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Abstract

The paper presents a framework for the segmentation of multi-dimensional images, e.g., color,
satellite, multi-sensory images, based on the employment of the fuzzy integral, which undertakes
the classification of the input features. The framework makes use of a self-organizing feature
map, whereby the coefficients of the fuzzy measure are determined. This process is unsupervised
and therefore constitutes one of the main contributions of the paper.

The performance of the framework is shown by successfully realizing the segmentation of color
images in two different applications. First, the features of the framework and its parameterization are
analyzed by segmenting different images used as benchmark in image processing. Finally, the frame-
work is applied in the segmentation of different images taken under difficult illumination conditions.
The images serve the development of an automated cashier system, where the weak segmentation
constitutes the first step for the identification of different market items. The presented framework
succeeds in the segmentation of all these color images.
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1. Introduction

The fuzzy integral [1] generalizes most of fuzzy fusion operators presented hitherto
[2,3]. This operator has been successfully applied in numerous application fields, e.g., com-
puter vision [3–5]. This fact succeeds in spite of the lack of methodologies for the auto-
mated parameterization of the fuzzy integral through the fuzzy measures [6], which is
one of the shortcomings of its application. The paper presented herein tackles this problem
by presenting a new methodology for the construction of the fuzzy measures. Further-
more, the methodology is applied in the implementation of a framework for color image
segmentation.

Image segmentation, whose goal is the partition of the image domain by taking percep-
tual homogeneity into consideration, is a long standing research subject in computer vision
[7–11]. The resulting image subdomains, which can be denoted as image segments, satisfy
some condition of homogeneity with respect to a particular perceptual feature, e.g., pres-
ent the same color or some kind of texture. Image segmentation plays a principal role in
the realization of computer vision applications, as a previous stage for the recognition of
different image elements or objects. In this context some authors [12] differentiate between
weak and strong segmentation, where this last one attains the object-driven segmentation.
Although multiple methodologies for the segmentation of images in the gray value domain
have been developed [7,8,11], it is still an open research question how to segment images of
larger dimensionality, e.g., color, satellite, multi-sensory images. In this context it is worth
mentioning that in spite of the numerous approaches for color segmentation presented
heretofore [8–10], this question is challenged by the variability of the artificial reproduc-
tion of color when the illumination conditions change.

This paper presents a procedure for the fuzzy segmentation of multi-dimensional
images. A defuzzification stage can be added to the basic methodology. Nevertheless,
the presented procedure can be exploited at its best when delivering a fuzzy result.
Hence, the loss of image information in a vision system should occur in the last stages
of the system by taking the principle of least commitment [13] into account. Being the
segmentation of images a low-level processing stage, a fuzzy segmentation result presents
more information and thus can be better exploited by the embedding system than its
crisp counterpart. The segmentation of multi-dimensional images is achieved in the here
presented framework through a classification stage based on the fuzzy integral [1],
whereby the previously extracted features are fused and transformed into membership
degrees of different segment classes. Moreover the utilization of the fuzzy integral for
color image processing can improve the robustness of the resulting systems with respect
to the illumination [3].

The fuzzy integral is operated with respect to so-called fuzzy measures [1], which are
used for weighting the data. The fuzzy integral has been successfully used in problems
of image segmentation [3,14–16]. In most of these frameworks however, the fuzzy mea-
sures are heuristically defined [3,14,16]. The remaining framework [15] makes use of a
supervised strategy based on random search with simulated annealing. Moreover, the
determination of the fuzzy measure coefficients is attained in other application fields
through supervised procedures as well, i.e., numerical optimization [17–20], probability
analysis [21], neural networks [22,23], and genetic algorithms [6,24,25]. In contrast to these
methodologies, the construction of the fuzzy measures is achieved herein by an unsuper-
vised procedure which was introduced in [26].
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Since the automated determination of the fuzzy measure coefficients still constitutes a
requisite in order for the fuzzy integral to be extensively employed in real applications
[6], the presented methodology supposes an advance in the application of the fuzzy inte-
gral not only restricted to the field of computer vision. Thus, just another unsupervised
approach for the construction of fuzzy measures has been presented [27]. This approach
was applied in the performance evaluation of students by aggregating subject qualifica-
tions. It is based on the application of entropy functionals for the determination of the
attribute importance.

The presented framework combines the fuzzy integral with a projection on a two-
dimensional grid, which is implemented through a self-organizing feature map (SOFM)
[28]. This last stage serves the automated construction of the fuzzy measures. Further-
more, the coefficients of the fuzzy measure are assessed by clustering the achieved projec-
tion. This hybrid system differs from a similar one, where a fuzzy integral and a SOFM are
applied for handwriting recognition [23], on its unsupervised nature. The framework,
which has been already applied in the classification of benchmark data sets [26], is exten-
sively analyzed herein.

The paper is organized as follows. First the theoretical background of the different
methodologies used in the framework for multi-dimensional image segmentation are
presented in Section 2. Thence, Section 3 details the advances on the construction of fuzzy
measures achieved herein. The framework for image segmentation is described in Section 4.
Finally, the results of the framework�s application (Section 5) and some conclusions
(Section 6) are given.

2. Theoretical background and related works

The fuzzy integral employs the fuzzy measures in order to establish the a priori impor-
tance of the information sources that are fused. There is a lack of procedures attaining the
automated construction of fuzzy measures [6]. The here presented approach employs a
SOFM, which has been already used in image processing for analyzing feature saliency
[29,30], in order to determine the aforementioned importance. Thus the projection of
the input data on an output map by applying a SOFM is first undertaken in the methodo-
logy presented herein. The projection result is thence partitioned through the application
of mathematical morphology. The theoretical background on the mentioned subjects,
namely the fuzzy integral, SOFMs, and mathematical morphology are detailed in the fol-
lowing sections.

2.1. Information fusion through the fuzzy integral and the construction of fuzzy measures

There are several types of fuzzy integral [2]. Among them the so-called Choquet Fuzzy
Integral showed hitherto the best performance in the resolution of classification problems
[26]. This integral presents the following mathematical expression:

ClðxÞ ¼
Xn

i¼1
hðiÞðxiÞ � hðiþ1Þðxiþ1Þ
� �

� lðAðiÞÞ. ð1Þ

The notation used in this expression is explained in the following paragraph. The fuzzy
integral aggregates fuzzy information. Thus the data from the different information
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sources, x = x1, . . . ,xn, are fuzzified, where hi represent the fuzzifying functions. The fuzz-
ified data are operated against the quantification of the a priori importance on the infor-
mation sources. This quantification is realized through the fuzzy measure coefficients,
l(Ai), where Ai, i = 0, . . . , 2n�1, stands for the different subsets that can be established over
the set of information sources. The parentheses in the subindices indicate a sorting oper-
ation previous to the aggregation, up to which the fuzzy measure coefficients are selected.
The interested reader is referred to [2] for a detailed description on this fuzzy fusion oper-
ator and to [4] for a description of different aspects of its application in computer vision.

The fuzzy measures l are functions on fuzzy sets, l : PðX Þ ! ½0; 1	, which satisfy the
following axiomatic conditions in case of a finite number of information sources:

I. Limits condition: l(;) = 0; l(X) = 1.
II. Monotonicity condition: A � B! l(A) 6 l(B).

Being n the number of information sources to be aggregated, a fuzzy measure presents
2n coefficients. Because of the limits condition just 2n � 2 coefficients have to be
determined.

The n coefficients of the individual sources are denoted as fuzzy densities. There are dif-
ferent types of fuzzy measures, whose differentiating characteristic is the kind of relation-
ship between the fuzzy densities and the coefficients of the other subsets. Therefore, the
construction of the fuzzy measure reduces to the determination of the n fuzzy densities
when using a particular type of fuzzy measure. In fuzzy k-measures [2] the fuzzy densities
are related to the remaining coefficients through a parameter k, as stated by

lðfxig [ fxjgÞ ¼ lij ¼ li þ lj þ klilj. ð2Þ

The standard procedure for finding k up to the values of the fuzzy densities can be
found in [4]. Moreover, possibility fuzzy measures fulfill:

lðfxig [ fxjgÞ ¼ lij ¼ _ðli; ljÞ; ð3Þ

where _ states for the maximum operator.
When using the fuzzy integral as classification function M fuzzy measures have to be

constructed, whereM is the number of classes. Moreover,M fuzzy integrals are computed
with respect to the M different fuzzy measures, what results in a possibilistic classification
[31] of the incoming data.

Among all strategies for the construction of fuzzy measures [6], data-driven ones offer
the best alternative because they are not based on a previously defined measure. Genetic
algorithms are in this context the most often used methodology in real applications
[6,25,24]. However, the utilization of such supervised strategies requires the collection of
a labeled data set, which is employed in the training phase. The supervised operation sup-
poses a shortcoming in image processing applications, where the generation of the training
set is not trivial, e.g., for image segmentation. In the here presented framework these mea-
sures are found without supervision by applying a SOFM on the input data.

2.2. Self-organizing feature maps and associated methodologies

SOFMs are neural networks used as tools for data visualization and knowledge engi-
neering with a well-known good performance in high-dimensional feature spaces [32].
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The SOFM paradigm seeks the projection of the incoming data set into a discrete grid of
nodes. Two auxiliary matrices, which help in the visualization of the generated clusters,
can be defined on the output map [33]. These matrices are denoted as the U-matrix and
hit-matrix. If the projection grid is two-dimensional, the auxiliary matrices can be repre-
sented in the image space, i.e., as gray value images.

A SOFM is used in the here presented segmentation approach in order to avoid the
clustering of high-dimensional feature spaces by taking into consideration the data projec-
tion achieved by the application of this neural paradigm. For this purpose, the SOFM is
first trained with a subset of the input data. The neurons of the output map, which repre-
sent the vector prototypes denoted as wij, are randomly initialized and iteratively adapted
in the training phase. This is achieved by applying:

wijðt þ 1Þ ¼ wijðtÞ þ a � hcðtÞ � ½xðtÞ � wijðtÞ	;
where a is the learning rate, and hc(t) the so-called neighborhood function. More details on
the SOFM features can be found in [28]. The projection that is achieved by completing the
training phase is used for the computation of the U-matrix and hit-matrix [33].

The U-matrix represents the distances between the prototypes of the output map in a
gray value image space. Once the SOFM has been trained the U-matrix is constructed
as follows. For a map of dimensions P · Q, the U-matrix is an image with (2P � 1) ·
(2Q � 1) pixels, whose grayvalues are denoted as uij. Three different types of pixels can
be distinguished:

• Pixels whose position correspond to the prototype position, thus presenting odd subin-
dices. The values of these pixels are computed as the average of their four-neighborhood:

uij ¼
uði�1Þj þ uðiþ1Þj þ uiðj�1Þ þ uiðjþ1Þ

4
; ð4Þ

where i = 1,3, . . . , 2P � 1, and j = 1,3, . . ., 2Q � 1.
• Pixels between two prototypes, thus only one of the subindices is even. The values of
these pixels are computed as the distance between the value in the output map of the
adjacent prototypes wij:

uij ¼
kwði�1Þj � wijk : 8i ¼ 2; 4; . . . ; 2P ; j ¼ 1; 3; . . . ; 2Q� 1;

kwiðj�1Þ � wijk : 8i ¼ 1; 3; . . . ; 2P � 1; j ¼ 2; 4; . . . ; 2Q.

�
ð5Þ

Here any distance function can be used, but the Euclidean distance is customary taken.
The value of these distance pixels are first computed.

• Pixels whose four-neighborhood is exclusively formed by the formerly mentioned
distance pixels, thus with both subindices being even. The values of these pixels are com-
puted again as the average of their four-neighborhood:

uij ¼
uði�1Þj þ uðiþ1Þj þ uiðj�1Þ þ uiðjþ1Þ

4
; ð6Þ

where i = 2,4, . . . , 2P, and j = 2,4,. . . , 2Q.

The U-matrix is customary used in order to get a first idea of the cluster distribution
[34]. Clusters are characterized in this image through an homogeneous area of low
gray-values separated by edge-wise elongated areas of large grayvalues (see Fig. 1c).



Fig. 1. Operations based on the SOFM neural paradigm on the ‘‘peppers’’ image. (a) Input image. (b) Projection
on the output map of the SOFM network. (c) U-matrix of the SOFM projection. (d) Hit-matrix of the SOFM
projection. (e) Fuzzy hit-matrix of the SOFM projection.

28 A. Soria-Frisch / Internat. J. Approx. Reason. 41 (2006) 23–42
The hit-matrix is a two-dimensional histogram of P · Q positions, which correspond to
each of the prototypes in the output map wij. Once the output map has been trained, the
data set is applied once again in order to obtain the winning prototype of each data point.
This information is accumulated in the hit-matrix and represented in image form, where
the gray value is proportional to the number of times a prototype wins (see Fig. 1d)
[33]. Such prototypes with a larger number of hits are the most-frequent winning values,
and thus can be considered as the most representative ones.

There is also a variant of the hit histogram [32], which receives the name of fuzzy hit-
matrix. It presents a value FHi for each point i in the two-dimensional output grid com-
putable through the expression:

FHi ¼
Xp

j¼1

1

1þ ðkxj � wik=QÞ2
; ð7Þ

where p is the number of points in the data set and Q is the average of the quantization
error achieved in the data reduction (see Fig. 1e). Since the output map is clustered by
applying a morphological procedure, an overview on mathematical morphology is given
in the following section.

2.3. Mathematical morphology

Mathematical morphology is a theoretical framework used in image processing, where-
by local operations seek the global transformation of the image being treated [35]. Thus
the basic morphological operations dilation d(1)(f) and erosion �(1)(f) are applied on the



Fig. 2. Pictorial description of the geodesic erosion �ð1Þg ðf Þ with marker set f and geodesic mask g. S: structuring
element, �(1)(f): erosion, _: maximum.
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grayvalue input image f through a particular structuring element, which is the element
determining the geometry of the local operation. Furthermore, the so-called geodesic dila-
tion dð1Þg ðf Þ and geodesic erosion �ð1Þg ðf Þ [35] take into consideration a third element g,
which receives the name of geodesic mask. In these geodesic operators f is denoted as mar-
ker set. The geodesic mask limits the result of the basic morphological operation on the
marker set to a particular image subdomain. The two geodesic operations are formally
defined as

dð1Þg ðf Þ ¼ dð1Þðf Þ ^ g; �ð1Þg ðf Þ ¼ �ð1Þðf Þ _ g. ð8Þ

An exemplary pictorial description of the application of a geodesic erosion operator can
be observed in Fig. 2.

The so-called morphological reconstruction results from the iterative repetition of a
geodesic transformation until stability is achieved. Thus the reconstruction by dilation
Rg(f) and the reconstruction by erosion RH

g ðf Þ can be expressed as

Rgðf Þ ¼ dðiÞg ðf Þ; 8i=dðiÞg ðf Þ ¼ dðiþ1Þg ðf Þ;
RH

g ðf Þ ¼ �ðiÞg ðf Þ; 8i=�ðiÞg ðf Þ ¼ �ðiþ1Þðf Þ.
ð9Þ

It is worth mentioning that the morphological procedure used in the here presented frame-
work is based on the application of the morphological reconstruction.
3. Advances in the construction of fuzzy measures

In this section the two novel contributions concerning fuzzy measures presented herein
are elucidated. The first one takes into consideration the utilization of a self-organizing
feature map for the construction of the fuzzy measures, which are needed for the classifi-
cation stage undertaken by the fuzzy integral. Therefore the here presented approach is
first compared with the hybrid system for handwriting recognition presented in [23], which
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combines a fuzzy integral with this neural paradigm as well. Thence the procedure for the
automated determination of the fuzzy densities based on the projection achieved by the
SOFM is detailed. At the end of the section the procedure for the construction of the fuzzy
measures up to the obtained fuzzy densities is described. This part is related to the used
types of fuzzy measures, an aspect where some novelties are presented as well.

3.1. Comparison with other systems combining the fuzzy integral and self-organizing

feature maps

SOFMs have been already used in order to construct fuzzy measures [23]. This hybrid
system have been used for handwritten word recognition. The map�s prototypes are clus-
tered with a supervised procedure in the training phase. In the recall phase, the prototypes
within a cluster are fused through a fuzzy integral in order to compute the fuzzy member-
ship functions of the input image pattern to a particular character class. The computation
of the fuzzy measures is based on the relative frequency of activation of the prototypes
when a pattern corresponding to each particular character class is applied on the resulting
map.

In contrast to the formerly described system, the construction of fuzzy measures in the
morphological clustering of the SOFM, which is described in Section 3.2, results from an
unsupervised procedure. Thus it just presents two parameters, namely c and M, which
characterize the achieved segmentation. Moreover, the computation of the coefficients is
related to the winning frequency of the prototypes in both frameworks. In contrast to
the hybrid system for handwritten recognition, the morphological clustering makes use
of this concept through the utilization of the fuzzy hit-matrix.

3.2. Extraction of fuzzy densities from a SOFM output map through morphological

clustering

A methodology based on mathematical morphology that takes into consideration the
fuzzy hit-matrix and the U-matrix clusters the output map of a SOFM. The representation
of these matrices in the image domain enables the application of mathematical morphol-
ogy. The methodology is based on morphological reconstruction operators. The morpho-
logical clustering, whose algorithmical description is given in Algorithm 1, is applied on the
U-matrix in order to obtainM different vectors of n components. The components of these
vectors are used as the fuzzy densities of the fuzzy measures, whereby the fuzzy integral
undertakes the classification. The goal of the algorithm is therefore the selection of the
most outstanding prototype of M clusters in the U-matrix, where just one prototype in
each cluster of the U-matrix is selected.

In the morphological clustering (see Algorithm 1) the U-matrix is used as geodesic mask
g after undergoing a binarization through a threshold c (line 1). The binarization of the
U-matrix defines a set of the possible areas (PA), from which a prototype can be selected
(line 1). After the initialization (lines 2 and 3), the clustering proceeds as described in the
following paragraphs. The fuzzy hit-matrix is first binarized through a threshold corre-
sponding to its maximal value (line 5). In this way, a set of candidate prototypes (CP)
is defined (line 6). Thence a reconstruction by dilation is computed using each element (line
7) of the candidate set as the marker set and the set of possible areas as geodesic mask as
described in Section 2.3 (line 8). The image resulting from the reconstruction, which
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defines a set of selected areas (SA), is used two-fold. On the one hand, the candidate pro-
totypes falling within the selected areas SA are added to the set of selected prototypes SP
(line 9). On the other hand, the set of possible areas PA is actualized by eliminating those
areas with already selected prototypes (line 10). Hence, the selection of just one prototype
per cluster is assured. The detailed operation is sequentially repeated by decreasing the
threshold of the fuzzy hit-matrix (line 5) until M prototypes, which are embedded in the
set SP, have been selected (line 4).

As a result of the application of the morphological clustering,M prototype vectors of the
output map, which present therefore n components, are obtained. These prototypes can be
formally denoted as

qk ¼ fqk
1; . . . ; q

k
ng; 8k 2 ½1;M 	.
Algorithm 1. Morphological clustering of the U-matrix (U) based on reconstruction by
erosion (RH

g ðf Þ). PA: Set of possible areas. c: Threshold of the U-matrix, which determines
the cluster structure. SP: Set of selected prototypes. M: Number of prototypes to be
selected. FH: Fuzzy hit-matrix. CP: Set of candidate prototypes. sp: element of selected
prototypes.

PA {U > c}
h 256
SP {;}
while jSPj < M do

5: h h � 1
CP {FH = h} \ PA

for sp 2 CP do

SA RH

PAðspÞ
SP SP [ {sp}

10: PA PA � SA
end for

end while
3.3. Construction of the fuzzy measures and some related novelties

Once the winning prototypes for each segment class qk have been determined, the fuzzy
measures have to be constructed. For this purpose the expression (2) is applied, where the
fuzzy densities lk

i take the value of the corresponding component of the selected vector
prototypes:

lk
i ¼ qk

i ; 8k 2 ½1;M 	; i 2 ½1; n	. ð10Þ
Thus the M fuzzy k-measures lk are constructed and thence used in the classification.

Nevertheless, the obtained fuzzy densities can previously undergo a normalization. The
normalization of the fuzzy densities has been used in [36] in order for the fuzzy measure
coefficients of the coalitions to gain on importance, therefore increasing the discrimination
capability of the fuzzy integral. This normalization succeeds by applying a factor T to the
fuzzy densities as expressed by
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lk
i ¼

qk
i

T
; 8k 2 ½1;M 	; i 2 ½1; n	. ð11Þ

As it can be observed this normalization factor is the same for all classes.
As a novelty, another strategy can be used in order to improve the discrimination capa-

bility of the fuzzy integral in the classification. Hence, a new type of fuzzy measures can be
defined. A so-called mix type of fuzzy measure, which constitute an alternative to the con-
struction of fuzzy-k measures herein, is tested in the here presented framework as well. A
mix fuzzy-k-possibility measure fulfill the expression of a fuzzy k-measure just in the canoni-
cal region of the prototype vector qk. In the remaining regions of the feature hyper-cube,
this mix fuzzy measure behaves as a possibility measure, thus fulfilling the expression (3).
The fuzzy measures constructed in this fashion increase the result of fuzzy integrals for
these input vectors that present the same canonical region as the selected prototypes.

4. Application of a hybrid system for multi-dimensional image segmentation

The block diagram of the framework for the segmentation of multi-dimensional images
is depicted in Fig. 3. The utilization of a defuzzification stage is optional. Hence, the
framework delivers a fuzzy segmentation of the input image. This is an interesting prop-
erty if the result has to be used in other stages of a more complex embedding system, e.g., a
content-based image retrieval system. The defuzzification succeeds herein in order for the
reader to get a better idea of the properties and the performance of the system. The
description of the different modules of the framework succeeds in the following
subsections.

4.1. Module SOFM

A SOFM is first trained with a subset of the pixels extracted from the image to be seg-
mented. This subset of pixels is obtained by applying a subsampling strategy denoted as
Linear Pixel Shuffling (LPS) [37]. Therefore the here presented framework is extensible
Fig. 3. Block diagram of the here presented framework for the segmentation of multi-dimensional images. Omap:
Output map of the SOFM, Umat: U-matrix, FHmat: Fuzzy hit-matrix. The defuzzification stage can be
optionally applied.
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[38]. The extensibility of the algorithm allow it to be used with large data sets, i.e., large
resolution images (see Section 5.4). However the sampling approach is undertaken herein
in the spatial domain in contrast to other extensible methodologies [38], where the subsam-
pling procedure is applied on the histogram.

Normally the SOFM is trained with training data set formed by feature vectors. Fur-
thermore, one possible strategy for realizing this training in computer vision is the usage
of the feature data set together with the corresponding coordinate of the features in the
image domain. In case of using color features this procedure is denoted as working in a
spatio-chromatic space [39].

As already mentioned the SOFM achieves a projection of the input data in a two-
dimensional grid of prototypes that quantize it. Once the training phase has been com-
pleted, the fuzzy hit-matrix and U-matrix are computed (see Section 2.2). These three
matrices are delivered to the module implementing the morphological clustering. More-
over, the fuzzy hit-matrix is used for the construction of fuzzy membership functions in
the module Fuzzification.

4.2. Module morphological clustering

This module implements the algorithm described in Algorithm 1. Thus, the procedure
fixes up the clusters on the U-matrix through the parameter c. It selects thence theM larger
local maxima of the fuzzy hit-matrix that fall within these clusters. Once these local max-
ima have been determined, it extracts the prototype vectors from the output map and
delivers them to the module implementing the fuzzy integral.

4.3. Module fuzzification

In this module the fuzzy hit-matrix is transformed into one fuzzy membership function
for each component of the input vector data. This operation is attained by taking the com-
ponent planes of the output map and reorganizing them as a one-dimensional histogram.
Hence, the abscise values are the values of the component planes, and the ordinate values,
the value of the fuzzy hit-matrix for each neuron. Once being normalized, the resulting
probability histogram is used as fuzzification function on the input data.

As an alternative, the one-dimensional histogram can be further transformed. On the
one hand, the sum histogram is computed, what results in a monotonic increasing fuzzy
membership function. On the other hand, Parzen windows [40] are applied on the one-
dimensional histogram in order to smooth it.

4.4. Module fuzzy integral

In the application of the fuzzy integral for image segmentation an integral is computed
for each pixel of the input image. This stage is realized in this module. The fuzzy integral is
computed with respect to M fuzzy measures lk, whose fuzzy densities result from the
application of the morphological clustering as stated by Eq. (10). The coefficients of the
coalition subsets are computed by applying Eq. (2). Therefore a possibilistic classification
[31] of the pixels on M segment classes (see Section 2.1) is obtained.

The two different strategies employed in order to improve the discrimination capability
of the fuzzy integral, which are described in Section 3.3, are implemented in this module as
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well. First a factor T can be defined on each image in order to normalize the fuzzy densities
as expressed by Eq. (11). This operation is undertaken previous to the construction of the
fuzzy measures and therefore to the integration. Furthermore a mix fuzzy-k-possibility
measure (see Section 3.3) can be used. The application of these two alternatives is optional
and determined by the user. Their effect on the segmentation results is analyzed in Section
5.1.4.

4.5. Module defuzzification

Following the possibilistic classification, the fuzzy integral results can be defuzzified.
This is attained by finding out the argument, which delivers a maximum fuzzy integral re-
sult. The class of each pixel is finally assigned to this argument. As formerly mentioned,
the application of this module is not compulsory.

5. Application results

The performance of the framework formerly presented is evaluated twofold. First the
framework is applied for the segmentation of benchmark color images both for analyzing
its different parameters and for comparing its performance with this of a well-known pro-
cedure [39]. Second, the framework is used in an application for market basket recogni-
tion. In this case, the framework attains the weak segmentation of the input images,
which can lead to the identification of the depicted objects.

It is worth mentioning the kind of features employed in these applications. The segmen-
tation is attained in a multi-dimensional feature space. The color features are the compo-
nents of different color spaces simultaneously taken into account. Thus, the input images,
which are represented in the RGB color space, are first transformed into different color
spaces. The mathematical expressions of these transformations can be found in [41,42],
where color spaces are reported to present invariance with respect to particular imaging
conditions. Thus, each color space present different invariance properties, e.g., HS with
respect to the illumination intensity. Therefore, the simultaneous employment of different
color spaces is expected to improve the robustness of the here presented framework.

5.1. Benchmark images

Different aspects of the presented framework are analyzed on hand of benchmark
images.1 These results are described in the following sections. Since the result of a segmen-
tation is subjectively analyzed at its best through a crisp image, the defuzzification stage
has been applied herein.

5.1.1. Sampling and general methodology

The ‘‘peppers’’ image is first segmented with the here presented framework on a five-
dimensional color feature space. Furthermore the color feature vectors are formed by
the red, the green, and the blue components of the RGB-color space, and the hue, and
the saturation of HSI-space. The SOFM is trained with 2% of the pixels in the input
1 The images can be found in the USC-SIPI Image Database http://sipi.usc.edu/database/.

http://sipi.usc.edu/database/


Fig. 4. Segmentation results of the ‘‘peppers’’ image (a) with the here presented framework. (b) Segmentation on
a five-dimensional color space RGB + HS. (c) Segmentation on a seven-dimensional spatio-chromatic feature
space, i.e., RGB + HS + xy.
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image. The obtained results can be observed in Fig. 4b. The employment of the fuzzy
hit-matrix instead of the hit-matrix improved the classification results (compare Fig. 1b
and e). The segmentation was achieved by applying c = 40 and M = 6 in the morpholog-
ical clustering. Moreover the framework is tested on a seven-dimensional spatio-chromatic
feature space (see Section 4.1), where the formerly used color space (RGB + HS) is taken
into consideration together with the pixel coordinates (x,y). As it can be seen in Fig. 4c
adding the spatial coordinates improves the results in this image.

The framework is tested on the ‘‘baboon’’ image as well, where again 2% of the pixels
are used for training. The obtained results are depicted in Fig. 5. In this case, the para-
meters applied were c = 20 and M = 6. Again the segmentation succeeds on the five-
dimensional color space (Fig. 5b). The position of the extracted prototypes qk on the
U-matrix can be observed in Fig. 5c. As shown, the morphological clustering manages to
select one prototype for each color cluster. Furthermore, some of the extracted prototypes
are filtered out by the defuzzification stage.

5.1.2. Performance with increasing dimensionality

This section serves the analysis of the framework�s performance by taking an increment
in the dimensionality of the feature space into account. Hence, the results obtained with
Fig. 5. Segmentation results of the ‘‘baboon’’ image (a) with the here presented framework on a five-dimensional
color space (b). (c) U-matrix with selected neurons in the results� color code.



Fig. 6. Segmentation results of the ‘‘baboon’’ image (see Fig. 5a) with the here presented framework on a feature
space of increasing dimensionality. See Fig. 5b for a comparison with the results on a five-dimensional color space
RGB + HS. (a) Spatio-chromatic space of dimensionality 7, RGB + HS + xy. (b) RGB plusHSI plus Gaussian [42]
color spaces, i.e., nine-dimensional color space.
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the ‘‘baboon’’ image on spaces of dimensionality 7 and 9 are shown in Fig. 6, which can be
compared with the result on a five-dimensional feature space (see Fig. 5b). As it can be
observed, the framework performs analogously, showing a relative independence on the
dimensionality. The question arises if the features selected are informative enough, but
the quality of the feature selection is not analyzed herein. Furthermore the result on the
nine-dimensional space can be improved as it is shown in Section 5.1.4.

5.1.3. Fuzzification strategies

The presented fuzzification strategies (see Section 4.3) are compared herein. The seg-
mentation of the ‘‘peppers’’ image is therefore attained in a color feature space. As it can
be observed in Fig. 7 the employment of monotonic increasing fuzzy membership
functions deliver similar results as those obtained without fuzzification but by taking a
spatio-chromatic feature space into account (see Fig. 4c). Thus, the sum histogram
can be used for the implementation of the fuzzification stage, whereas the other two
Fig. 7. Segmentation results of the ‘‘peppers’’ image (see Fig. 4a) with the here presented framework on a five-
dimensional feature space (RGB + HS) for different fuzzification strategies. See Fig. 4b–c for a comparison with
the results without fuzzification. (a) Probability histogram. (b) Probability histogram smoothed through Parzen
windows [40]. (c) Sum histogram.



Fig. 8. Segmentation results of the ‘‘baboon’’ image (see Fig. 5a) with the here presented framework for different
fuzzy measures. See Fig. 6b for a comparison with the results obtained by applying a fuzzy-k measure on the same
color space, namely RGB + HSI + Gaussian. (a) Fuzzy-k measure with a normalization T = 3 on the fuzzy
densities. (b) Mix fuzzy-k-possibility measure. (c) Mix fuzzy-k-possibility measure with a normalization T = 3 on
the fuzzy densities.
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strategies, namely the probability histograms and Parzen windows, do not perform well
at all.

5.1.4. Mix fuzzy-k-possibility measures and normalization
The two contributions related to the construction of the fuzzy measures are tested on

the ‘‘baboon’’ image. The results are depicted in Fig. 8, where a segmentation in a nine-
dimensional feature space is attained. As it can be observed, the significance of both strat-
egies increases for spaces of such dimensionality.
5.2. Comparison with the mean shift algorithm

In the following section the framework presented herein is compared with the mean shift
algorithm for image segmentation, which has been recently presented [39]. Both method-
ologies define the segmentation by taking a similar number of parameters into account,
namely three. Having set upM = 20, the fuzzy integral framework leaves as free parameters:
the utilization or not of a mix fuzzy-k-possibility measure (b, boolean), the normalization
factor of the fuzzy densities (T), and the threshold of the U-matrix (c). It is worth mention-
ing that the results of the framework presented herein are obtained on some instance of the
images2 that present compression artifacts. Moreover, a multi-dimensional color space
that is formed by the components of the RGB, the Gaussian [42], and the c-space [41] is
used in the segmentation. Its results can be observed in Fig. 9.

It can be observed that the framework presented herein is pixel-based, what results in
the presence of more details. Since the mean shift approach takes edge information and a
post-processing stage into account, its results are more uniform. These facts sometimes
generate some weird segment borders, e.g., the border of the two lake segments in the
2 The input images and the mean shift results are available at http://www.caip.rutgers.edu/~comanici/
MSPAMI/msPamiResults.html.

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html
http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html


Fig. 9. Comparison of the framework presented herein with themean shift [39] algorithm for image segmentation.
The comparison is undertaken on the images fagaras (left) and barcelona (right), which are depicted at the top,
after transforming them into a nine-dimensional color space, RGB + Gaussian + C-space. The segmentation of
fagaras is undertaken (from top to the bottom) for (b = 0, T = 8.0, c = 45), and (b = 1, T = 9.5, c = 50). This of
barcelona, for (b = 1, T = 3.5, c = 50), and (b = 1, T = 3.66, c = 70). The results of the mean shift plus post-
processing are depicted at the bottom.
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fagaras image. Furthermore, the segmentation based on the fuzzy integral uses less color
codes. The convenience of this property is application dependent.

Both methodologies are driven by the free parameters, what can be exploited by the
embedding systems as described in [39]. The intuitive worth of the parameters T and c
can be derived from the depicted results (see Fig. 9). Hence, T improves the discrimination
capability and its value is image dependent. The value of c controls the number of color
codes used in the segmentation result. Furthermore, the framework described herein
works somehow independent of the dimensionality of the input feature space. This fact
is based on the utilization of the U-matrix projection in the clustering procedure. While
‘‘whenever the feature space has more than six dimensions, the analysis [with mean shift]
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should be approached carefully’’ [39], the fuzzy integral framework successfully operates
in a nine-dimensional color space (see Fig. 9).

5.3. Segmentation for market basket recognition

The presented framework is used in a problem of market basket recognition, where
different market items have to be recognized in order to implement an automated cahier
system. In this context it is worth pointing out that the weak segmentation of images is
attained for content-based image retrieval [12]. A weak segmentation attains the data-dri-
ven segmentation of image data in contrast to the object-driven one attained by a strong
segmentation.

The weak segmentation of some beer can items is attained, which should lead to the
resolution of a market basket recognition application. The images are taken in a scenario
simulating uncontrolled conditions of illumination. Thus the items present some shadow
areas and some highlights, which make more difficult the achievement of a good
segmentation.

In order to cope with these illumination conditions the framework simultaneously
represent the images in different color spaces as formerly detailed. The Gaussian [42],
the c-space, and the l-space [41] are selected for attaining the segmentation. In this last
space just, the second component is employed. Thus, the segmentation is realized on a
seven-dimensional feature space. In this case, 5% of the image pixels are employed in order
to train the SOFM.

The framework is applied by normalizing the extracted fuzzy densities and by con-
structing mix fuzzy-k-possibility measures. The achieved results are depicted in Fig. 10.

5.4. Computational issues and framework properties

The framework presented herein is composed by three main computational modules.
The first one undertakes the transformation among the different color spaces used, the
subsampling of the resulting multi-dimensional color space and finally the training of
the SOFM through this input data subset. The second one includes the morphological
clustering of the SOFM map, whereby the fuzzy densities are extracted. The last module
embeds the fuzzy integral operation for theM classes and the defuzzification of the result.

Although the assessment of the computational cost depends on software implementa-
tion, hardware, and other influencing factors, the reader can find in the following sen-
tences some orienting CPU times determined on a computer with a Pentium M
processor working at 1.3 GHz. The training of the SOFM takes approximately 3 s for a
20 · 20 map and 10,000 train iterations on a three-dimensional color space. This quantity
depends on the mentioned parameters. The interested reader can use the SOM Toolbox
[32] for a prototyping implementation of this module.3 The clustering of the output
map computes in the order of hundreds of milliseconds depending on the dimensions
of the output map and the parameters of the procedure. Some software modules of
mathematical morphology4 can facilitate testing the morphological clustering. The fuzzy
integration depends on the number of classes of the segmentation and the dimensions
3 Free available at http://www.cis.hut.fi/projects/somtoolbox/.
4 For example, free available at http://www.astro.rug.nl/~gipsy/pydoc/numarray.nd_image.morphology.html.

http://www.cis.hut.fi/projects/somtoolbox/
http://www.astro.rug.nl/~gipsy/pydoc/numarray.nd_image.morphology.html


Fig. 10. Segmentation results of the here presented framework in an application for market basket recognition. It
is worth mentioning the bad illumination conditions of the input images.
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of the input image. A fuzzy integral of a three-dimensional image can be implemented in
order to operate at 2 ms/pixel. It is worth mentioning that the utilization of look-up tables
in the implementation of fuzzy measures can extremely speed up this operation.

The question arises if its feasible to use such a complex framework as the one described
herein. In this context, it is worth pointing out some of the properties of the processing sys-
tem. Hence, the training phase can be always computed off-line. This makes difficult its
usage in real-time systems as video processing. However the extensibility of the framework
can be exploited in this case. Moreover, some other application fields as content-based
image retrieval can take advantage of the off-line training. In this context it is worth men-
tioning that the framework not only delivers the fuzzy segmentation of the image, which
can be used to compute the similarity between two images, but it orders the colors present
in the input image from more to less important. In the segmentation of color images the
code of the different segments are delivered as the fuzzy densities, and thus form part of
the system.

6. Conclusions

A framework based on the projection achieved by a SOFM and on the utilization of the
fuzzy integral has been described. The fuzzy integral classifies each of the pixels in the
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input images and thus attains the segmentation of the image. The corresponding fuzzy
measures are constructed through the application of a procedure for the morphological
clustering of the U-matrix, which is computed in the two-dimensional data projection
achieved by a SOFM. This approach constitutes a contribution to the field, since to the
best of our knowledge just one other procedure has been presented hitherto for the unsu-
pervised determination of the fuzzy measure coefficients.

The general methodology can be successfully applied for the segmentation of color
images, as it has been shown on hand of benchmark images. The presented framework
is characterized by two parameters (although the number of prototypes to be selected
M can be coarsely determined). One of the main features of the here presented framework
is that large dimensional feature spaces can be clustered somehow independently from the
dimensionality of the feature space, i.e., just the response of the U-matrix to the high-
dimensional space influences the result. The fuzzification stage is better attained through
the application of monotone increasing membership functions. The normalization of the
fuzzy densities, which adds a parameter to the system, and the utilization of the mix

fuzzy-k-possibility measures presented herein improve the results, especially in feature
spaces of larger dimensionality.

Finally, the weak segmentation of color images for the resolution of a market basket
recognition problem is realized. In this context, it is worth mentioning the robustness of
the framework with respect to the illumination conditions. The obtained results demon-
strate the capability of the here presented approach. Therefore, the segmentation of color
images through texture analysis will be attained in the near future.
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