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Abstract

In this work, some fixed point theorems for a new class of Chandrabhan maps are proved which in turn include the fixed point
theorems of Monch, Sadovskii, Darbo, Krasnoselskii, Dhage, and Covitz and Nadler as special cases.
c© 2006 Elsevier Ltd. All rights reserved.

Keywords: Nonlinear operators; Fixed point

1. Introduction

Fixed point theory for multi-valued mappings is an important topic of multi-valued analysis and finds several
applications to differential and integral inclusions, control theory and optimization. The multi-valued analogue of the
Schauder fixed point theorem due to Himmelberg [6] is useful for proving the existence theorems for such problems
in the multi-valued analysis. Generalizing the fixed point theorem of Schauder [1], Monch [8] proved a fixed point
theorem for a new class of single-valued mappings called the Monch mappings hereafter, and applied it to the nonlinear
boundary value problems of ordinary differential equations in Banach spaces for proving the existence of solutions. In
this work we investigate a new class of multi-valued mappings in Banach spaces possessing the fixed point property
which again include the multi-valued analogue of the Monch fixed point theorem as a special case.

Let X be a Banach space and let P(X) denote the class of all subsets of X . Define

Pp(X) = {A ⊂ X | A is non-empty and has a property p}. (1.1)

Thus, Pbd(X),Pcl(X),Pcv(X), and Pcp(X) denote the classes of all bounded, closed, convex and compact subsets of
X respectively. Similarly, Pcl,cv,bd(X) and Pcp,cv(X) denote respectively the classes of closed, convex and bounded,
and compact, convex subsets of X respectively. For any A, B ∈ Pp(X), let us define

A ± B = {a ± b | a ∈ A, b ∈ B}

λA = {λa | a ∈ A}

for λ ∈ R. Similarly, define

‖A‖ = {‖a‖ | a ∈ A}
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and

‖A‖P = sup{‖a‖ | a ∈ A}.

Let A, B ∈ Pcl,bd(X) and let a ∈ A. Then define

D(a, B) = inf{‖a − b‖ | b ∈ B}

and

ρ(A, B) = sup{D(a, B) | a ∈ A}.

The function dH : Pcl,bd(X)× Pcl,bd(X) → R+ defined by

dH (A, B) = max{ρ(A, B), ρ(B, A)} (1.2)

is metric and is called the Hausdorff metric on X . It is clear that

dH (0,C) = ‖C‖P = sup{‖c‖ | c ∈ C}

for any C ∈ Pcl,bd(X).
A correspondence T : X → Pp(X) is called a multi-valued operator or multi-valued mapping on X . A point u ∈ X

is called a fixed point of T if u ∈ T u and the set of all fixed points of T in X is denoted by FT . For any A ⊂ X ,
define T (A) =

⋃
x∈A T x .

Definition 1.1. A multi-valued operator T : X → Pcl,bd(X) is called Lipschitz if there exists a constant k > 0 such
that

dH (T x, T y) ≤ k‖x − y‖ (1.3)

for all x, y ∈ X and the constant k is called the Lipschitz constant of T on X . If k < 1, then T is called a multi-valued
contraction on X with the contraction constant k. Similarly, a single-valued mapping T : X → X is called Lipschitz
if there exists a constant k > 0 such that

‖T x − T y‖ ≤ k‖x − y‖ (1.4)

for all x, y ∈ X and the constant k is called the Lipschitz constant of T on X . If k < 1, then T is called a contraction
on X with the contraction constant k.

The following fixed point theorem for multi-valued contraction mappings due to Covitz and Nadler (see Zeidler [9])
is well known in the literature.

Theorem 1.1. Let X be a complete metric space and let T : X → Pcl(X) be a multi-valued contraction mapping.
Then the set FT is non-empty and closed in X.

Remark 1.1. Note that if the multi-valued map T in the above Theorem 1.1 has compact values, then the set FT is
non-empty and compact in X .

The multi-valued operator T is called lower semi-continuous (for short l.s.c.) if G is any open subset of X ; then
the weak inverse of G under T

T −1(w)(G) =

{
x ∈ X | T x

⋂
G 6= ∅

}
is an open subset of X . Similarly the multi-valued operator T is called upper semi-continuous (for short u.s.c.) if the
set

T −1(G) = {x ∈ X | T x ⊂ G}

is open in X for every open set G in X . Finally T is called continuous if it is lower as well as upper semi-continuous
on X . A multi-valued map T : X → Pcp(X) is called compact if T (S) is a compact subset of X for any S ⊂ X .
T is called totally bounded if for any bounded subset S of X , T (S) =

⋃
x∈S T x is a totally bounded subset of X .
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It is clear that every compact multi-valued operator is totally bounded, but the converse may not be true. However
the two notions are equivalent on a bounded subset of X . Finally T is called completely continuous if it is upper
semi-continuous and totally bounded on X . The details on these terminologies appear in Hu and Papageorgiou [7].

The following multi-valued analogue of the Schauder fixed point theorem for multi-valued compact mappings
appears in Himmelberg [6].

Theorem 1.2. Let C be a closed, convex and bounded subset of a Banach space X and let T : C → Pcp,cv(C) be an
upper semi-continuous and compact multi-valued map. Then T has a fixed point.

Definition 1.2. A multi-valued map T : X → Pcl,cv,bd(X) is called Krasnoselskii type if T can be decomposed as
T = T1 + T2, where T1 : X → Pcl,cv,bd(X) is a multi-valued contraction map and T2 : X → Pcp,cv(X) is an upper
semi-continuous and totally bounded multi-valued map on X .

Definition 1.3. Let X be a Banach algebra. A multi-valued map T : S ⊂ X → Pcl,cv,bd(X) is called Dhage type if T
can be decomposed as T x = T1x T2x , x ∈ X , where T1 : S → Pcl,cv,bd(X) is a multi-valued Lipschitz map with the
Lipschitz constant k and T2 : S → Pcp,cv(X) is an upper semi-continuous and totally bounded multi-valued map on
X satisfying M k < 1, where M = ‖T2(S)‖P (Dhage [5]).

The Kurotowskii and Hausdorff measures α and β of noncompactness of a bounded set S in the Banach space X
are the nonnegative real numbers α(S) and β(S) defined by

α(S) = inf

{
r > 0 : S ⊂

n⋃
i=1

Si , diam(Si ) ≤ r∀ i

}
, (1.5)

β(S) = inf

{
r > 0 : S ⊂

n⋃
i=1

Bi (xi , r), for some xi ∈ X

}
, (1.6)

where Bi (xi , r) = {x ∈ X | d(x, xi ) < r}.
The details of Kuratowskii and Hausdorff measures of noncompactness appear in Banas and Goebel [1],

Deimling [2], Zeidler [9] and the references therein.

Remark 1.2. It is known that β(S) ≤ α(S) ≤ 2β(S) for every bounded subset S of the Banach space X .

Remark 1.3. It is known that if T : X → Pcl,bd(X) is a multi-valued contraction with a contraction constant k, then
β(T (S)) ≤ k β(S) for all S ∈ Pcl,bd(X). Similarly, if T is single-valued contraction on X with contraction k, then
α(T (S)) ≤ kα(S).

Definition 1.4. A multi-valued mapping T : X → Pbd(X) is called a multi-valued set-contraction if β(T (S)) ≤

kβ(S) for any bounded set S ⊂ X , where k < 1. Similarly a multi-valued map T : X → Pbd(X) is called
a nonlinear D-set-contraction if there exists a continuous and nondecreasing function ψ : R+

→ R+ such that
β(T (S)) ≤ ψ(β(S)) for some bounded subset S of X , where ψ(r) < r for r > 0. Finally, a multi-valued map
T : X → Pbd(X) is called β-condensing if for any S ∈ Pbd(X), we have that β(T (S)) < β(S) for β(S) > 0. Each of
the above terminologies is also applicable to single-valued mappings T on X with β replaced by α.

It is known that compact, Krasnoselskii and Dhage multi-valued maps are β-condensing. Notice also that every
multi-valued contraction H⇒ Krasnoselskii H⇒ set-contraction H⇒ nonlinear D-set-contraction H⇒ β-condensing,
but the converse need not be true.

2. Fixed point theory

Definition 2.1. A multi-valued mapping T : X → Pcl(X) is called a Monch type map if A is a countable subset of
X ; then

A ⊆ conv
(
{x0}

⋃
T (A)

)
H⇒ A is compact (2.1)

for some x0 ∈ A.
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Definition 2.2. A subset A of X is called countable if there exists a one-to-one correspondence f : N → A, where
N is the set of natural numbers. The element a = f (1) ∈ A is called the first element of A. A multi-valued mapping
T : X → X is said to satisfy Condition D if for any countable subset A of X ,

A ⊆ conv
(
{a}

⋃
T (A)

)
H⇒ A is compact (2.2)

where a is a first element of A.

Definition 2.3. A multi-valued mapping T : X → Pcl(X) is called Chandrabhan if A is a countable subset of X ;
then

A ⊆ conv
(

C
⋃

T (A)
)

H⇒ A is compact (2.3)

where C is a relatively compact subset of X called the support set of T in X .

Notice that β-condensing H⇒ Monch type maps H⇒ Condition D H⇒ Chandrabhan map, but the converse may
not be true. The first and third implications are obvious. To prove the second, let T be a Monch type multi-valued map
on X . Then (2.1) holds for some x0 ∈ X . Set S = {x0}

⋃
A. Then S is countable and we may consider the element x0

to be first element a of S. Therefore condition (2.2) holds and consequently T satisfies Condition D. A few details on
Chandrabhan maps may be found in Dhage [3,4].

Theorem 2.1. Let X be a Banach space, K ⊂ X a closed convex set, and let T : K → Pcp,cv(K ) be an upper
semi-continuous and Chandrabhan map with support set C in K . Then T has a fixed point.

Proof. We construct a sequence {Cn} of the subsets of K defined by

Cn+1 = conv
{

C
⋃

T (Cn)
}
, C0 = C. (2.4)

Define C ′
=

⋃
n≥0 Cn and C∗

= C ′. Then C ′ is a convex subset of K since Cn ⊂ Cn+1 for each n = 0, 1, 2, . . . . In
addition C ′

= conv{C
⋃

T (C ′)}. Hence C∗ is a closed convex subset of K and T : C∗
→ Pcp,cv(C∗). On the other

hand, by induction, Cn is compact for each n ∈ N. So there exists a countable set Sn such that Sn ⊂ Cn with Sn = Cn
for each n ∈ N.

Consider the countable set S =
⋃

n≥0 Sn . Then we have S = C ′ = C∗. Also

conv
({

C
⋃

T (S)
})

⊆ conv
({

C
⋃

T (C ′)
})

⊂ S.

Thus S = C∗ and T : C∗
→ Pcp,cv(C∗).

Now T is an upper semi-continuous compact, convex-valued multi-valued self-map of a non-empty compact
convex set C∗, and hence the desired conclusion follows by an application of Theorem 1.2. �

Corollary 2.1. Let X be a Banach space and let K be a closed convex subset of X. Let T : K → Pcp,cv(K ) be an
upper semi-continuous multi-valued map satisfying for a countable set S of K ,

S ⊂ conv
{

F
⋃

T (S)
}

⇒ S, is compact (2.5)

for some finite set F in K . Then T has a fixed point.

Corollary 2.2. Let X be a Banach space and let K be a closed convex subset of X. Let T : K → Pcp,cv(K ) be an
upper semi-continuous multi-valued map satisfying Condition D. Then T has a fixed point.

As a special case to Theorem 2.1 we obtain

Corollary 2.3. Let X be a Banach space, K be a closed convex subset of X and let T : K → Pcp,cv(K ) be a
multi-valued map. Suppose that any one of the following conditions holds.

(i) T is upper semi-continuous and β-condensing.
(ii) T is upper semi-continuous and a set-contraction.
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(iii) T is of Krasnoselskii type (Petrusel and Dhage).
(iv) T is Dhage type (if X is a Banach algebra) (Dhage).
(v) T is upper semi-continuous and compact (Himmelberg).

Then T has a fixed point.

When T is a single-valued mapping, Theorem 2.1 reduces to

Theorem 2.2. Let X be a Banach space, K ⊂ X a closed convex, and let T : K → K be a continuous and
Chandrabhan map. Then T has a fixed point.

Note that Theorem 2.2 is new to the literature on multi-valued fixed point theory which again includes the following
results as corollaries.

Corollary 2.4. Let X be a Banach space and let K be a closed convex subset of X. Let T : K → K be a continuous
map satisfying for a countable set S in K ,

S ⊂ conv
{

F
⋃

T (S)
}

⇒ S, is compact

for some finite set F in K . Then T has a fixed point.

Corollary 2.5. Let X be a Banach space and let K be a closed convex subset of X. Let T : K → K be a continuous
map satisfying Condition D. Then T has a fixed point.

Corollary 2.5 contains the following result due to Monch [8] as special case.

Corollary 2.6. Let X be a Banach space and let K be a closed convex subset of X. Let T : K → K be a continuous
Monch map. Then T has a fixed point.

The above corollary again includes the following known results in the fixed point theory for single-valued mappings
in Banach spaces. See Zeidler [9] and the references therein.

Corollary 2.7. Let X be a Banach space and let K be a closed, convex set, and bounded subset of X and let
T : K → K be a single-valued map. Suppose that any one of the following conditions holds.

(i) T is continuous and α-condensing (Sadovskii).
(ii) T is continuous and a set-contraction (Darbo).

(iii) T is a Krasnoselskii map (Krasnoselskii).
(iv) T is a Dhage map (if X is a Banach algebra) (Dhage).
(v) T is a compact and continuous map (Schauder).

Then T has a fixed point.

3. Leray–Schauder type fixed point theory

Next, we prove a Leray–Schauder type multi-valued fixed point theorem corresponding to Theorem 2.1.

Theorem 3.1. Let X be a Banach space, K ⊂ X a closed convex subset, and U ⊂ K an open and bounded set in
K . Let T : U → Pcp,cv(K ) be upper semi-continuous and Chandrabhan map with support set C in U. In addition
assume that

x 6∈ (1 − λ)conv(C)+ λT (x) for all x ∈ ∂U and λ ∈ [0, 1]. (3.1)

Then T has a fixed point.
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Proof. If U = K , then the conclusion follows directly from Theorem 2.1. Assume U 6= K so that ∂U 6= ∅. Define
the multi-valued homotopy H : U × [0, 1] → Pcp,cv(K ) by

H(x, λ) = (1 − λ)conv(C)+ λT (x) (3.2)

and let

Σ = {x ∈ U : x ∈ H(x, λ) for some λ ∈ [0, 1]}. (3.3)

Since H is upper semi-continuous, Σ is closed. Condition (3.1) guarantees that Σ and ∂U are disjoint. So from
Urysohn’s lemma it follows that there is a continuous function v : U → [0, 1] such that v(x) = 0 on ∂U and
v(x) = 1 on Σ . Define a set

D = conv
({

C
⋃

T (U )
})

(3.4)

and define a multi-valued map T̂ : D → Pcp(D) by

T̂ (x) =

{
H(x, v(x)) for x ∈ U
conv{C} for x 6∈ U .

(3.5)

It is easy to check that T̂ is an upper semi-continuous multi-valued compact and convex-valued self-map of D. Now
we prove that T̂ is a multi-valued Chandrabhan map on D. Let S be a countable set of D with S = conv{C

⋃
T (S)}.

Using (3.5), we obtain

conv
{

C
⋃

T̂ (S)
}

= conv
{

C
⋃

T
(

S
⋂

U
)}
.

Since T is Chandrabhan, S
⋂

U is relatively compact. Now by Mazur’s lemma, the entire set S is compact. Therefore
we may apply Theorem 2.1 to deduce that the multi-valued map T̂ has a fixed point. Since C ⊂ U , we have that
x ∈ U and x ∈ H(x, v(x)). This shows that x ∈ Σ with v(x) = 1. As a result x ∈ T (x). �

As a special case of Theorem 3.1 we obtain

Corollary 3.1. Let X be a Banach space, K ⊂ X a closed convex subset, and U ⊂ K an open bounded set in K and
let T : U → Pcp,cv(K ) be a multi-valued map. Suppose that any one of the following conditions holds.

(i) T is upper semi-continuous and β-condensing.
(ii) T is upper semi-continuous and a set-contraction.

(iii) T is of Krasnoselskii type.
(iv) T is of Dhage type (if X is a Banach algebra).
(v) T is upper semi-continuous and compact.

In addition assume that

x 6∈ (1 − λ)conv(C)+ λT (x) for all x ∈ ∂U and λ ∈ [0, 1].

where C is a relatively compact set in U. Then T has a fixed point.

An interesting corollary to Theorem 3.1 in the applicable form is

Theorem 3.2. Let Br (0) and Br (0) be respectively the open and closed balls in a closed convex subset K of a Banach
space X centered at origin 0 of radius r . Let T : Br (0) → Pcp,cv(K ) be an upper semi-continuous Chandrabhan map
with support set C = {0}. In addition assume that

λx 6∈ T (x), λ > 1 (3.6)

for all x ∈ X with ‖x‖ = r . Then T has a fixed point in Br (0).
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Corollary 3.2. Let Br (0) and Br (0) be respectively the open and closed balls in a closed convex subset K of a Banach
space X centered at origin 0 of radius r . Let T : Br (0) → K be a continuous Chandrabhan map with support set
C = {0}. In addition assume that

λx 6= T (x), λ > 1 (3.7)

for all x ∈ X with ‖x‖ = r . Then T has a fixed point in Br (0).

Finally, we remark that our Theorem 3.2 and Corollary 3.2 have some nice applications respectively to differential
and integral inclusions and equations in Banach spaces for proving the existence of the solutions. Some of the results
in this direction will be reported elsewhere.
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