Every divisor class of Krull monoid domains contains a prime ideal

Gyu Whan Chang

Department of Mathematics, University of Incheon, Incheon 406-772, Republic of Korea

A R T I C L E I N F O

Article history:
Received 19 November 2010
Available online 1 April 2011
Communicated by Kazuhiko Kurano

MSC:
13A02
13A15
13C20
13F05
13G05

Keywords:
Krull monoid domain
Class group
Divisor class
Prime ideal
HFD
π-Domain

A B S T R A C T

Let D be an integral domain, Γ be a torsion-free grading monoid, and $D[\Gamma]$ be the monoid domain of Γ over D. Suppose that $D[\Gamma]$ is a Krull domain, and let $\text{Cl}(D[\Gamma])$ be the divisor class group of $D[\Gamma]$. We show that every divisor class of $D[\Gamma]$ contains a prime ideal. As a corollary, we have that $D[\Gamma]$ is a half-factorial domain if and only if $|\text{Cl}(D[\Gamma])| \leq 2$; hence in this case, either D or Γ is factorial. We also show that if T is the set of non-homogeneous prime elements of $D[\Gamma]$, then $D[\Gamma]_T$ is a π-domain with $\text{Cl}(D[\Gamma]) = \text{Cl}(D[\Gamma]_T)$.

© 2011 Elsevier Inc. All rights reserved.

0. Introduction

Let D be an integral domain with quotient field K, Γ be a nontrivial torsion-free grading monoid with quotient group G and $D[\Gamma]$ be the monoid domain of Γ over D (hence, $D[\Gamma]$ is an integral domain).

Let A be an index set of given cardinality, and let $G_0 = \sum_{i \in A} \mathbb{Z}_i$, where each \mathbb{Z}_i is the additive group of integers. Let F be a field and X_i, Y_i, T_i, U_i be indeterminates over F with $X_i U_i = Y_i T_i$, and let $A = F[[X_i, Y_i, T_i, U_i]_{i \in A}]$. Claborn showed that A is a Krull domain with $\text{Cl}(A) = G_0$. Also, he showed that each divisor class of $A[X]$, the polynomial ring over A, contains a prime ideal. Hence for
a subgroup H of G_0, if we set $R = \bigcap \{A[X]_0 \mid Q \text{ is a height-one prime ideal of } A[X] \text{ and } cl(Q) \notin H\}$, then R is a Krull domain with $cl(R) = G_0/H$. Note that each abelian group is of the form G_0/H for some free abelian group G_0 and its subgroup H. Thus, every abelian group is the divisor class group of a Krull domain [3, Propositions 4, 5 and 6].

The ring D is called a half-factorial domain (HFD) if for every nonzero $d \in D$, any two factorizations of d into irreducible factors have the same number of terms. Zaks showed that if D is a Krull domain, then $D[X]$ is an HFD if and only if $|cl(D[X])| \leq 2$ [15, Theorem 2.4]. The proof depends on the fact that each divisor class of $D[X]$ contains a prime ideal. Anderson–Anderson proved that if each divisor class of a Krull domain D contains a prime ideal, then D is an HFD if and only if $|cl(D)| \leq 2$ [1, Corollary 2.3(c)]. Kim showed that if $D[\Gamma]$ is a Krull domain, where either D is a factorial domain but not a field or Γ is a group, then each nonzero divisor class of $D[\Gamma]$ contains a prime ideal [12, Theorems 7 and 11].

The purpose of this paper is to show that every divisor class of Krull monoid domains contains a prime ideal. More precisely, in Section 1, we show that $D[\Gamma]$ is integrally closed and G is of type $(0, 0, 0, \ldots)$ if and only if $fK[G] \cap D[\Gamma] = fA[1/\gamma_1]^{1/\gamma_1}$ for all nonzero $f \in K[G]$ and G is of type $(0, 0, 0, \ldots)$, if and only if each t-ideal A of $D[\Gamma]$ is of the form $A = \frac{1}{\gamma_i}JD$ for some nonzero $\gamma_i, g \in K[G]$ and t-ideals I and J of D and Γ, respectively. Let $D[\Gamma]$ be a Krull domain. We show, in Section 2, that each divisor class of $D[\Gamma]$ contains a prime ideal. As a corollary, we have that $D[\Gamma]$ is an HFD if and only if $|cl(D[\Gamma])| \leq 2$; hence in this case, either D or Γ is factorial. Let T be the set of non-homogeneous prime elements of $D[\Gamma]$. Finally, in Section 3, we show that $D[\Gamma]_1$ is a π-domain and $cl(D[\Gamma]_1) = cl(D[\Gamma])$.

0.1. Definitions related to the t-operation

Let $F(D)$ be the set of nonzero fractional ideals of D. For each $l \in F(D)$, let $l^{-1} = \{x \in K \mid xl \subseteq D\}$, $I_l = (l^{-1})^{-1}$, and $I_l = \bigcup \{J \mid J \subseteq I$ and J is a nonzero finitely generated ideal$\}$. An $l \in F(D)$ is called a v-ideal (resp., t-ideal) if $I_v = I$ (resp., $I_t = I$), while a t-ideal P of D is a maximal t-ideal if P is maximal among proper integral t-ideals of D. It is well known that a prime ideal minimal over a t-ideal is a t-ideal; a maximal t-ideal is a prime ideal; and each proper integral t-ideal is contained in a maximal t-ideal. An $l \in F(D)$ is said to be t-invertible if $(l^{-1})_l = D$; equivalently, $l^{-1} \nsubseteq P$ for all maximal t-ideals P of D. The (t)-class group of D is an abelian group $cl(D) = T(D)/\text{Prin}(D)$, where $T(D)$ is the group of t-invertible fractional t-ideals of D under the t-multiplication $I*J = (IJ)_l$ and $\text{Prin}(D)$ is the subgroup of $T(D)$ of nonzero principal fractional ideals. If D is a Krull domain, then $cl(D)$ is just the usual divisor class group of D; and if D is a Prüfer domain, then $cl(D)$ is the ideal class group of D. We denote by $cl(A)$ the divisor class of D containing a t-invertible t-ideal A. So if A, B are t-invertible t-ideals, then $cl(A) = cl(B)$ if and only if $A = uB$ for some nonzero $u \in K$.

Let Γ be a torsion-free grading monoid with quotient group G, and let $D[\Gamma]$ be the semigroup ring of Γ over D. It is well known that $D[\Gamma]$ is an integral domain [8, Theorem 8.1] and Γ admits a total order $<$ compatible with its monoid operation [8, Corollary 3.4]. Hence each $f \in D[\Gamma]$ is uniquely written in the form

$$f = a_0X^{\alpha_0} + a_1X^{\alpha_1} + \cdots + a_nX^{\alpha_n},$$

where $a_i \in D$ and $\alpha_j \in \Gamma$ with $\alpha_0 < \alpha_1 < \cdots < \alpha_n$. For any $f \in K[G]$, we denote by A_f (resp., E_f) the fractional ideal of D (resp., Γ) generated by the coefficients (resp., exponents) of f; hence $A_f = (a_0, a_1, \ldots, a_n)$ and $E_f = (\alpha_0 + \Gamma) \cup (\alpha_1 + \Gamma) \cup \cdots \cup (\alpha_n + \Gamma)$. The torsion-free abelian group G is said to be of type $(0, 0, 0, \ldots)$ if G satisfies the ascending chain condition on cyclic subgroups. As in the domain case, one can define the v- and t-operation; maximal t-ideals; t-invertibility; and the (t)-class group for Γ. The reader can refer to [7, §32 and §34] for the v- and t-operation on integral domains; to [8, §16] or [10] for the v- and t-operation on monoids; and to [8,10] for monoids and monoid domains.
1. The class semigroup of $D[\Gamma]$

Let D be an integral domain with quotient field K and Γ be a torsion-free grading monoid with quotient group G. Let $Div(D)$ be the semigroup of t-ideals of D under $A \ast B = (AB)_t$. Then $Prin(D)$ is a subgroup of $Div(D)$, and hence $Cl_t(D) = Div(D)/Prin(D)$, called the class semigroup of D, is a semigroup. Clearly, $Cl(D)$ is a subgroup of $Cl_t(D)$, and $Cl(D) = Cl_t(D)$ if and only if D is a Krull domain. Similarly, we can define the class semigroup $Cl_t(\Gamma)$ of Γ.

In this section, we prove that $Cl_t(D[\Gamma]) = Cl_t(D) \oplus Cl_t(\Gamma)$ naturally as monoids if and only if $f K[\Gamma] \cap D[\Gamma] = f A^{-1}_f [E_f^{-1}]$ for all nonzero $f \in D[\Gamma]$ and G is of type $(0, 0, 0, \ldots)$, if and only if $D[\Gamma]$ is integrally closed and G is of type $(0, 0, 0, \ldots)$. This is the combination of Kang's and Kim-Park's results which state that $Cl_t(D) = Cl_t(D[G])$ (resp., $Cl_t(\Gamma) = Cl_t(K[\Gamma])$) naturally as monoids if and only if $f K[\Gamma] \cap D[G] = f A^{-1}_f [G]$ (resp., $f K[\Gamma] \cap K[\Gamma] = f K[E_f^{-1}]$) for all nonzero $f \in K[G]$ and G is of type $(0, 0, 0, \ldots)$ [11, Theorem] (resp., [13, Theorem 5]).

Lemma 1. (See [14, Lemma 1.4].) Let S be a multiplicative subset of D and let I be a nonzero fractional ideal of D.

(1) If I is finitely generated, then $(I S^{-1})^{-1} = I^{-1} D_S$ and $(I S)_V = (I V D_S)_V$.

(2) $(I S)_t = (I_t D_S)_t$.

Lemma 2. If A is a nonzero fractional ideal of $D[\Gamma]$, then $A_t = (AD[G])_t \cap (AK[\Gamma])_t$.

Proof. Let $T = D \setminus \{0\}$ and $N = \{X^\alpha \mid \alpha \in \Gamma\}$. Then $K[\Gamma] = D[\Gamma]_T, D[G] = D[\Gamma]_N$, and $D[\Gamma] = D[G] \cap K[\Gamma]$. Hence by Lemma 1, $A_t \subseteq (AD[G])_t \cap (AK[\Gamma])_t$. For the reverse containment, let $f \in (AD[G])_t \cap (AK[\Gamma])_t$. Then there exists a nonzero finitely generated ideal I of $D[\Gamma]$ such that $I \subseteq A$ and $f \in (ID[G])_t \cap (IK[\Gamma])_t$; so by Lemma 1, $f I^{-1} \subseteq f^{-1} D[G] \cap f I^{-1} K[\Gamma] = f (ID[G]^{-1} \cap f (IK[\Gamma]^{-1}) \subseteq D[G] \cap K[\Gamma] = D[\Gamma]$. Hence $f \in I_V \setminus A_t$. Thus, $(AD[G])_t \cap (AK[\Gamma])_t \subseteq A_t$. □

It is known that $D[\Gamma]$ is integrally closed if and only if D and Γ are integrally closed [8, Corollary 12.11]. Let I be a nonzero fractional ideal of D and let J be a fractional ideal of Γ. Then $(I J)^{-1} = I^{-1} J^{-1}$ and $(I J)_t = I_t J_t$ [5, Lemma 2.3]. Hence $I J$ is a t-ideal if and only if I and J are t-ideals; and $I J$ is t-invariant if and only if I and J are t-invariant [5, Corollary 2.4].

Let $\varphi : Cl_t(D) \oplus Cl_t(\Gamma) \to Cl_t(D[\Gamma])$ be the map defined by $\varphi (cl(I), cl(J)) = cl(I J)$. Then φ is a semigroup homomorphism, and we mean by $Cl_t(D[\Gamma]) = Cl_t(D) \oplus Cl_t(\Gamma)$ that φ is an isomorphism. Thus, $Cl_t(D[\Gamma]) = Cl_t(D) \oplus Cl_t(\Gamma)$ if and only if each t-ideal of $D[\Gamma]$ is of the form $A = \frac{1}{n} I J$ for some nonzero $h, g \in K[G]$ and t-ideals I and J of D and Γ, respectively. In particular, the equality $Cl_t(D[\Gamma]) = Cl_t(D) \oplus Cl_t(\Gamma)$ implies that $D[\Gamma]$ is integrally closed [5, Proposition 2.2].

Theorem 3. The following statements are equivalent.

(1) $Cl_t(D[\Gamma]) = Cl_t(D) \oplus Cl_t(\Gamma)$.

(2) $f K[G] \cap D[\Gamma] = f A^{-1}_f [E_f^{-1}]$ for all nonzero $f \in K[G]$ and G is of type $(0, 0, 0, \ldots)$.

(3) $f K[G] \cap D[G] = f A^{-1}_f [G]$ and $f K[G] \cap K[\Gamma] = f K[E_f^{-1}]$ for all nonzero $f \in K[G]$ and G is of type $(0, 0, 0, \ldots)$.

(4) $D[\Gamma]$ is integrally closed and G is of type $(0, 0, 0, \ldots)$.

Proof. Let $T = D \setminus \{0\}$ and $N = \{X^\alpha \mid \alpha \in \Gamma\}$; so $D[\Gamma]_T = K[\Gamma]$ and $D[\Gamma]_N = D[G]$.

(1) \Rightarrow (2) Let $f \in K[G]$ be a nonzero element. Then $Q_f = f K[G] \cap D[\Gamma]$ is a t-ideal of $D[\Gamma]$. Note that $Q_f \subseteq K[G]$; hence by (1), $Q_f = h I J$ for some nonzero $h \in K[G]$ and t-ideals I and J of D and Γ, respectively. Clearly, $f K[G] = h K[G]$, and hence $h = u X^\alpha f$ for some $u \in K$ and $\alpha \in \Gamma$; so $Q_f = u I J (w + J)$. Obviously, $u I J = A_f^{-1}$ and $\alpha + J = E_f^{-1}$.

Next, assume that G is of type $(0, 0, 0, \ldots)$, and let $(\alpha_1) \subseteq (\alpha_2) \subseteq (\alpha_3) \subseteq \cdots$ be an infinite sequence of cyclic subgroups of G. Put $A = \bigcup_{n=1}^\infty (1 - X^{\alpha_n})$, and note that, for each α_n, there exists a.
positive integer \(k = k(\alpha_n) \) such that \(\alpha_1 = k\alpha_n \). If \(\alpha_1 = \alpha - \beta \) for \(\alpha, \beta \in \Gamma \), then \(k(\beta + \alpha_n) = k\beta + \alpha_1 = \alpha + (k - 1)\beta \in \Gamma \), and since \(\Gamma \) is integrally closed, \(\beta + \alpha_n \in \Gamma \). Hence \(X^\beta A \subseteq D[\Gamma] \), and thus \(A \) is a fractional ideal of \(D[\Gamma] \). Note that \((1 - X^{\alpha_1}) \subseteq (1 - X^{\alpha_2}) \subseteq (1 - X^{\alpha_3}) \subseteq \cdots \) and each \((1 - X^{\alpha_n}) \) is a \(t \)-ideal; so \(A \) is a \(t \)-ideal. However, \(A \) is not of the form \(\frac{h}{g} I[J] \) for all nonzero \(g, h \in K[G] \).

\[
(2) \Rightarrow (3) \quad fK[G] \cap D[G] = (fK[G] \cap D[\Gamma])_N = (fA_{f^{-1}}E_f^{-1})_N = fA_{f^{-1}}[G] \quad \text{and} \quad fK[G] \cap K[\Gamma] = (fK[G] \cap D[\Gamma])_T = (fA_{f^{-1}}E_f^{-1})_T = fK[E_f^{-1}] \quad \text{by (2)}.
\]

\[
(3) \Rightarrow (4) \quad \text{This appears in [11, Theorem] and [13, Theorem 5].}
\]

\[
(4) \Rightarrow (1) \quad \text{Let } A \text{ be a } t \text{-ideal of } D[\Gamma]. \text{ Since } A \text{ is a fractional ideal, there exists a nonzero } k \in D[\Gamma] \text{ such that } kA \subseteq D[\Gamma]. \text{ Hence we may assume that } A \subseteq D[\Gamma] \subseteq K[G]. \text{ Note that } D \text{ and } \Gamma \text{ are integrally closed; so } (AD[G])_T = fI[G] \text{ [11, Lemma 3] and } (AK[\Gamma])_T = gK[J] \text{ [13, Lemma 4] for some } f, g \in K[G] \text{ and t-ideals } I \text{ and } J \text{ of } D \text{ and } \Gamma, \text{ respectively. Hence } fK[G] = ((AD[G])_T)_T = (((AD[G])_N)_T)_T = (((AD[G])_N)_T)_T = ((AK[\Gamma])_T)_N = (AK[\Gamma])_T = (AK[\Gamma])_T = gK[J] \text{ by Lemma 1}; \text{ so } f = uX^\beta g \text{ for some } u \in K \text{ and } \alpha \in G. \text{ Let } h = ug. \text{ Then } (AK[\Gamma])_T = hK[J] = hI[J] = hI[\Gamma] = hI[G] \text{ and } (AD[G])_T = hI[G] = hI[J]D[G]. \text{ Thus by Lemma 2, } A = (AD[G])_T \cap (AK[\Gamma])_T = (hI[J])D[G] \cap (hI[J])K[\Gamma] = hI[J], \text{ because } hI[J] \text{ is a } t \text{-ideal of } D[\Gamma]. \quad \blacksquare
\]

Corollary 4. (See [8, Theorem 15.6].) \(D[\Gamma] \) is a Krull domain if and only if \(D \) and \(\Gamma \) are Krull and \(G \) is of type (0, 0, 0, \ldots).

Proof. Suppose that \(D[\Gamma] \) is a Krull domain, and let \(I \) (resp., \(J \)) be a \(t \)-ideal of \(D \) (resp., \(\Gamma \)). Then \(I[J] \), and hence \(I \) and \(J \) are \(t \)-invertible. Thus, \(D \) and \(\Gamma \) are Krull. Note that a Krull domain satisfies the ascending chain condition on principal ideals, thus \(G \) is of type (0, 0, 0, \ldots) (cf. the proof of (1) \(\Rightarrow \) (2) in Theorem 3). For the converse, let \(A \) be a \(t \)-ideal of \(D[\Gamma] \). Note that \(D[\Gamma] \) is integrally closed. Hence by Theorem 3, \(A = \frac{h}{g} I[J] \) for some nonzero \(g, h \in K[G] \) and \(t \)-ideals \(I \) and \(J \) of \(D \) and \(\Gamma \), respectively. Since \(I \) and \(J \) are \(t \)-invertible, \(A \) is \(t \)-invertible. Thus, \(D[\Gamma] \) is a Krull domain. \(\quad \blacksquare \)

2. The class group of Krull monoid domains

Throughout \(D \) is an integral domain with quotient field \(K \) and \(\Gamma \) is a torsion-free grading monoid with quotient group \(G \).

In this section, we prove that if \(D[\Gamma] \) is a Krull domain, then each divisor class of \(D[\Gamma] \) contains a prime ideal. Our first result is a generalization of the Eisenstein Criteria whose proof is the same as the usual proof.

Lemma 5. Let \(D \) be a factorial domain and \(G \) be a torsion-free abelian group. Let \(f = a_0 + a_1X^{\alpha_1} + \cdots + a_nX^{\alpha_n} \in D[G] \) such that \(n \geq 1 \) and \(0 < \alpha_1 < \cdots < \alpha_n \). Let \(p \in D \) be a prime, and assume \(p \nmid a_0 \), \(p \nmid a_i \) for \(i \leq n - 1 \), \(p^2 \nmid a_0 \), and \((A_f)_v = D \). Then \(f \) is a prime in \(D[G] \).

Proof. Suppose that \(f \) is reducible, and let \(f = gh \) for some \(g, h \in D[\Gamma] \). Since \((A_f)_v = D \), we can write \(g \) and \(h \) as follows

\[
g = b_0 + b_1X^{\beta_1} + \cdots + b_dX^{\beta_d}
\]

and

\[
h = c_0 + c_1X^{\gamma_1} + \cdots + c_mX^{\gamma_m},
\]

where \(0 < \beta_1 < \cdots < \beta_d < 0 < \gamma_1 < \cdots < \gamma_m \), \(d, m \geq 1 \) and \(b_d \neq 0 \).

Note that \(pD[G] \) is a prime ideal, and so \(D[G]/pD[G] \cong (D/pD)[G] \) is an integral domain. Note also that in \((D/pD)[G] \), we have \(\bar{f} = \bar{g} \bar{h} \). Hence \(\bar{a}_1X^{\alpha_n} = (\bar{b}_0 + \bar{b}_1X^{\beta_1} + \cdots + \bar{b}_dX^{\beta_d})(\bar{c}_0 + \bar{c}_1X^{\gamma_1} + \cdots + \bar{c}_mX^{\gamma_m}) \), and thus \(g \) and \(h \) are both homogeneous in \((D/pD)[G] \). However, since \(p^2 \nmid a_0 = \bar{b}_0 = 0 \), we
have \(p \mid b_0 \) or \(p \mid c_0 \), and hence \(\bar{g} \) or \(\bar{h} \) is not homogeneous, a contradiction. Thus, \(f \) is irreducible in \(D[G] \), and since \(D[G] \) is a GCD-domain \([8, \text{Theorem 14.5}]\), \(f \) is a prime in \(D[G] \). □

Let \(X^1(D) \) denote the set of height-one prime ideals of \(D \). It is well known that if \(D \) is a Krull domain, then \(X^1(D) \) is the set of maximal \(t \)-ideals of \(D \) and also \(D_P \) is a rank-one DVR for all \(P \in X^1(D) \). We denote by \(v_P \) the valuation on \(K \) associated with \(D_P \). We also use the same notations for Krull monoids.

Lemma 6. Let \(D \) be a Krull domain that is not a factorial domain, and let \(a, b \in K \) be nonzero elements. Then there exist a nonzero \(c \in D \) and a prime \(P \in X^1(D) \) such that \((a, b)_P = (a, bc)_P \) and \(bc \notin D_P = PD_P \).

Proof. It is clear that if \(|X^1(D)| < \infty \), then \(D \) is a semi-local PID. Hence \(|X^1(D)| = \infty \), because \(D \) is not factorial, and so there exists a prime \(P \in X^1(D) \) such that \(aD_P = bD_P = D_P \). By the approximation theorem for Krull domains \([7, \text{Theorem 44.1}]\), there exists a nonzero \(c \in K \) such that, for \(Q \in X^1(D) \),

\[
v_Q(c) = \begin{cases}
0 & \text{if } v_Q(a) \neq 0 \text{ or } v_Q(b) \neq 0, \\
1 & \text{if } Q = P
\end{cases}
\]

and \(v_Q(c) \geq 0 \) if otherwise.

Clearly, \(c \in D \). Next, if \(v_Q(a) = v_Q(b) = 0 \), then \((a, b)D_Q = D_Q = (a, bc)D_Q \). Also, if \(v_Q(a) \neq 0 \) or \(v_Q(b) \neq 0 \), then \(cD_Q = D_Q \), and hence \((a, bc)D_Q = (a, b)D_Q \). Thus, \((a, b)_P = \bigcap_{Q \in X^1(D)} (a, b)D_Q = (a, bc)_P \) \([7, \text{Theorem 44.2}]\). Moreover, \(v_P \left(\frac{bc}{a} \right) = v_P(b) + v_P(c) - v_P(a) = 1 \) or \(\frac{bc}{a} \notin D_P = PD_P \). □

Lemma 7. Let \(\Gamma \) be a Krull monoid that is not a factorial monoid, and let \(\alpha_1, \alpha_2 \in G \). Then there exist an \(\alpha \in \Gamma \) and a prime \(P \in X^1(\Gamma) \) such that \((\langle \alpha_1 + \Gamma \rangle \cup \langle \alpha_2 + \Gamma \rangle)_P = ((\alpha_1 + \Gamma) \cup ((\alpha_2 + \alpha) + \Gamma))_P \) and \(v_P(\alpha_2 + \alpha - \alpha_1) = 1 \).

Proof. This can be proved in the same way as the proof of Lemma 6 using the approximation theorem for Krull monoids \([10, \text{Theorem 26.4}]\). □

We next give the main result of this paper.

Theorem 8. Each divisor class of a Krull domain \(D[\Gamma] \) contains a prime ideal.

Proof. Let \(A \) be a \(v \)-ideal of \(D[\Gamma] \). Note that \(G \), the quotient group of \(\Gamma \), is of type \((0, 0, 0, \ldots)\) by Corollary 4. Hence by Theorem 3, \(A = h_1h_2[I/J] \) for some \(h_1, h_2 \in K[G] \) and \(v \)-ideals \(I \) and \(J \) of \(D \) and \(\Gamma \), respectively. Note also that \(I^{-1} \) and \(J^{-1} \) are \(v \)-ideals. Hence \(I^{-1} = (a, b)_V \) and \(J^{-1} = ((\alpha + \Gamma) \cup (\beta + \Gamma))_V \) for some nonzero \(a, b \in K \) and some \(\alpha, \beta \in G \).

Case 1. \(\text{cl}(A) = \text{cl}(D[\Gamma]) \). Since \(\Gamma \) is a Krull monoid and \(G \) is of type \((0, 0, 0, \ldots)\), we can choose a nonzero \(\gamma \in \Gamma \) such that \(\gamma = nh \) for any \(h \in \Gamma \) and integer \(n \geq 0 \), then \(\gamma = h \). So if we set \(f = 1 - X^\gamma \), then \(f \) is a prime element of \(K[G] \) \([9, \text{Corollary 7.7}]\). Hence \(Q_f = fK[G] \cap D[\Gamma] = fA_f^{-1}[E_f^{-1}] = fD[\Gamma] \) by Theorem 3, and thus \(Q_f \) is a prime ideal and \(\text{cl}(A) = \text{cl}(Q_f) \).

Case 2. \(\text{cl}(A) = \text{cl}(D[J]) \). By Lemma 7, we may assume that \(v_Q(\alpha - \beta) = 1 \) for some prime ideal \(Q \) of \(\Gamma \) with \(\Gamma_Q \) a discrete valuation monoid of rank-one. Let \(g = \alpha - \beta \), and note that if \(g = nh \) for some \(h \in G \) and integer \(n \geq 0 \), then \(1 = v_Q(g) = v_Q(nh) = nv_Q(h) \). Hence \(n = 1 \). Thus, \(f := 1 - X^g \) is a prime element of \(K[G] \) \([9, \text{Corollary 7.7}]\). Also, note that \(E_f = \Gamma \cup (g + \Gamma) = -\beta + ((\alpha + \Gamma) \cup (\beta + \Gamma)) \). Hence by Theorem 3, \(Q_f = fK[G] \cap D[\Gamma] = fA_f^{-1}[E_f^{-1}] = fD[\beta + ((\alpha + \Gamma) \cup (\beta + \Gamma))^{-1}] = fX^\beta D[J] \). Thus, \(Q_f \) is a prime ideal and \(\text{cl}(A) = \text{cl}(Q_f) \).
Case 3. \(cl(A) = cl(I[\Gamma]) \). By Lemma 6, we may assume that \(\frac{p}{q}D_P = PD_P \) for some prime \(P \in X^1(D) \). Let \(p = \frac{a}{b} \). Note that \(D_P \) is a rank-one DVR, and so \(D_P \) is a factorial domain. Hence if \(\alpha \in \Gamma \) with \(\alpha > 0 \), then \(f := p + \alpha \) is a prime in \(D_P[G] \) by Lemma 5. Note that \(A_f^{-1} = (\frac{p}{q}, 1)^{-1} = b(a, b)^{-1} = bI \) and \(E_f^{-1} = (\Gamma \cup (\alpha + \Gamma))^{-1} = \Gamma \). Hence \(Q_f = fD_P[G] \cap D[\Gamma] = (fK[G] \cap D_P[\Gamma]) \cap D[\Gamma] = fK[G] \cap D[\Gamma] = fA_f^{-1}[E_f^{-1}] = bf(a, b)^{-1}[\Gamma] = bfI[\Gamma] \). Thus, \(Q_f \) is a prime ideal of \(D[\Gamma] \) and \(cl(A) = cl(Q_f) \).

Case 4. \(cl(A) = cl(I[\Gamma]) \). Let \(p \) and \(g \) be as in Cases 2 and 3, and let \(f = p + \alpha \). Then \(f \) is a prime in \(D_P[G] \) by Lemma 5, and so \(f \) is a prime in \(K[G] \). Hence \(Q_f = fK[G] \cap D[\Gamma] = fA_f^{-1}[E_f^{-1}] = bfX^\alpha(a, b)^{-1}[\alpha + \Gamma] = bfX^\alpha[I[\Gamma]] \). Thus, \(Q_f \) is a prime ideal of \(D[\Gamma] \) and \(cl(A) = cl(Q_f) \).

Anderson–Anderson showed that if each divisor class of a Krull domain \(D \) contains a prime ideal, then \(D \) is an HFD if and only if \(|Cl(D)| \leq 2 \) [1, Corollary 2.3(c)]. Also, if \(D[\Gamma] \) is a Krull domain, then \(Cl(D[\Gamma]) = Cl(D) \odot Cl(\Gamma) \); hence by Theorem 8, we have

Corollary 9. If \(D[\Gamma] \) is a Krull domain, then \(D[\Gamma] \) is an HFD if and only if \(|Cl(D[\Gamma])| \leq 2 \); hence, in this case, either \(D \) or \(\Gamma \) is factorial.

Let \(U(D) \) be the group of units of \(D \), \(\Delta^* = D - \{0\} \), \(K^* = K - \{0\} \), \(\Delta = \Delta^*/U(D) \) and \(G = K^*/U(D) \). For each \(aU(D), bU(D) \in \Gamma \), define \(aU(D) + bU(D) = abU(D) \). Clearly \(\Gamma \) is a commutative cancellative monoid with quotient group \(G \). Moreover, if \(D \) is integrally closed, then \(\Gamma \) is torsion-free [2, Lemma 1]. Hence \(\Gamma \) and \(G \) are totally ordered. Note that \(G(D) \), the group of divisibility of \(D \), is partially ordered under \("aU(D) \leq bU(D) \Leftrightarrow \frac{a}{b} \in D^*" \); hence \(G(D) \) is totally ordered if and only if \(D \) is a valuation domain [7, Theorem 16.3]. Thus, if \(D \) is not a valuation domain, then the order of \(G \) is different from that of \(G(D) \).

Corollary 10. The following statements are equivalent for a Krull domain \(D \).

1. \(|Cl(D)| \leq 2 \).
2. \(K[\Delta^*/U(D)] \) is an HFD.
3. \(D[K^*/U(D)] \) is an HFD.

Proof. Let \(\Gamma = \Delta^*/U(D) \) and \(G = K^*/U(D) \). Then \(\Gamma \) is a Krull monoid with quotient group \(G \) [10, Theorem 23.4]. Note that \(\Gamma \) has a unique unit \(U(D) \), and so \(G \) is of type \((0, 0, 0, \ldots) \). Hence \(D[G] \) and \(K[\Gamma] \) are Krull domains (Corollary 4) and \(Cl(D[G]) = Cl(K[\Gamma]) = Cl(D) \) [2, Theorem 4]. Thus, the result is an immediate consequence of Corollary 9.

3. \(\pi \)-Domain overrings of Krull monoid domains

An integral domain \(D \) is called a \(\pi \)-domain if each nonzero ideal of \(D \) is a finite product of prime ideals. It is known that \(D \) is a \(\pi \)-domain if and only if \(D \) is a Krull domain and each minimal prime ideal of \(D \) is invertible [7, Theorem 46.7].

Let \(D[\Gamma] \) be a Krull domain, and let \(T \) be the set of non-homogeneous prime elements of \(D[\Gamma] \). In this section, we show that \(D[\Gamma]_T \) is a \(\pi \)-domain and that if \(\Gamma \) is a factorial monoid with \(\Gamma \cap (\neg \Gamma) = \{0\} \), then \(D[\Gamma]_T \) is a Dedekind domain.

Lemma 11. Let \(D \) be a Krull domain that is not a factorial domain. If \(I \) is a nonzero ideal of \(D \) with \(I_D = D \), then \(I[\Gamma] \) contains a non-homogeneous prime element.

Proof. Since \(D \) is a Krull domain, there exist some nonzero \(a, b \in I \) such that \((a, b)_D = D \). Also, by Lemma 6, we may assume that there exists a prime \(P \in X^1(D) \) such that \(\frac{b}{a}D_P = PD_P \). For any \(\alpha \in \Gamma \) with \(\alpha > 0 \), put \(f = b + aX^\alpha \). Clearly, \(f \in (a, b)D[\Gamma] \subseteq I[\Gamma] \). \(A_f^{-1} = D \) and \(E_f^{-1} = \Gamma \). Note that \(\frac{b}{a} \)
is a prime element of \(D_P \); so by Lemma 5, \(\frac{b}{a} + X^a \) is a prime in \(D_P[G] \) (hence, in \(K[G] \)). Hence
\[
\left(\frac{b}{a} + X^a \right) K[G] \cap D[\Gamma] = f K[G] \cap D[\Gamma] = f A_f^{-1}[E_f^{-1}] = f D[\Gamma].
\]
Thus, \(f \) is a non-homogeneous prime element of \(D[\Gamma] \). □

Lemma 12. Let \(\Gamma \) be a Krull monoid that is not a factorial monoid. If \(f \) is an ideal of \(\Gamma \) with \(f \Gamma = \Gamma \), then \(D[f] \) contains a non-homogeneous prime element.

Proof. This can be proved in the same way as the proof of Lemma 11 using Lemma 7 and [9, Corollary 7.7]. (Cf. The proof of Case 2 in the proof of Theorem 8.) □

Theorem 13. Let \(D[\Gamma] \) be a Krull domain, and let \(T \) be the set of non-\text{homogeneous} prime elements of \(D[\Gamma] \). Then \(D[\Gamma]_T \) is a \(\pi \)-domain and \(\text{Cl}(D[\Gamma]) = \text{Cl}(D[\Gamma]_T) \).

Proof. By the Nagata’s theorem [6, Corollary 7.3], \(\text{Cl}(D[\Gamma]) = \text{Cl}(D[\Gamma]_T) \). So it suffices to show that each height-one prime ideal of \(D[\Gamma]_T \) is invertible [7, Theorem 46.7]. Note that each height-one prime ideal \(Q \) of \(D[\Gamma]_T \) is of the form \(P[\Gamma]_T \), \(D[S]_T \) or \((f A_f^{-1}[E_f^{-1}])_T\), where \(P \in X^1(D), S \in X^1(\Gamma), \) and \(f \in D[\Gamma] \).

Case 1. \(Q = P[\Gamma]_T \). Clearly \(P \subseteq P P^{-1} \), and hence \((PP^{-1})_T = D[\Gamma]_T \). Next, if \(P \) is factorial, then \(PP^{-1} = D \), and hence \((PP^{-1})[\Gamma]_T = D[\Gamma]_T \). By Lemma 11, \((PP^{-1})[\Gamma]_T \) contains a non-\text{homogeneous} prime element, and so \((PP^{-1})[\Gamma]_T = D[\Gamma]_T \). Hence \(D[\Gamma]_T = (PP^{-1})[\Gamma]_T = (P[\Gamma]_T)(PP^{-1}[\Gamma]_T) \subseteq \{ Q Q^{-1} \subseteq D[\Gamma]_T \}. \) Thus, \(Q Q^{-1} = D[\Gamma]_T \).

Case 2. \(Q = D[S]_T \). By Lemma 12 and using the same argument as in Case 1, we have \(Q Q^{-1} = D[\Gamma]_T \).

Case 3. \(Q = (f A_f^{-1}[E_f^{-1}])_T \). If \(A_f^{-1} \) is principal, then \(A_f^{-1}[E_f^{-1}]_T \) is invertible. Next if \(A_f^{-1} \) is not principal, then \(D \) is not factorial, and since \((A_f A_f^{-1})_T = D \), we have \((A_f A_f^{-1})[\Gamma]_T = (A_f A_f^{-1})_T = D[\Gamma]_T \). A similar argument using Lemma 12 shows \((D[E_f]_T)(D[E_f^{-1}]_T) = D[E_f + E_f^{-1}]_T = D[\Gamma]_T \). Note that \(Q = (f D[\Gamma]_T)(A_f^{-1} D[\Gamma]_T)(D[\Gamma]^{-1}_T) \). Thus \(Q \) is invertible. □

The next result was proved by Claborn when \(\{X_a\} \) is an infinite set [3, Proof of Theorem 7] and by Costa, Gallardo and Querre when \(\{X_a\} \) is a singleton set and \(D \) has infinitely many height-one prime ideals [4].

Proposition 14. Let \(\{X_a\} \) be a nonempty set of indeterminates over a Krull domain \(D \), and let \(T \) be the set of prime polynomials of degree \(\geq 1 \). Then \(D[\{X_a\}]_T \) is a Dedekind domain with \(\text{Cl}(D) = \text{Cl}(D[\{X_a\}]_T) \).

Proof. The equality \(\text{Cl}(D) = \text{Cl}(D[\{X_a\}]_T) \) is an immediate consequence of the Nagata’s theorem [6, Corollary 7.3]. Next, let \(Q \) be a prime ideal of \(D[\{X_a\}] \) with \(\text{ht} Q \geq 2 \). It suffices to show that \(Q \cap T \neq \emptyset \). Choose \(x \in \{X_a\} \), and let \(Y = \{X_a\} - \{x\} \); hence \(D[\{X_a\}] = D[Y][x] \) and \(Q \cap D[Y] \neq \emptyset \). Let \(p \in Q \cap D[Y] \) be a nonzero element, and choose \(h = a_0 + a_1 x + \cdots + a_n x^n \in Q \), where \(a_i \in D[Y], \) such that \((p, h)_V = D[\{X_a\}] \). Note that \(x \in T \) and \(h \neq 0 \). So we assume that \(x \notin Q \) and \(a_0 \neq 0 \).

Case 1. \(D[Y] \) is a factorial domain. Then we can assume that \(p \) is a prime in \(D[Y] \). Let \(f \in Q \) be a prime factor of \(h + px^{n+1} \). Note that \(p \) does not divide at least one of the \(a_i \) in \(D[Y] \); so \(p \mid h + px^{n+1} \) in \(D[Y][x] \). Hence the degree of \(f \) in \(x \) is greater than or equal to 1, and thus \(f \in Q \cap T \).

Case 2. \(D[Y] \) is not a factorial domain. Then \(\{X^1(D[Y])\} = \infty \), and hence there exist a prime \(p \in X^1(D[Y]) \) and \(q \in D[Y] \) such that \(p, a_0 \notin P \), \((p, q) D[Y]_V = D[Y], \) and \(q D[Y]_P = PD[Y]_P \). So if we set \(g = qh + px^{n+1} \), then \(g \) is a prime in \(D(Y)_P[x, x^{-1}] \) by Lemma 5. Note that \((q a_0, \ldots, q a_n, p) D(Y)_V = D[Y], \) because \((p, q) D[Y]_V = D[Y] \) and \((p, h)_V = D[\{X_a\}] \). Hence if \(F \) is the quotient field of \(D[Y] \), then \(g F[x, x^{-1}] \cap D[Y][x] = g A_g^{-1}[E_g^{-1}] = g D[Y][x] \) by Theorem 3, and so \(g \) is a prime in \(D[Y][x] \). Thus \(g \in Q \cap T. \) □
It is known that if Γ is a factorial monoid with $\Gamma \cap (-\Gamma) = \{0\}$, then Γ is the sum of copies of \mathbb{Z}^+, the additive semigroup of nonnegative integers. Hence $D[\Gamma] \cong D[\{X_\alpha\}]$ for some indeterminates $\{X_\alpha\}$, and thus $D[\Gamma]_T$ is a Dedekind domain by Proposition 14. However, the proof of Theorem 13 does not show if the ring $D[\Gamma]_T$ is a Dedekind domain for a Krull monoid Γ.

Question 15. Let $D[\Gamma]$ be a Krull domain, and let T be the set of non-homogeneous prime elements of $D[\Gamma]$. Is $D[\Gamma]_T$ a Dedekind domain?

Acknowledgments

The author would like to thank the referee for several helpful comments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0007069).

References