Conclusions: Study programs have always been designed so as to provide enough theoretical and practical knowledge to students in line with the currently valid ESTRO Core Curriculum for RTTs (3rd edition). It is important that radiology engineers become more actively involved in the process of educating students. Knowledge of students in the field of radiotherapeutic technology has improved significantly. In the future, we would like to see the existing three branches of the current study of radiologic technology divided into three separate and independent study programs, so that radiotherapeutic technology would become an independent program and study. For the future, we are also considering a third level of studies - doctoral studies.

Conclusions: The Iraqi experience

Results: In the results, we present the analysis and evaluation of the development of education in the field of radiation therapy, as well as a few examples of project theses. The number of lectures increased by 105 hours from 1951 to 2014 and now includes lectures in radiotherapeutic technology delivered by suitably qualified engineers of radiology. The number of hours of clinical training and practice has increased by 59 hours during this time. A total of 23 project theses were written in the field of radiotherapeutic technology in the period from 2011 to 2014. From 1951 to November 2014, a total of 1574 students graduated with a first-cycle degree.

Conclusions: Study programs have always been designed so as to provide enough theoretical and practical knowledge to students in line with the currently valid ESTRO Core Curriculum for RTTs (3rd edition). It is important that radiology engineers become more actively involved in the process of educating students. Knowledge of students in the field of radiotherapeutic technology has improved significantly. In the future, we would like to see the existing three branches of the current study of radiologic technology divided into three separate and independent study programs, so that radiotherapeutic technology would become an independent program and study. For the future, we are also considering a third level of studies - doctoral studies.

EP-1689
Establishing postgraduate study program in radiation oncology in a war-torn country ñ The Iraqi experience

L. Mula-Hussain1, A. Shamsaldin2, Z. Ramzi3, L. Alrudainy1, A. Ahmed4, N. Noori5, K. Faraj6, Z. Ahmed7, M. Mohammed8, M.D. Hughson9

1Zhianawa Cancer Center, Radiation Oncology, Sulaymaniyyah, Iraq
2Zhianawa Cancer Center, Medical Physics, Sulaymaniyyah, Iraq
3University of Sulaimani, Family and Community Medicine, Sulaymaniyyah, Iraq
4University of Sulaimani, Diagnostic Radiology, Sulaymaniyyah, Iraq
5University of Sulaimani, Radiography, Sulaymaniyyah, Iraq
6University of Sulaimani, Internal Medicine, Sulaymaniyyah, Iraq
7Shorish General Hospital, Tumor Pathology, Sulaymaniyyah, Iraq

Purpose/Objective: Post-Graduate Study Program (PGSP) in Radiation Oncology (RO) is a vital step to provide qualified radiation oncologists. It is important that residents learn RO with high level of competence. In Iraq, there was a gap in this field for many years due to brain-drain, embargo and war. This work outlines an attempt to bridge this gap that might be of interest to some colleagues in the global radiotherapy community.

Materials and Methods: Descriptive report of the preparatory steps, challenges, processes and primary outcomes that accompanied the initiation of a PGSP in RO in Iraq in October 2013. One sample t-test is used to analyze the data.

Results: An invitation sent to an external board-certified radiation oncologist to visit a modest tertiary public cancer center in Iraq in order to evaluate its suitability to establish the PGSP in RO locally. After the visit, a report sent to the local decision makers who followed the recommendations. After 18 months of preparation, the training center completed its practical and logistical requirements to initiate a four-year PGSP in RO under the umbrella of the academic authorities. Eleven local members and three external faculty members were invited to cover the required syllabus that was assembled from five well-structured international curricula with a total of hundred credits (1 Credit equal 15 theoretical hours or 45 practical hours). Four residents were accepted (based on competition and entry examination) and all of them successfully completed their first year of training in October 2014 (Mean of successful average was 77.3% +/- 3.7 SD range was 74% - 81%, P value 0.028, which is significant as the minimum passing average is 70%). The evaluation included practical assessments, six in-term quizzes (in cancer staging, radiological anatomy and tumor pathology) and seven papers for annual assessment at the training center (covering medical statistics, cancer epidemiology, tumor pathology, radiological anatomy, pharmacology, radiobiology and medical physics) in addition to a comprehensive board examination (in tow papers) at the end of the 1st year-training at the academic board for medical specialties.

Conclusions: It is a real challenge facing Iraq to rebuild its human resources. In spite of this, PGSP in RO is successfully started in Iraq and it promises to help address a shortage of qualified radiation oncologists in this country. This experience can be accomplished in other demanding communities in case that strong will, team work, basic requirements and well cooperation were in place.

EP-1690
Analysis of logbook in an educational institution and comparison with ASTRO, ESTRO and CNRM requirements

L.G. Sapienza1, M.L. Sucharski Figueiredo1, M.J. Chen1, A.C.A. Pellizzon1

1AC Camargo Cancer Center, Radiotherapy, Sao Paulo, Brazil

Materials and Methods: Descriptive report of the preparatory steps, challenges, processes and primary outcomes that accompanied the initiation of a PGSP in RO in Iraq in October 2013. One sample t-test is used to analyze the data.

Results: An invitation sent to an external board-certified radiation oncologist to visit a modest tertiary public cancer center in Iraq in order to evaluate its suitability to establish the PGSP in RO locally. After the visit, a report sent to the local decision makers who followed the recommendations. After 18 months of preparation, the training center completed its practical and logistical requirements to initiate a four-year PGSP in RO under the umbrella of the academic authorities. Eleven local members and three external faculty members were invited to cover the required syllabus that was assembled from five well-structured international curricula with a total of hundred credits (1 Credit equal 15 theoretical hours or 45 practical hours). Four residents were accepted (based on competition and entry examination) and all of them successfully completed their first year of training in October 2014 (Mean of successful average was 77.3% +/- 3.7 SD range was 74% - 81%, P value 0.028, which is significant as the minimum passing average is 70%). The evaluation included practical assessments, six in-term quizzes (in cancer staging, radiological anatomy and tumor pathology) and seven papers for annual assessment at the training center (covering medical statistics, cancer epidemiology, tumor pathology, radiological anatomy, pharmacology, radiobiology and medical physics) in addition to a comprehensive board examination (in tow papers) at the end of the 1st year-training at the academic board for medical specialties.

Conclusions: It is a real challenge facing Iraq to rebuild its human resources. In spite of this, PGSP in RO is successfully started in Iraq and it promises to help address a shortage of qualified radiation oncologists in this country. This experience can be accomplished in other demanding communities in case that strong will, team work, basic requirements and well cooperation were in place.