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Fig. 2 Schematic picture of typical VAT (Kobold). 
 
 

On the other hand, the VAT’s axis of rotation is 
perpendicular to the flow direction (see Fig. 3). Compared to 
the HAT, its cut-in speed is high and efficiency is low. 
However, the rotation direction is independent of the flow 
direction and it is easy to set up the generator above the water 
surface. As for the HAT, the efficiency of the VAT can be 
optimized with properly determined turbine diameter, 
number of blades, pitch angle and blade chord length.  
 
 

 

Fig. 3 A typical VAT (Darrieus turbine) arrangement (Blue 
Energy). 

 
 
Most of the research activities on the turbine performance 

analysis have been found for wind turbines, using the blade 
element momentum theory (BEMT), which was introduced 
by Glauert (1963). Recently, due to the high interest in the 
renewable energy technology and great advancement of 

computer, computational fluid dynamics (CFD) codes 
solving the Reynods-Averaged Navier-Stokes (RANS) 
equations are applied in many different ways. The numerical 
analysis of the flow fields around wind turbines were 
performed mainly by nationally funded laboratories such as 
RiSo and the Danish Technical University in Denmark, the 
German Aerospace Center (DLR) in Germany, the 
Aeronautical Research Institute (FFA) in Sweden and NASA 
in USA. Especially, the National Renewable Energy 
Laboratory (NREL) test performed at NASA and 
NREL/NWTC aerodynamic blind comparison test (Sorensen 
et al., 2002) showed good application examples of CFD. 

On the other hand, the computational research on the tidal 
stream turbines is difficult to find in the literature. Therefore, 
the ultimate goal of this study is the development of an 
analysis method for the VAT design. The present paper is the 
first report of the study. First, the flow around the NACA653-
018 airfoil, which is often employed for wind turbines, was 
simulated and analyzed for different angles of attack. The 
results were validated against the experimental data to verify 
the performance of the code. Then the computational analysis 
of the two-dimensional (2D) unsteady flow around the VAT 
was performed. The commercial CFD software, FLUENT 
v6.3, was used for the analysis. Different tip-speed ratios 
(TSR) of the turbine and different number of blades were also 
studied, and it was found that the turbine efficiency can be 
optimized with a proper combination of these parameters.  

The present paper is organized as follows. The model 
problem is presented next, and followed by the computational 
method used. Then the computational results are presented 
and discussed. Finally, concluding remarks are made with a 
summary.  

 
 
 

MODEL PROBLEM 
 
The symmetric laminar airfoil NACA653-018 (Fig. 4) was 

selected, which is typical blade section geometry for wind 
turbines.  

 
 

  
Fig. 4 NACA653-018 blade section. 
 
 
The operating speed, expressed by TSR, was set between 2 
and 3.5. Note that TSR is defined as TSR=RΩ/V, where R is 
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the turbine radius, Ω is the angular velocity, and V is the 
speed of the stream. The corresponding chord-based 
Reynolds number (Re) was 4 million to 7 million with the 
chord length of 1 m. In this Re range, the laminar-to-turbulent 
transition did not takes place on the of blade surface, so no 
special treatment was needed. The flow condition for the 
analysis is shown in Table 1. The turbine radius was set to 4 
m, which is considered to be a better size to minimize the 
interference between blades.  
 
 
Table 1 Flow condition. 

TSR Current 
Speed(m/s) 

Turbine’s 
Angular 

speed(rad/s) 

Re 
(Million) 

2 2 1.00 3.98  

2.5 2 1.25 4.98  

3 2 1.50 7.97  

3.5 2 1.75 6.97  

 
 
The domain size was set large enough, based on other 

external flow analysis results. As shown in Fig. 5, there was 
the rotational sub-domain surrounding the blades and 
stationary sub-domains in the remaining region. The inlet 
width was set to 6D, while the outlet width was larger than 
that of the inlet, i.e., 10D. The inlet was located 3D upstream 
and 12D downstream.  

 
 

 
 
Fig. 5 Computational domain. 
 
 
 
COMPUTATIONAL METHOD 

 
The flow filed was simulated using the commercial CFD 

code, FLUENT v6.3. The same code has been used 
successfully for similar problems, such as Rhee and Kim 
(2008), Rhee (2009), and Ockfen and Matveev (2009). The 
RANS equations were solved using the cell-centered finite 
volume method, and the sliding mesh method was used to 

rotate the sub-domain for the turbine blades. The SIMPLE 
algorithm introduced by Patankar and Spalding (1972) was 
used for the velocity-pressure coupling. The QUICK scheme 
was employed to discretize the convection terms, while the 
2nd order accurate central difference scheme was used for the 
discretization of diffusion terms. Time integration was done 
implicitly, and the multi-grid method was used to accelerate 
the convergence. The k-ω SST model (Menter, 1993) was 
adopted for turbulence closure. Once the steady flow solution 
without rotating the turbine blades was obtained, the 
unsteady flow computation was commenced by turning on 
the blade rotation. 

The sub-domain for the rotating turbine blades was 
shaped like a donut. The non-matching interface was defined 
between the rotating sub-domain and stationary outer sub-
domain, and the simple linear interpolation was used for the 
transition of the solution through the interface. Fig. 6 displays 
the location of the boundaries. The inlet was defined as a 
velocity inlet, which has constant inflow velocity, while the 
outlet was set as a pressure outlet, i.e., the pressure was kept 
constant. The velocity at the outlet was determined by the 
extrapolation from inside. The no-slip condition was applied 
on the turbine blades, i.e., set the relative velocity of blades 
to zero. 

 
 

 
 
Fig. 6  Boundary conditions. 
 
 
 

 
 
Fig. 7 Overall view of the mesh. 
 
 

The mesh was generated with quadrilateral cells, except 
for the center of the rotation, where triangular cells were used. 
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There were four sub-domains in the computational domain 
with 194,299 and 241,947 cells in the meshes for the 3- and 
4-bladed turbine simulations, respectively. Fig. 7 shows the 
overall view of the 4-bladed turbine mesh, and the zoom-in 
view around the rotating sub-domains is displayed in Fig 8. 
The cells were concentrated near the blades, with the average 
wall-normal distance of y+≈ 5. Fig. 9 shows the cells around 
the blades. 

 
 

 
 
Fig. 8 Rotating sub-domain mesh for 3- and 4-bladed turbine. 
 
 

 
 
Fig. 9 Grid around the blade. 

 
 
 

RESULTS AND DISCUSSION 
 
A simple numerical test was performed to verify the 

reliability of the computational method and to determine the 
numerical parameters for the computation. The 
hydrodynamic forces acting on the NACA653-018 airfoil in 
different angles of attack were computed. The chord length 
was set to 1.524 m, a typical size for a tidal stream turbine, 
and the corresponding chord-based Re was 6 million. The 
converged solution was obtained after about 1,500 iterations. 
Figs. 10 to 12 show the comparison of the computational 
solutions and experiment data (Abbott et al., 1959; Quinn, 
1944). The computed lift forces (Fig. 10) and lift-to-drag 
ratios (Fig. 11) are in good agreement with the data at the 
angles of attack between -10°and 10°, which is the normal 
operating range of the turbine blades. The difference at larger 
angles of attack is deemed to be due to the less accurately 

predicted separation and possible laminar-to-turbulent 
transition occurred in experiments, but not taken into account 
in the computation. Fig. 12 shows the surface pressure 
coefficient on the hydrofoil at the angle of attack of 16.5°. 
The computational solutions and experimental data are in 
excellent agreement. 

 

 
 

Fig. 10 Comparison of lift coefficients.  
 
 

 
 

Fig. 11 Comparison of lift-to-drag ratio.  
 
 

 
Fig. 12 Comparison of pressure distributions.  
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Now with the computational method verified for the 
blade section geometry, the 2D unsteady flow around the 
turbine cross section with rotating blades was simulated. 
After about 2,000 iterations without the rotation of the 
turbine blades, the steady flow field was developed. Then, the 
sub-domain was let spin and the unsteady flow computation 
was performed. The time step size of 0.01 second was used 
with 80 iterations per time step. The computation was 
continued until the stable periodic solutions were obtained. 
Fig. 13 shows a snap shot of the pressure distribution. The 
initial position of the blades is also displayed to help 
understand the phase of the particular instant.   

 
 

 
 

Fig. 13 Typical pressure distribution. 
 
 
 

 
 

Fig. 14 Torque for different TSR (3-bladed turbine). 
 
 
The sum of the torque on the blades is shown for different 
TSR’s in Fig. 14 (3-bladed turbine) and Fig. 15 (4-bladed 

turbine). Three or four cycles were repeated in one rotation 
depending on the number of blades. As expected, with 
increasing number of blades, the range of torque variation 
was reduced. Although the maximum instant torque is larger 
with the 3-bladed turbine, care should be taken in calculating 
the average efficiency because there appears negative torque 
occurred at certain instants. Also note in Figs. 14 and 15 that 
there is an increasing phase lag with increasing number of 
blades. In order to maximize the turbine efficiency, the 
combination of the number of blades and TSR needs to be 
carefully considered in the initial design stage. 
 
 

 
 
Fig. 15 Torque for different TSR (4-bladed turbine). 

 
 
 
The shaft power is defined as Eq. (1), i.e., the time 

average of the torque times the angular velocity for one 
period. The power coefficient (Cp) in Eq. (2) is the ratio of 
the average shaft power to the flow kinetic energy per unit 
time through the projected area of the turbine. 
 
 

wP T= Ω                                       (1) 
 
 
(Pw: shaft power, Ω: angular velocity, T: averaged torque) 
 
 

3
21 (2 )

2

w w
p

P PC
RVV RV ρρ

= =                         (2)     

 
 

The power coefficients, in other words, the efficiency of 
all the computed cases are shown in Fig. 16. The maximum 
efficiency is appeared to be obtained around TSR of 2.5 with 
both the 3-bladed and 4-bladed turbines. Although the overall 
efficiency is higher with the 3-bladed turbine, in the low TSR 
range, the 4-bladed turbine shows better and more stable 
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performance. As mentioned above, the efficiency is 
influenced by both the number of blades and TSR, and 
thereby these variables must be selected with special care. 

 
   

 
Fig. 16 Power coefficients vs. TSR for 3- and 4-bladed 
turbines. 

 
 
 

 CONCLUSIONS 
 
The 2D unsteady flow analysis for a VAT cross section 

with fixed-pitch three or four blades was performed using an 
unsteady RANS method. Firstly, the hydrodynamic forces 
acting on the NACA653-018 airfoil in different angles of 
attack were computed and the results were compared with 
experimental data. By employing the sliding mesh method, 
the unsteady flow field around a VAT with rotating blades 
was simulated. It is confirmed that a proper combination of 
the number of blades and TSR is essential for the optimum 
efficiency of the turbine. The maximum efficiency of the 
simplified 2D model was obtained at TSR of 2.5. The effects 
of pitch angle and blade skew are planned to be investigated 
as future work. 
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