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Abstract

We analyze the near-collinear limit of the null polygonal hexagon super Wilson loop in the planar " =4
super-Yang—Mills theory. We focus on its Grassmann components which are dual to next-to-maximal
helicity-violating (NMHV) scattering amplitudes. The kinematics in question is studied within a frame-
work of the operator product expansion that encodes propagation of excitations on the background of the
color flux tube stretched between the sides of Wilson loop contour. While their dispersion relation is known
to all orders in ’t Hooft coupling from previous studies, we find their form factor couplings to the Wilson
loop. This is done making use of a particular tessellation of the loop where pentagon transitions play a fun-
damental role. Being interested in NMHV amplitudes, the corresponding building blocks carry a nontrivial
charge under the SU(4) R-symmetry group. Restricting the current consideration to twist-two accuracy,
we analyze two-particle contributions with a fermion as one of the constituents in the pair. We demonstrate
that these nonsinglet pentagons obey bootstrap equations that possess consistent solutions for any value of
the coupling constant. To confirm the correctness of these predictions, we calculate their contribution to the
super Wilson loop demonstrating agreement with recent results to four-loop order in ’t Hooft coupling.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In recent years, the planar maximally supersymmetric gauge theory took on the status of a
proverbial “harmonic oscillator” of field theories, i.e., a solvable dynamical model of gauge in-
teractions in four dimensions. Though the theory is superconformally invariant even on quantum
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level, it does possess an S-matrix when deformed away from four dimensions such that its in-
trinsic infrared divergences get regularized. So its study is of great interest from the point of
view of potentially having valuable feedback for realistic theory of particle physics, Quantum
Chromodynamics, see, e.g., reviews [1-3].

All on-shell states in A = 4 super-Yang—Mills theory, i.e., positive and negative gauge bosons
G*, (anti)gauginos T4, "4 and scalars S4p, can be assembled into a single superfield [4,5]
®(p,n)=GH(p)+niTar(p)+ %nAr/BSAB + - - - as coefficients accompanying Grassmann vari-
ables n* transforming in the fundamental representation of the SU(4) R-symmetry group. As a
consequence, the scattering superamplitude A, of n superparticles ®; = ®(p;, n;) admits a ter-
minating expansion in 1’s. Making use of supersymmetry and pulling out the energy—momentum
conserving delta function along with the Parke—Taylor denominator [6], it reads [5]

i(2m)*s*8(P)
(12)(23)...(n1)
with each term A,,.; being a polynomial of homogeneous degree 4k in n’s. The A,.; define
N¥MHYV amplitudes.
A deep insight into the structure of the superamplitude was offered by its dual description in
terms of the expectation value of the super Wilson loop stretched on a null polygonal contour!
[7,8]. The n-site super Wilson loop develops a similar truncated series in Grassmann variables

Wn = Wn;O + Wn;l + -4 Wn;n74s (2)

with each term W,,.; being an SU(4) invariant polynomial possessing a homogeneous Grassmann
degree 4k. The duality between the super Wilson loop and scattering amplitudes establishes the
equality between their expansions as follows

(Ao + Aut + -+ Auaa). ()

n =

Wk =g2k./4n;k. 3)

The main advantage of this reformulation is that it provides an opportunity to use dynamics on
the two-dimensional world-sheet of the loop with four-dimensional geometry entering the game
only through its boundary [10]. As a consequence, one can rely on the integrable dynamics of
excitations propagating on the color flux-tube stretched between a pair of segments of the Wilson
loop contour in order to unravel W, in a truly nonperturbative manner in 't Hooft coupling.
A properly constructed finite ratio W, of Wilson loop expectation values admits a well-defined
expansion in terms of light-ray operators in a given channel that is akin to the usual local operator
product expansion (OPE) for correlation functions in CFT as was demonstrated in Ref. [11]. The
focus of this paper will be the six-site superloop, or superhexagon. In particular, we will be after
the term in its Grassmann decomposition that corresponds to the NMHYV superamplitude. In this
simplest nontrivial case, the OPE of the Wilson loop receives contribution from a single set of
intermediate states such that it reads schematically [12]

W6;1 = Z/dNu Fy(Olu) effEN(u)‘HUPN(u)‘H'(PmN Fn(—u0). 4)
N

Here in the right-hand side, we suppressed an overall degree-four prefactor in terms of Grass-
mann variables. The integration in the above equation goes over rapidities of excitations

1 Though there exists neither a proof of this statement nor a consistent perturbative regularization scheme where the
equivalence can be verified order-by-order in "t Hooft coupling [9]. So to date, it is used as a very inspiring mnemonic.
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Fig. 1. Pentagon form factor defining the coupling of flux-tube excitations to the Wilson loop contour.

u=(uy,...,uy), with a convention introduced for the vector u = (uy, ..., uy). Due to the
integrable nature of the color flux-tube, the N-particle energy, momentum and helicity get de-
composed into individual single-particle ones

En(u) = Ep (u1) +---+ Epy(un), pv@) = pp, (u1) + -+ ppy (un),
my=mp, +---+mp,, 4)

with subscripts p; designating the type of contributing particles. The fundamental excitations
of the flux tube consist of the hole, fermions and gluons (as well as bound states of the latter).
Their energies and momenta are known nonperturbatively [13]. At vanishing ’t Hooft coupling,
all single-particle energies become degenerate and define the twist of corresponding excitations

Ep(i)]g—0 = 1. (©6)

Then it becomes obvious that the expansion (4) receives its leading effect from single-particle
states, which scale as e~ ", while the first subleading €727 contribution arises from two particles
etc., providing a natural expansion hierarchy. To successfully determine the near-collinear ex-
pansion of the Wilson loop, one then has to determine the coupling of the flux-tube excitations
to the perimeter links. These are encoded in the so-called pentagon form factors [12]

Fx(0lw) = (p1(u1) ... pxun)|P|0), 7

shown in Fig. 1. These arise from a tessellation of the Wilson loop in terms of the fundamental
squares, with pentagons resulting from the two adjacent ones [12].

In a series of seminal papers [12,14,15], a set of defining equations was proposed and applied
to determine pentagon form factors with singlet quantum numbers in a given operator channel.
In our previous analysis [16], this formalism was extended to account for contributions with
non-trivial representations with respect to SU(4), focusing on a specific NMHV channel that
transforms in the 6 of the R-symmetry group. Presently, we conclude this discussion by proposing
nonperturbative formulas for other two-particle states.

Our subsequent presentation is organized as follows. In the next section, we start exploring
pentagon transitions involving a (anti)fermion and a hole. We introduce S-matrices with the full
SU(4) tensor structure and construct their mirrors in bosonic and fermionic rapidities. Then we
introduce a set of axioms, following the strategy of Refs. [12,14,15], for (anti)fermion—hole pen-
tagons and solve them in terms of the ratio of the scattering matrix and its mirror up to an overall
function that obeys certain crossing, permutation and parity conditions. The bootstrap equations
alone do not allow us to constrain its form in an unambiguous fashion. We fix the remaining
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uncertainty in their functional form by confronting chosen ansatze to perturbative data. We pro-
vide a similar discussion for (anti)fermion—(anti)gluon S-matrices and pentagons in Section 3.
Section 4 is dedicated to perturbative tests of our findings against available multiloop data for
NMHYV amplitudes that were made available through recent advances in the hexagon bootstrap
approach [17-19] and allowed to push the current state-of-the-art to four-loop order at the NMHV
level [20,21]. We find a complete agreement. Finally, we conclude. In Appendix A, we provide
a summary of scattering matrices and their mirrors for all pentagon transitions discussed in the
main body of the paper.

2. Hole—fermion pentagon

We start our discussion with hole—fermion pentagons. In fact, both excitations are charged
with respect to the R-symmetry group. Within the asymptotic Bethe Ansatz for A = 4 super-
Yang-Mills [22], the SU(4) symmetry gets restored through a particular arrangement of Bethe
roots of the momentum carrying fermionic roots and isotopic ones that form stacks [13]. The
fermion W4 and antifermion W, flux-tube excitations transform in the fundamental 4 and an-
tifundamental 4 representation of SU(4), respectively. Analogously, a single hole dual to the
central Bethe root gets promoted into a vector of real scalars @, that belong to the representation
6 of SU(4). We can conveniently recast the latter instead as an antisymmetric rank two tensor of
complex scalars p4% = 1 ¥ 48®,, with the help of four-dimensional blocks of six-dimensional

2
Euclidean Dirac matrices. These obey the reality condition ¢4 p = (¢AB )= %5 ABC D¢CD . The

> and ¥ blocks obey the Clifford algebra f]a, AC EbCB + f);,, AC Eac B — 28ab6§ and are related
by complex conjugation (2?3 ) = —f)a, AB = f)u,B 4. They can be built from ’t Hooft symbols
niap and n;4p as their elements, i.e., Z{’;‘B = (iniaB, —Niap) and ia,AB = (iniAB,NiAB), S€€
Appendix B of Ref. [26].

2.1. Hole—(anti)fermion S-matrix

The main player in the analysis that follows will be the scattering matrix between (anti)fermi-
ons and holes. For a reference state |¢4 5 (1) WC (v)), the S-matrix acts as a permutation operator
that interchanges the properly ordered excitations,

(a5 )WE (V) = [Snw (u, V)1 U2 W)GEF W), ®)

without changing their rapidities. The product of the scalar and fermion in the state can be de-
composed into two irreducible components 6 ® 4 =4 & 20,

1945 WE W) = [N 5D + Ma0l5 | 10er WP w)), ©)
with the help of the projectors
. 1 : 1
(Mgl = g%%‘sg, (M55 = 53{532}8%618”“, (10)

where [A, B]= AB — BA and (A, B) = AB + B A stands for the non-weighted anti- and sym-
metrization, respectively. Being projectors, they obey conventional properties

C; ;G ; C; e
M e =55 My p el gy =0,
C;
MG 5e =T. (11)



112 A.V. Belitsky / Nuclear Physics B 894 (2015) 108-135
Analogously, the hole—fermion S-matrix is decomposed in their terms as follows

12)

3i
; u—v+ x5 . )
[Sh (. )15, = Sh (1, v) {72 C:EF c EF} 7

—5 Malapp + 20l
2

factoring out a universal SU(4) tensor structure from an overall phase Shy (¢, v) that is sensitive
to the dynamics of the flux tube. The scattering matrix for the oppositely ordered excitations can
be decomposed as

3i
. U—v+ %5 . .
[Swn(u, )15 p = Swn(u, v) {7;.[11;]2;5 Lt [nmﬁgfg} : (13)
Y7
such that
. . 1
[Shw e, V)1 p[Swn(ue, VI = 58581485, (14)

It is obvious from these definitions that one can introduce scattering matrices in the 4 and 20
representation of SU(4),

3i
2 Shw(u,v),  Spy (. v) = Shw (u, v). (15)

2

1 u
Spo (u, v) =

The explicit nonperturbative form of the overall phase is given in Appendix A.1 together with
its mirror transform in the hole rapidity, ¥ — u” = u + i along a path that was established in
the analysis of Ref. [24] (see Refs. [27,16] for a detailed discussion). The overall phase factor in
Eq. (13) obeys the unitarity and crossing conditions,

u—v+%

St (, V)Shw (—u, —v) =1, Shw @, v)Shy (1, v) = ———,
Uu—v+3

(16)
respectively, where in the first relation, we can use instead Syh (v, ) = Shw (—u, —v).

Let us remind that a (anti)fermion lives on a Riemann surface built from two rapidity u-planes
glued together along the cut [—2g, 2¢] on the real axis [13]. On the upper sheet its momentum
p ~ O(1) while on the lower sheet p ~ O(g?) for rapidities # ~ O(1), thus defining large
(U =F) and small (¥ = f) fermion kinematics. The two are related by an analytic continuation
through the above cut [13]. When the small fermion at zero momentum comes in a combination
with another excitation it acts on it as an operator of supersymmetric transformation [25]. This
will play a pivotal role in the analysis of the OPE of the Wilson loop.

2.2. Anomalous mirror in fermion rapidity

In this section, we will establish the mirror hole—fermion S-matrix when the fermion is moved
to the crossed channel. Contrary to the linear nature of the transformation for bosonic flux-tube
excitations [24], the mirror map for the fermion is far more trickier. In fact, as was demonstrated
in Ref. [15], a consistent way to mirror the fermion, that sustains a proper change/conservation
of its quantum numbers, like helicity/R-charge, is achieved by promoting it into a composite
antifermion—hole state, see the right panel in Fig. 2. This becomes obvious from the study of the
fermion’s dispersion relation when one chooses the path for w, u — u® = u + i, as shown in
Fig. 2(left panel).
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Ju

h(u—%)
P (i)

u®

W (u®)

Fig. 2. The contour for the anomalous mirror transformation of the fermion (left panel) and its graphical representation
as the fermion is moved into the crossed channel: it becomes a composite state of antifermion on the small sheet (hence
its rapidity is dressed with a check ) and a hole (right panel). See Ref. [15] for details.

To execute the fermion mirror transformation properly and account for emerging rational fac-
tors, we have to work with complete SU(4) tensors. However, we found it more advantageous to
perform the analysis for scalar indices in the vector representation rather than antisymmetric one.
That is, we contract the above S-matrices with the four-dimensional blocks of six-dimensional

Dirac matrices, such that % f]a, E F[Sh\y]é DE 1; ECD = [Sh\y]AZ. In this notations, the hole—fermion
S-matrix reads

[Swn(u, v)]5) = [Ragu — )13 Swn(u, v), (17)
with the R-matrix being [28,15]

[Ra()Vze = dandy + 50 T . (18)
In addition to the fermion—hole S—matrix, we introduce the antifermion—hole one,

[Sgn (. V155 = [Rag( — v)150 Sg (. v), (19)

with the SU(4) tensor, in complete analogy with the previous case, being

[Rag()14q =8ab83 + S——-TaacTs ", (20)
and an a priori independent phase S, . The above SU(4) tensors are related via [R46(w)]§2 =
[R;m(w)]fg since 6 = 6 for SU(4). As the hole does not carry spin, it should be indifferent
whether it scatters on a fermion or antifermion, which implies that the overall phases coin-
cide [23]

S (11, V) = Shw (1, v). @1

Next, we recall the index structure of the hole-hole S-matrix

[Shh (4, V)14 = [Reg (u — v)15% S (11, ), (22)

that will be involved in the fusion procedure. The Rgg tensor coincides with the well-known
Zamolodchikov O(6) S-matrix [29]
[Res ()4 = —2 5,08 L Suabhe + fw S 23)
w = - - .
66 ab — w—i acObd w—i adObc (w—i)(w—2i) abOcd
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u+i,C 0 u+i,D
— 4 m B
R Oenemmen=s
i ' _ i
u 3 4 E u ,d
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Fig. 3. The mirror S-matrix for the fermion and hole as a fusion of the hole-hole and antifermion—hole matrices in the
crossed channel.

As in the previously addressed case [15], the mirror S-matrix for the fermion in the crossed
channel can be found from the anomalous map making use of the fusion

[Swn (@, V)15 = SunU®, v)[Rag(u — v +1i)15°

1 .. . 1 -
= —=ZAC18, gn G + i, V)20 [Snn (4 — 5, U)]gS%Ed,D& (24)

NG

exhibited in Fig. 3. Here, the right-hand side involves the mirror antifermion—hole and hole—hole
S-matrices

[Syn (. 1157 = [Reg(u — v+ 1558, 4 (u. v). 25)

[Senn e, )15 = [Reg(u — v+ )15 Setn (1, v), (26)
where the notation xp implies that the excitation p is taken in the crossed channel, e.g.,
S«hh(u, v) = Shn(u?, v) with u? for holes being the shift u” = u + i through the cut [—2g +
i/2,2g +i/2] in the complex rapidity plane [24]. The right-hand side of Eq. (24) can be simpli-
fied in virtue of the following identity (where w =u — v +1i)

s
W R s (w)IAP, 27)

I _4cs NEH )4
62" 24, pB[Rgg(w + )¢ [Res(w — 3)]gq = 2w —i

and we deduce the definition of the mirror antifermion-hole S-matrix S, g,
- : u—v+5%
S (it + i, V) Sanh (u — 5, v) = ————-Sunu®, v). (28)

- 2
By shifting the u-rapidity as u — u — i, we can rewrite the above equation as

M—U—lj Sph(u,v)

S,z i, v) = (29)

u—v+§Shh(u— %,v)’
where we used the fact that Sypy (u™7, v) = Shn (¢, v). The explicit mirror S-matrix can be easily
constructed from this result and its form is deferred to Appendix A.1.2 where it is displayed for
both small and large fermions in the crossed channel.

From explicit diagrammatic representation of the mirror S-matrices, one can establish a chain
of relations,

[Senw i, V)158 =[S, 51, (v, )14 = [Siwn(v, u)124, (30)
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wherefrom we conclude the mirror S-matrix on a fermion or antifermion is the same

Sewn(u, v) = S,g, 1, v), €2))
while the relation between Syny and S, gy, is

u—v-— %
Sewn(u, v) = TS*hq,(v, u). (32)

u—v+s
This identity can be verified using explicit expressions from Appendix A.1.
To find a mirror transformation in both rapidities, we can start from Eq. (28) and rewrite it in
the form
u—v—1L 1
Sh (u, v) = < : — : (33)
U—v—>5 Sph(v—75,u"?)Syn(V +i,u"7)

where we used the mirror transformation for the scalar S-matrix Sph(u?, v¥) = Spn(u, v) [14]
and relations (32) for S,yn along with the crossing identity (16). Then performing the mirror
transformation of the hole rapidity u, i.e., u — u? = u + i, we immediately find
u—v+é 1

u—v—"5 S — 5, u)Syn@+i,u)

Shw (1, v?) = (34)

2.3. Hole—fermion pentagons and bootstrap

Having discussed the S-matrices, let us turn to the axioms for the pentagon transitions that are
defined by the following matrix elements

(W ()|Plh() = Pyw (@),  (F@)|Ph@)) = Pygulv). (35)

Since the fermion—hole and antifermion—hole S-matrices coincide, see Eq. (21), the equations
which both of the above transitions obey do coincide. So we will display only one set, with the
other one obtained by the substitutions W <> W. As advocated at length in the seminal papers [ 12,
14], the bootstrap equations consists from:

e “Watson” equations’:

Py (u|v) = Shw (4, v) Py (vlu), Pyn(u|v) = Swn(u, v) Pojw (v|u), (36)
e Mirror equation:

Popw (™" |v) = Py (vlu), (37
e Reflection equation:

Py (ulv) = Pgp(—v| —u), (38)

2 Since these are not the Watson equations in their original incarnation [30] as the particles belong to the in- and
out-states, we will use the term in quotes.
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with u¥ = u +i. The solution to the axioms can be cast in the form

Shw (u, v) Swh(u, v)
2 _ 2 _
Ph|\p(u|v)—whw(u,v)m, P\y|h(“|v)—w\llh(u,v)ma (39)
where w’s obey the following equation
Why @7, v) ’ wh\p(u,v):u—v—%' (40)
Wy (v, u) weh(v,u)  u—v+5

The pentagon amplitudes P, and Pg,, are given by the same right-hand sides as in Eqs. (39),
however, with a priori different unknown coefficients wy g, and wg,; obeying however identical
equations (40) with W < U, The above two relations can be rewritten for a single function fhy
upon the substitution

Snw (u, v) Sow (v, u)

Why (1, V) = - Wyh (1, v) = = (4D
Uu—v+s5 V—u—35
and similarly for ¥ — W, where f’s obey the crossing relation
faw @™, v) = frg(u,v), (42)
while the reflection identity yields
Jow (—u, —v) = — fy,g (u, v). (43)

These equations can be solved with a function that is independent of the rapidity u, i.e.,
Jowo (U, v) = foy,p(v). The dependence on v has to be taken in the form of a power of the
Zhukowski variable

xlul =1 (u+/u? - (2g)?), (44)

such that

Jow (V) = frg (V) = x[v], (45)

and provides agreement with multiloop data as argued below.
2.4. Form factors

With all pentagons fixed, we now transform them into form factors. As the scattering matrices
in this sector, the latter can be decomposed in terms of irreducible components such that they
obey individual Watson equations,

Fyg Olu, v) = Sy (v, u) Fgp, (0lv, u), FyOlu, v) = Sy (v, u) Fiig (0lv, u) (46)
withr = é_l, 20. Using the explicit form of the scattering matrices (15), we immediately conclude
FEOlu,v) = (u— v+ ) Fy Olu,v),  FahOlu,v) = (v —u — Z)Fg, (Olu, v) (47)

up to a phase. Reflection and cyclic symmetry of the pentagon yield

FA,(0lu, v) = —F}, (0] — v, —u), F2 O0lu, v) = +F20] — v, —u). (48)
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The form factors in the 4 are then obtained by performing multiple mirror transformations on the
pentagons, i.e.,
Fiy Olu, v) = Pow @ [v), FyOlu, v) = Py (077 |u). (49)

The consistency of these equations with the “Watson” equations (36) can be easily verified as
consequence of the relation

FonOlv,w) _ Pow ™ [v) _ Sun(v.u”)Sun(v, u™")Sun(v. u)

A, v) = = -
Y F&,Ou,v)  Paw @) Shw (27, v) Shy (4 , v)

. (50)

which follows from the unitarity and crossing properties of the S-matrix (16).
Using the explicit solutions (39) to bootstrap equations, we can find the two-particle form
factors in terms of pentagons as

, 1 1
F* Olu,v) = : , F2 Olu,v) = ——, (51)
b (= v+ 3) Poy (uv) b Phjw (ulv)
and analogously
1
F Olu,v) = : , FRO0u,v)=——. (52)
hw (u—v—i—%)Ph‘q,(uh)) hw Py (u|v)

3. Gluon—fermion pentagons

Next, we turn to the derivation of the pentagon form factors involving (anti)fermion and gauge
fields. The gauge fields come in helicity plus and minus eigenstates and will be dubbed corre-
spondingly as gluon and antigluon in what follows.

3.1. (Anti)gluon—(anti)fermion S-matrix

Since the gluon is not charged under the R-symmetry group, the SU(4) index structure of the
gluon—fermion and gluon—antifermion S-matrices is trivial

[Sew (u, V)15 = 85 Sew (u, v), [Syq (u, v)1% =64 Sy (u, ). (53)

The scalar phase factors accompanying the above SU(4) Kronecker symbols are not independent
from each other and in fact are equal up to an overall rational factor [23]

u—v—+ ’7
qu, (u,v) = ——— Sgw(u, v). 54
Uu—v—y3

By helicity conservation, we can also establish the relations

qu, (u, v) = Sgw (u, v), Sew (u, v) = qu,(u, v). (55)

Thus, the only independent dynamical phase Sgy(u,v), whose expression is given in Ap-
pendix A.2, can be found to obey the unitarity and crossing conditions

u—v—15
Sgw (, v)Sgu (—u, —v) =1, Squ (U™, v)Squ (u, v) = ——=, (56)
Uu—v+s3
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where the path to the mirror sheet in the gluon rapidity u — u? = u was elaborated in Ref. [24]
(see also [16], for examples worked out in great detail). Its explicit form is quoted in Ap-
pendix A.2. Notice that Syg(v, #) = Sgy(—u, —v) and one can also fix Sq,g(u, v) to be

i

Uu—v+s5
S\I,g(u, v) = —— Swg(u, v). &)
Uu—v—s5

3.2. Anomalous mirror

The previously discussed anomalous map for fermions implies that one can construct the mir-
ror fermion—gluon S-matrix S,yg again by a fusion procedure. Performing this transformation in
the fermion rapidity u — u® = u + i, on the large-fermion—gluon S-matrix from Appendix A.2,
we immediately conclude that

Srg(U®, v) = Sung( — 5, )8 5, (u + i, ). (58)
Shifting the rapidity back u — u — i in the above equation, we obtain

Skg(ut, v)

e (59)
Shg(u — 5,v)

e, v) =
This equation produces the result quoted in Appendix A.2.2. By moving the small fermion ra-
pidity to the large sheet, we get the S*Fg (u, v), that together with S +e (u, v) will be cumulatively
denoted by S*q,g(u, v). In order to find the mirror fermion—gluon S-matrix, we reply on the rela-
tion (54) and deduce

u— i
Sewg(u,v) = : S*\I,g(u, v), (60)

2
l
2
for either the small or large fermion ¥ =f{, F.

Let us finally point out that Eq. (58) can be rewritten in the following generic form®

1

 Sen(u Y v — D) Spu Y T +i)

Swg(v®, u) 61)

with its right-hand side involving only bosons in the mirror channel. This was achieved by means
of the following relations between the mirror scattering matrices
S]’lg(vyau) = Shg(v,lxl_y), S*li/g(vau) ZS*qu(u’ v)’ (62)

and Eq. (56) applied to the last identity. Finally, mirror transforming the gluon rapidity u — u?
in Eq. (61), we immediately conclude that

1
Son(tt, v — £)Sgw (u, ¥ + 1)

Sy, u’) = (63)
completing the list of mirror transformations in both rapidities.

3 We remind that the check on top of the corresponding fermionic rapidity v implies that it resides on the small sheet.
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3.3. Gluon—fermion pentagons

Having found the explicit gluon—fermion S-matrices and their mirrors in both gluon and
fermion flux-tube rapidities, we can now proceed with the construction of corresponding pen-
tagons. We can introduce the following fermion—(anti)gluon pentagons, as matrix elements of
the pentagon operator between corresponding states of the flux tube

Py (uv) = (W (0)[Plg(u)), Pgjw (ulv) = (¥ ()| P[g(w)), (64)

Pyjg(ulv) = () [PV (u)), Py|g(ulv) = (gW)[PIV(u)). (65)
The rest, i.e., pentagons involving W, can be obtained from these via the equations

Pgy (u|v) = Py g (ulv), Pyjy (u|v) = Py (ulv), (66)

etc. The pentagon transitions obey a set of axioms that fix them almost uniquely. For the case at
hand, the defining equations take the form

e “Watson” equations:

Pgpw (ulv) = Sgu (u, v) Py|g(viu), Psjw (ulv) = Sgu (u, v) Pyg(viu). (67)
e Mirror equations:

Pgjy (u™7|v) = Pyg(v|u), Py|g(u|v”) = Pgy (v|u). (63)
e Reflection equations:

Py|g(u|v) = Py (—v| —u), Py g(u|v) = Pgpw (—v| —u). (69)

All pentagon transitions admit the following universal structure

Sew (U, v) Ssw (U, v)
Pg%\p(uw):wgw(u,v)m, Pé\p(ulv)=wgw(u,v)m, (70)
P31, (ulv) = wig (1, v) Suglu, v) P2 (ulv) = wag(u, v) Svgwv) g

Swe(u,v7Y)’ Sz, vY)
in terms of the S-matrices and their mirrors in bosonic rapidities (see Appendix A.2.2) up to yet
to be determined functions w’s. Due to the relation between the scattering matrices (55), we can

relate pentagons involving negative and positive-helicity gluons,

wew (1, v) Py (ulv) = wgw (u, v) Pajy (uv),
wwg (1, V) Py 5 (u[v) = wag(u, v) Py (u]v). (72)

Substituting the ansatze (70) and (71) into the axiom equations, we deduce the following relations
between the coefficient functions w'’s,

wey (U, v)  U—V—3 wgy(u,v) u—v+s

wyg(v, u) u—v+é’ wyg (v, u) u—v—’z’

(73)

and

wey (U™, v) = wyg (v, u), wgy (U7, v) = wyg (v, u), (74)
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together with

wyg (U, V) = wey (—v, —u), wyg (U, v) = wzy (—v, —u). (75)

The solution to these equations is ambiguous. Below we present the one that correctly repro-
duces the low-loop data (up to four loops), when expanded in perturbative series. Notice that
once the form is fixed at lowest orders, the bootstrap to nonperturbative dependence in g2 is
unique. First, we factor out a rational prefactor,

wew (4, V) = feg, V) —v+5),  weg(u,v) =—fou (0, u)(u —v+5), (76)
and similarly
wg\y(u,v)zifgqj(%v?, wwg(u,u)z_—f”(”’”?. 77)
M—U+§ M—U+§

Substituting these in the mirror identities (74), we find that the residual functions f and f obey
the relation

faw @7, v)
fg\I/ (u, v)
This can be solved, for the large fermion ¥ = F, with

(xF ] = x[w]) (x~[u] — x[v])

x[v]

=@-v—5Hu—v+h. (78)

far(u, v) = [ far(u,v)] 7" = : (79)

with adopted conventional notations x*[u] = x[ut] where u* =u + ’5 It is important to realize
that (78) determines the right-hand side of Eq. (79) up to a product of functions depending on
corresponding rapidities, G¢(u)Gy (v) and Gg(u)éq,(v) for f and f, respectively. While the
mirror transformation for the gluon flux-tube excitations suggests that Go(u™") = Gg(u), the
equation relating Gy (v) and Gy (v) should be fixed from the mirror transformation involving
the fermion. In both cases, the simplest solution Gy = - - - = 1 will provide agreement with data.

For the small fermion, we just have to pass in the above formulas to the small fermion sheet
by means of an analytic continuation [13]. While the corresponding S-matrices were introduced
earlier in Eqgs. (A.29) and (A.36), the passage to the small fermion implies the substitution
x[v] — gz/x[v] in the f and f functions (79), such that they read

- + - 2 2
it = Ut = SR (1 ) (1o ) o

vlx+ul  x[vlx[u]
3.4. Form factors

Having found the pentagon transitions, we can derive the pentagon form factors, where all
excitations belong to the same side (see Fig. 1) by moving excitations by means of a double mir-
ror [12]. Relying on the explicit form of the deduced solutions, we get the form factor coupling
of fermion—(anti)gluon excitations to the Wilson loop contour

1

Fou (Olu, v) = Py (u? |v) = ———,
e 8l Pyjw (u]v)

Fu (Olu, v) = Pyy (u? |v) (81)

" Pyuulv)’
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Here we relied on the fact that
wgy (U, V)wgy (u, v) = 1. (82)

4. OPE for NMHYV hexagon

The preceding two sections summarized our analysis of two-particle form factors which define
the coupling of the flux-tube excitations to the Wilson loop contour within the formalism of the
operator product expansion. To compare the super Wilson loop observable derived from the OPE
to the six-particle NMHYV scattering amplitude we have to construct the following combination

We:1 = Pe W, (83)

where Pk is the ratio of six-particle superamplitude to its bosonic cousin while Wg is a properly
subtracted bosonic hexagon [11]. The former factor admits the representation [31]

A
Ps = ﬁ =[Q)+ GV u,v,w; g)+[3)+O)]V(v,w,u; g)
+I(D) + @IV (w, 1, v; g) — [2) — DIV, v, w; g)
+13) — OV (v, w,u; g) + [(1) — DIV (w, u, v; g), (84)

in terms of superconformal invariants [31,32] defined by a five-bracket, e.g.,

8014 (x2(3456) + x3(4562) 4+ x4(5623) + x5(6234) + x6(2345))

(1) = [23456] = :
(2345)(3456)(4562)(5623) (6234)

(85)

which are built out of momentum twistors Z iA, (ijkl) =eaBcp Zl.A Z f ch Z ID . These are accom-

panied by the functions V and V of three conformal cross-ratios u, v, w and ’t Hooft coupling g.

They admit perturbative expansion” in g

Vu,v,w; g) =1+ Zguv(e)(u, v, w),
>1
V(u,v,w;g)=Zg2e\7(£)(u,v,w). (86)
>2

These functions were recently computed within the so-called hexagon bootstrap program to four-
loop order in [20,21], generalizing an earlier two-loop consideration of Ref. [19]. The bosonic
hexagon observable, on the other hand, is determined by the product

We =Wy exp (Re) (87)

of the ratio of the Wilson loops computed in U(1) theory [11] with the coupling constant deter-
mined by the cusp anomalous dimension

eV =exp [ 4 Teusp(e) Xow, v, w)| (88)

4 Notice that due to different normalization of the °t Hooft coupling the hexagon function differ by a numerical factor
from VIS?H and VIS?H introduced in Ref. [20]. Namely, v =3¢ VIS?H and correspondingly VO =2t VB@H Also it
is important to realize that the conformal invariants we use here are related to those in [20] by a cyclic permutation
U = UpyH, V = WpyH and w = upyH.
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where the dependence on cross-ratios is encoded into the function [33]

Xe(u, v, w)=—Lip(1 —u) —Lio(1 —v) —Lip(1 —w) —Inulnw
(1—-v)u
+In(1 — v) In ———— + 2¢7, (89)
Vw

and the remainder function R of the bosonic hexagon that was determined up to three loop
order’ in Ref. [17].

To test all fermionic pentagons discussed above, it suffices to extract the X[?’X4 component
of the NMHYV amplitude. It receives the contribution from states transforming under 4 of SU(4)
such that We.| admits the following structure in the operator product expansion

We.1 = X13X4 (efreiqb/ZWéJl) +ef2r63i¢/2Wg(\2p) Lo 2ty @ 0(6731')) e,

h¥/gw
(90)
for bosonic twistors that parametrize the hexagon taken in the form
Zy = (e 719/2,0,eTHIO2 TTHO/2) 7 =(1,0,0,0), Z3=(-1,0,0,1),
Zy=(0,1,-1,1), Z5=1(0,1,0,0), Zg=(0,e7771¢/2 eTH¥/2 (),

Here, the individual twist-n contributions W are functions of the variables o and 7 and the
coupling constant g. Their particle content is displayed as subscripts realized on the basis of their
total helicity and R-charge. In perturbation theory, the 7-dependence of W is polynomial of
order ¢ for O(g?"), while the o-dependence arises as nontrivial functions which can be expressed
in terms of harmonic polylogarithms [36,37] and values of the zeta function. The contribution of

the Grassmann component X13 X4 to the superconformal invariants, reads to order e 27,

1 _e2cr ) e’ — 263‘7 _eSJ )
_ 3 - ¢/2 _ L2 3ig/2
(2)+(5)_X1X4 [e T1+e2ﬂel ' (1+e20.)2 € !
L T
(1+¢20)? ’
B +6) =) = () =) = (6) = xixa e T —e TR L] o

with the rest inducing no effect in the structure in question, (1) 4 (4) = (1) — (4) = xf X4:-04---.
Here the equality between invariants holds only for the X13X4 Grassmann component and the
ellipses stand for the higher order terms in e~ ?-expansion.

4.1. Twist-one contribution

To start with, let us analyze the twist-one contribution. It arises from the fermion flux-tube
excitation. However, to properly describe the NMHV coupling one has to introduce an additional
ad hoc NMHYV form factor, given by the power of the Zhukowski variable, such that

5 Again, due to difference of ’t Hooft couplings, the perturbative expansion for the remainder function Rg reads in terms
of two-loop R(z), originally calculated in Ref. [34] and simplified making use of the symbol technology in Ref. [35], and
three-loop Rg) results of Ref. [17] Rg = 4g4 Réz) + 8g6 Ré3) + .-
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wy' = / dp (wix[ul, (92)
C

where the contour C runs on a two-sheeted Riemann surface glued at the cut [-2g, 2g] on the
real axis. It was described in detail in Ref. [ 15]. According to this, the integral splits into two, one
going over the large fermion sheet and another over the small one. However, since the semi-circle
integration contour for the small fermion does not encounter any poles in its interior, the resulting
contribution vanishes by Cauchy theorem. This implies that twist-one behavior of the amplitude
is governed solely by the large fermion

W&,l): / duru)ix[ul. (93)
R+i0

Here we used the convention (for p =F)

d .
dpp(u) = ﬁup(u)e*“Ev(“)*“*“’PP(‘”, (94)

where up(u) is a one-particle measure [15] and E,(u) and p,(u) are its energy and momen-
tum [ 13]. By expanding all functions of the coupling constant in perturbative series, the resulting
integrals can be computed using the Cauchy theorem and summing over the residues [14,38,39,
16]. The explicit expression for the lowest two orders reads

e*l’

wi = m{éﬁ e [2r (2ae2<’ +(1—¢*)In(l +e2<’))

+ (1—e2)20 —In(1 +¢2)) In(1 + e2°)] ¥ 0(g6)}, (95)

with further terms being too cumbersome to be quoted here. One can immediately demonstrate
that (93) agrees® with the recent calculation up to four loops’ [20,21].

At this moment, let us point out that to the twist-two accuracy, that we are currently using, the

bosonic Wilson loop Wg can be approximated by its leading twist contribution coming from the
single gluon flux-tube excitation [ 14]

We=e* / dpg(u) + 0(e™%). (96)
R

4.2. Twist-two contributions

Turning to the twist-two case, now we encounter two contributions which differ by the total
helicity. One of them is accompanied by the ¢¥¢/2 dependence and it stems from the fermion—
gluon flux-tube states

Wg(?l) =/dug(u)/d,uq;(v) ix[V] Fau Olu, v) Fyg(—v, —u|0). 97)
R C

6 See the Mathematica notebook attached with this submission.
7 The ready-to-use form of the collinear expansion of the NMHYV hexagon function V and V is available in Ref. [40].
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The second one possesses the total helicity —% and as a result can come from two distinct two-
particle states, hole—antifermion and antigluon—fermion. The latter provide additive contributions
to the resulting amplitude,
2) _w® (2
Wh@/gw_thlequ,. (98)
Of course, the hole—antifermion system has to transform in the fundamental representation of
SU(4). The individual terms read

W}qu,) =3/d,U«h(u)/dﬂw(v)iX[v]F;\p(Olu,v)F\%h(—v,—u|0), (99)
R C
Wg(Z\y) =/dﬂg(u)/dM\IJ(U)iX[U]Fg\I/(OWaU)F\Ifg(—vs —ul0), (100)
R C

where the factor of 3 comes from the SU(4) weight. Notice that in all integrands, we introduced
an extra NMHV form factor x[u] for the fermion coupling that is inherited from the one-particle
contribution (92).

4.2.1. Gluon—fermion states

As we already reviewed above, the integral with respect to the fermion rapidity in Eq. (97)
goes over a contour C that runs (in a small vicinity) along the real axis on the large fermion sheet,
then passes through the cut [—2g, 2¢] to the small one, where, it encircles an infinite half-circle
in the lower semiplane and then goes back through the cut on the large fermion sheet to negative
infinity [15]. We observed earlier that the contribution from the small-fermion sheet is possible
provided the integrand develops a pole inside the integration contour. As we can immediately
see from Eq. (72), the gluon—-small-fermion form factor Fyy (Olu, v) does indeed have a rational
prefactor since

1 . fgf(u, V) 1
Pgie(ulv)  u—v+ ’5 Pyi(ulv)’

(101)

where the pentagon Pg¢(u|v) does not possess additional zeroes. Thus, we find for the twist-two

term ng) a sum of two contributions

2) 2) 2)
W =wP+wg, (102)
which read
Wi = f djugr(u), (103)
R+i0
w® - / g () / dir () vl (104)
gk & PglF(u|U)Pg\F(_u|_U).

R+i0 R+i0

Here in the first equation, the composite measure takes the form

du _ . _
dy,gf(u) — 5 Mgf(u)e—f[Eg(u)-i-Ef(u )—2]+io[pg(u)+pr(u )], (105)
T



A.V. Belitsky / Nuclear Physics B 894 (2015) 108—135 125
with

5 e W pe(u™)  far(u, u™) fae(—u, —u~)
x[u=]  Py(ulu=)Pyp(—u| —u=)’

pet() =g (106)
being expressed in terms of the gluon—small-fermion pentagons, one-particle measures [14,15]
and an ad hoc form factor continued to the small-fermion kinematics.

Counting the powers of the coupling constant in the above two equations, one immediately
finds that while W(f ) starts at order g2 and thus generates a nonvanishing tree NMHYV amplitude,

the onset of Wg(%-) is postponed to order g° and therefore contributes to the NMHV amplitude
starting from two loops only. These phenomena were previously observed for MHV and NMHV
amplitudes in Refs. [15] and [16], respectively. They can immediately be tested making use of
the available results for the NMHYV superamplitude that was recently bootstrapped to four-loop
order in Refs. [20,21].

The perturbative calculation of integrands is straightforward, to next-to-next-to-leading order
the composite gluon—small-fermion measure reads

7w (3ru~ + sinh(2ru))
2u~ cosh? (u)

Mgf(u) = T &+ & =L (Hijpmiu + Hijprin)* —
i cosh(ru) 2
o +50 | +g° l(Hl/z—m + Hipovin) (H pp_iy + HY i)
(u+u,)2 2 /2—iu [2+iu
1 / ’ 2 1 4
+ Z(Hl/Zfiu + H1/2+iu) + g(Hl/Z—iu + Hl/2+iu)
7 tanh(ru)
2u~

- 8u? — 1)(coshrru) + 1) — 72(utu=)2(5 — cosh(2wu))
8(utu—)2cosh?(mu)

(Hyjp—iw + Hy ppin)* + 683 (Hy jo—i + Hijoin)

% (o + o) + 2 2 i Hisin)?
1/2—iu 1/2+iu 4(u+u ) 1/2—iu 1/2+iu
2 8 2 3 20,+,—)2 -1 2t h
_z Bu” + 37 (u Z ) ) 7 tan (nuz) [4(8u2—1)tanh(nu)
2(utu—)2 cosh”(mu) 16(utu~)

+ 4(u+)2 sech?(ru) (sinh(27wu) + 10mu™)]
27'[ sinhQru)[1 — 4u? — 272 (utu)?) + 72 [2u + 4u®(26u — 5i) + 7i]
16(u)2 ()3 cosh?(ru)
N w2 128u® +48u* — 1 N 128u* — 80u® +3
96 wtu—)* S8(utu—)4
5+ 4u120(Su+i) = 32u = 3i]  w*(Q2u® +Tiu = 3)

16(utu—)* 6(utu=)?
4t h2 9 4 4
n—w(cosh(2nu)—25)++—n—:| } (107)
16 cosh”(mu) 4cosh*(mru) 60
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where we used harmonic numbers H, = ¥ (« + 1) 4 yg, re-expressed in terms of digamma func-
tion ¥ (1) =d InT (1) /du, and their derivatives H, = d H, /du etc. For the gluon-large-fermion
contribution, we find that the leading term in Eq. (104) starts at O (gf‘) and reads

dv Q2io ) in®  tanh(wu) — coth(v) 3
= 0(g"). 108
F =g / / v(u? + ‘_1‘) cosh(rru) sinh(wv) 06 (108)

R+i0 R—HO

The lowest two orders, i.e., tree and one loop, were checked analytically against hexagon boot-
strap prediction of Ref. [19]. They read

W= vy
—(1—2e% —e*)In(1 +€%)) +20 (1 —e*)
—2(1+0 —e*(1+20) —e*0)In(1 +¢*)
+ (1 —2e% — ") In*(1+¢*)] + 0(g%)}. (109)

While the two-, three- and four-loop agreement was established numerically to a high precision,
confirming the correctness of the pentagon form factors involved (see the ancillary file).

{—g2 + g4[21(1 — (1+40)e’® —20e*

4.2.2. Hole—antifermion and antigluon—fermion states

Now we are in a position to discuss the last twist-two contribution to the Grassmann compo-
nent in question. Starting with the hole—antifermion form factor (52), we immediately conclude
that there is a pole in it that induces a nonvanishing effect from the small-fermion sheet of the
Riemann surface. Thus again, the contribution gets decomposed into two

W —w® 4y w®, (110)
where
W = / dpp(w), (111)
R+i0
@ ix[v]
we = / dpun () / dur(v) . (112)
hE , , [(u — v)2 + 31 Pujp(u|v) Pop(—u| — v)
R+i0 R-+i0
Here the composite measure
d — _3iy_ : _3i
dl/«hf(u)ziﬂhf(”)e e[ B0+ £ -2 io -] (113)
with
ig? fn () pee(u — 3
[ne () = (114)

x[u — %] Ph|f(u|u — %) Ph|f(_u| —u+ 37’)

starts at order g2 in perturbation theory. Finally, the integrand of the antigluon—fermion contri-
bution Wg%) does not possess poles on the small-fermion sheet and thus receives a nontrivial
contribution only from the large-fermion state. Hence, we can write

ix[v]

w = / d /d . 115
s g (u) MF()Pg|F(u|U)Pg|F(_M|—U) (115)

R+i0 R+i0



A.V. Belitsky / Nuclear Physics B 894 (2015) 108—135 127

The expansion of these twist-two formulas in ’t Hooft coupling can be performed to any loop
order and then integrals computed numerically. The small antifermion sets in the earliest in the
perturbative expansion inducing, therefore, the tree-level NMHV amplitude. The corresponding
effective measure is,

3i
Tu—=3) [ 5 4 2 2 5
Iinf(u) = m{g &t =HZ = HZ gy +202(1 = 3sech®(ru))
7 tanh(wu)
- j} +g° |:H1/2iuHZ1/2—iu + H71/2+iuH21/2+iu
2

1

1
+ E(Hll/z_iu)z + E(H/—I/Z-i-iu)z

+ E(H—l/2—iu + H—1/2+iu)
9}

+653(H_1/2—iu + H_1/24iu) + — + ‘
iu iu (u_3_21)4 (u_3_21)2

7 tanh(ru)
————[H?\ )i+ H? o + 202 (3sech® (ru) — 1)]

u—7

662 2 2 n
— 2 (H2 i+ HR i) + ———
coshz(rru)( 1/2=iu 1/2+iu) 2 cosh?(mu)

mtanh(wu) 27w tanh(wu) ) -
Ty T (14 3sech (M))__]+ }

60
where the ellipses stand for higher order terms in the perturbative expansion which are too
cumbersome to be presented here. The above hole—small-fermion state generates the tree and
one-loop NMHV amplitude,

(4 sechz(nu) - 3)

(116)

e—2r+c7
= (-
(1+¢20)?
—2(2+¢*)In(1 +¢*)) +20 (1 —e*)
—2(1+40 — e (1 —20)) In(1 +¢%)

+2(2+¢*)In*(1+e*)]+ 0(g%)}. (117)

W = g2 (2+e¥) +g*[2t(1 +40 — (1 —20)e*

At two-loop order, the genuine two-particle states come into play and read

w® / / dv Q2o 3in3 coth(rv) — tanh(rru)
hE o vl —v)> + 31 cosh(zu)sinh(zv)
+i +i
+0(g%, (118)
W _ / / dv 2iwtv)o i3y coth(rv) — tanh(mru)
g 2o R . 2+ %)[(u —v)2 4 JT] cosh(ru) sinh(mrv)
+i +i
+0(g). (119)

We further computed the next subleading terms in g and numerically verified that the sum of all
contributions is indeed in agreement with the three- and four-loop predictions of Refs. [20,21].
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5. Conclusions

In this paper, within the framework of the pentagon operator product expansion introduced in
Ref. [12], we discussed twist-two contributions to the hexagon NMHV amplitude, elaborating
and generalizing our previous consideration [16]. Using a set of fundamental axioms for pen-
tagon transitions with nonvanishing R-change, we constructed their nonperturbative solutions
and then used known mirror transformations for flux-tube excitations in order to find form fac-
tors which define their coupling to the Wilson loop contour. These then withstood perturbative
tests against the near-collinear limit of recent multiloop calculations [20,21].

This study demonstrated, echoing the analysis of the NMHV gluonic component in Ref. [14],
that in addition to pentagon form factors determined by the bootstrap axioms, NMHV compo-
nents of the super Wilson loop require introduction of ad hoc form factors which are given in
terms of powers of the Zhukowski variable, like for the 6 channel of NMHV amplitude [16].
Currently the form of these extra ingredients do not appear to be driven by any fundamental
principles and have to be introduced to achieve agreement with available NMHV data. A proper
understanding of this question begs for further exploration. We also hope that current results will
help to unravel to superstructure of the super Wilson loop and pinpoint a way to its superspace
formulation, if it exists. Notice, however, that flux-tube excitations break supersymmetry beyond
leading order as can be easily verified from the form of their dispersion relations.

Current computing power restricts one’s ability to go to even higher orders in perturbation
theory within the hexagon bootstrap program [17-20], though there are successful efforts under
way to reach four-loop NMHYV six-point amplitude [21]. As a next step, it is natural to turn to
higher point scattering amplitudes, with heptagons coming into the focus. While the OPE data
can be eagerly provided as a boundary condition for generalizations of the bootstrap approach
similar to the one adopted for the hexagon, the lack of a global function space is the main obstacle
in its immediate implementation. A progress along these line had been achieved at two-loop order
in Ref. [41].
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Appendix A. Explicit S-matrices

In this appendix we give a summary of scattering matrices for flux-tube excitations as well as
their mirror transformed images. Since different representations are advantageous for different
purposes, we start this appendix with a universal form of flux-tube phases in terms of sources of
the flux-tube equations [14]. These expressions are particularly suited for perturbative expansion
of S-matrices and, as a consequence, pentagons at small value of the 't Hooft coupling. The
functions defining scattering amplitudes can be rewritten in the form®

8 Due to a difference in the definition of the sources, our sum representation slightly deviates from analogous formulas
in Ref. [14].
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£, v) = =20 [Bum — Ko + Kt Kim — -1k (0), (A1)
£, v) = ~26R@)n Bum — K + Kt Kim — 1 (= 1)"%h (), (A2)
£, v) = =285 @) Bum — K + Kt Kim — -1 (= 1)"%h (v), (A3)
£, v) = =26B@n(=1)" [Bum — Kum + Kt Ki — =165 (), (A4)

where the repeated indices are assumed to be summed up from 1 to infinity. Here the coupling-
dependent K-matrix admits the following integral representation that can be easily expanded in
g-series

o0
dt J,(2gt) J (2gt
Kom =2m(—1)m(’1+1)/7 n if)—ml( 81 As)
0
= zm(_l)m(n-l-l) i g2k+21+n+m (_1)k+l(2k +2l+n+m— 1)!§2k+21+n+m
R KNk 4+ m) (I + m))! ’
(A.6)

and the sources « and ¥ can be read off from Section 2 of Ref. [16]. We do not display them here
for the sake of brevity.

Below, we will provide, however, an equivalent representation of the flux-tube phases that
explicitly involve the flux-tube solutions y, 7. This form is particularly useful for studies of the
analytic continuation either to the mirror kinematics or from the small- to large-fermion sheet and
back. Notice that for a generic S-matrix S,y with p # p’, we will quote only one representation
in terms of y and ¥ since the other ones can easily be recovered by virtue of exchange relations,
see [27] and in particular Ref. [16] for all cases in notations adopted in this paper.

A.l. Hole—(anti)fermion S-matrices

The S-matrices for hole, and large W = F and small ¥ = f fermions were discussed previously
in Refs. [15,16] fermions and read,’ respectively,

r —iw)L (1 +ivl & +iu —iv)

She(u, v) = —1— - —
GG +i) LA —iv)l'(5 —iu+iv)
. i p(D . (2)
x exp | 2i Prr(u, v) = 2ify (u,v) +2ifiy M, v)), (A7)
She(u, v) = exp (—21' £, ) +2i P, v)) . (A8)
Here the exact phase is
i d
t
Dhr(u, v) = / o=y Yosn =1 (ef/2 sin(ur) — sin(vt)) , (A.9)
0

and the ones depending on the solutions to the flux-tube equations read for large

9 And in a different form in Ref. [23].
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e ¢]

(1) dt ~h 1 dt
Jop (W, v) = / m)/u (2g1) (cos(vt) — Jo(2g1)) + 5/ 7/+ «(2g1) cos(vt),
0 0

1 [dt
5 f —v2 . Qgnsinw),

12w, v) = /7t(et—1)y” (2gt)sm(vt)+2
0 0

and small fermions

o
1) 1 dt
Joe @, v)_—E y+u(2gt)cos(vt) (A.10)
0
| [ di
@ (u, v)——E/—y_ (2gt) sin(vt), (A.11)
0
respectively.

A.l.1. Mirrorin hole rapidity
Mirror transformation in the hole rapidity immediately yields for above expressions
—g? F(%—iu)l"(%—i—iu)r‘(l—iv)F(l—Hv)

Sane(t, v) = Shrp(u” , v) = .
e : wlw—v+L) T —iu+inrd +iu—iv)

x exp (2Bne(, v) + 22 (0, 0) = 2P @, v) (A.12)
—x[v]
Sunt(at, V) = She?v) = —————exp (247 (. v) = 2£ @, v)) (A.13)
(u—v+ 5)
with the phase
o0
% dt 12
Spu,v) = | —2 (Jo2er) — 1) <e cos(ut) + cos(vt) — Jo(2gt) — 1), (A.14)
te—1)
0
and the flux-tube functions being
[ d 1 7d
t ~ . t
2w, v) = / myuh(—th) sin(vr) — > / =y 2gn)sin(un),
0 0
- d 1 ood
4 t t
D, v) = /myuh(—th) (cos(vt)—Jo(2gt))—|—E/Ty_}ﬁ’u(th)cos(vt),
0 0
for large and
o0
3) 1 dr
Jup (@, v) =+ 3 —y_ «(280) sin(vt), (A.15)

0
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@) 1 d
Jop (U, 0) = —3 y+ . (281) cos(vt), (A.16)
0
for small fermions, respectively.

A.1.2. Mirror in fermion rapidity
Using explicit formulas (29) and the mirror hole-hole S-matrix [27]

u—v TG —iwrG +inwrd —inrd +iv)

Senh (1, v) = g2 . A.17
() = 870 rQ —iu+inrd +iu—iv) (&.1D)
X exp (2<I>hh(u v)+2fhg)(u v) — 2fh4)(u v))
where all of its ingredients are defined by
~ r dt 12
Bun (u, v) = [ o o280 1)( (cos(ut) + cos(vr)) — Jo(2gt) — 1),
(A.18)
FPw,v) = /Let/zsin(ut)f/h(—2gt) (A.19)
b tet —1) v ’ '
0
@) dt 12 _ h,
£, v) = / P (e cos(ut) Jo(2gt)) yh(—2g0), (A.20)

we can immediately find the mirror S-matrices for fermions living on the small and large sheets,

x[u]
S, v) = ———— exp (2 w.v) = 23 (w.v). (A21)
u—v+3 5
5w g2 | I —iwr +ir A —iv)L (1 +iv)
T T MW —v+ ) TA —iutinrd +iu—iv)
x exp (2B, v) + 25 (0, v) = 2 @, v) (A.22)
with the flux-tube phases reading for small
N rd
t .
£, v) = +3 / TVE’U(th)sm(ut), (A.23)
0
o
@ S e A24
S 3 ty+’v( gt) cos(ut), (A.24)
0

and large fermions

o0

£, v) = [ Lfih(—th)sin(ut) ! / d ph Qg sin(u), (A.25)
Fh 2 TN 2 '
0

0
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o o0
(4) dt h 1 dt h
Sen (u,v) = myv (—2gt) (cos(ut) — Jo(2gt)) + 3 Ty_‘_’v(th) cos(ut),
0 0
(A.26)
respectively. Here, the exact phase is
4
-~ t
B, v) = / o= o0 =1 (cos(ut) + e cos(vt) — Jo(2gt) — 1) . (A27)
of —
0

Let us emphasize one more time that in light of the relations (31) and (32), the mirror S-matrices
found in this appendix are related to the previous ones with the mirror hole rapidity.

A.2. (Anti)gluon—(anti)fermion S-matrices

The large/small-fermion—gluon S-matrices are (¥ =F, f) [16]

FG—iwrd+ivlQG +iu—iv)

S s =
) = L T — 0T C = fu+v)
X exp (2i g (i, v) — 20 fF (. v) + 20 £ (u, v)) , (A.28)
Ser(t, v) = exp (—Zi £ w0 +2ifQ . v)) : (A.29)

where the exact phase is

o0

dt
Dy (u, v) = / o=y o0 =1 (e—f/2 sin(ur) — sin(vt)) , (A.30)
el —
0
and the flux-tube scattering phases are
OOd (vt) — Jo(2gt) 1 Ood
t cos(vt) — Jo(2gt) t ~
.g%)(u,v):fT - yug(zgr)+§f7cos(v:)y§,u(2gt), (A31)
0 0
oo oo
) dt sin(vt) g 1 dt . g
Jor (u,v) = PRl vu (2gt) + 2|7 sin(vr)yZ ,(2g1). (A.32)
0 0

Moving to the small fermion sheet, we find

o0
1) 1 dt ~g

Jor () = —3 TCos(vt)ﬂ,u(th), (A.33)

0
1 [d
r .

fg(fz)(u,v)z—i / TSln(UZ)V§,u(28l)- (A.34)

0

An equivalent representation can be found in Ref. [23].
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A.2.1. Mirror in gluon rapidity
The mirror transformation in gluon rapidity immediately yields

2 I —im)rd +in)yrd —iv)rd +iv)
Sigk(, v) = Sgr(u” , v) = g ; 2 I — TR
x[v](u —v+5) ['(z —iu+iv)l'(5 +iu—iv)
X ex (26 21D (u,v) — 2fP A
p gF(u’v)“' ‘ng (u7v) ng (M,U) ) ( 35)
. — PR L) 3) )
e, 0) = Sy, 0) = == = pow (2fgf w.v) —2f5 (u, v)) , (A.36)
with
o0
~ dt 12
Dop(u,v) = | ——= (Jo(2gt) — 1) (e cos(ut) + cos(vt) — Jo(2gt) — 1) ,  (A.37)
t(el—1)
0
and
2 1 [d
t
Fw / V“( g[) P sinn) — 5 / 7 w2 sin(ur), (A.38)
0 0
o
@ [ di yE(~2g1) 1 [dt ,
f (u,v) = TT (cos(vt) — Jo(2gt)) —|— 7y+’u(2gt) cos(vt), (A.39)
0
and for large fermion and
1 7d
t
f(S)(u, v) = —|—§ / T?E’M(th) sin(vt), (A.40)
0
1 7d
t
f(4)(u, v) = —3 / Tyf’u(th) cos(vt), (A.41)
0

for the small one.

A.2.2. Mirror in fermion rapidity
Using the defining relation (59), we find for small antifermion in the crossed channel

8,5y, v) = LL exp (2 £ v — 218 ., u)) , (A.42)
—v+3
where
1 oOdt -
£, v) = +3 / Tsin(m)yfv(2gz), (A.43)
0
) 1 oodl g
ff (u,v) = —5 TCos(ut)y+’v(2gt). (A.44)

0
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Moving the rapidity u to the large fermion sheet, we get
g2 F(1—iwA+iw)( —iv)[(§ +iv)
xulw—v+5) I —iu+iv)l'(} +iu—iv)
X exp (26Fg(u, 0) + 22 ) — 2£ (u, v)) : (A.45)

S, 10, V) =

where

Brg(u,v) = / (; 5 Jog0 — 1) (cos(ut)—i—et/zcos(vt) J0(2gt)—1>, (A.46)

and
A, v) = / D Gy 3 [ 57 vt sinan, (A47)
0 0
S, / dfw( cos(ut) — Jo(2g)) + » / %yf,v(th)cos(ut). (A.48)
0 0

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j-nuclphysb.2015.02.025.
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