). *Behav Neurosci* 120:371–374, 1995

Sarton E, Teppema L, Dalan A: Sex differences in morphine-induced ventilatory depression reside within the peripheral chemoreflex loop. *Anesthesiology* 90:1329–1338, 1999

Travi BL, Osono Y, Melby PC, Chandrasekar B, Arteaga L, Saravia NG: Gender is a major determinant of the clinical evolution and immune response in hamsters infected with Leishmania spp. *Infect Immun* 70:2288–2290, 2002

Tzschentke TM: Behavioral pharmacology of buprenorphine, with a focus on preclinical models of reward and addiction. *Psychopharmacology (Berlin)* 161:1–16, 2002

