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Abstract

We prove results concerning the distribution of 4-contractible edges in a 4-connected graph G in connection with the edges of
G not contained in a triangle. As a corollary, we show that if G is 4-regular 4-connected graph, then the number of 4-contractible
edges of G is at least one half of the number of edges of G not contained in a triangle.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider only finite undirected simple graphs with no loops and no multiple edges.
Let G = (V (G), E(G)) be a graph. For e ∈ E(G), we let V (e) denote the set of endvertices of e. For x ∈ V (G),

NG(x) denotes the neighborhood of x and degG(x) denotes the degree of x; thus degG(x) = |NG(x)|. For X ⊆ V (G),
we let NG(X) = ⋃

x∈XNG(x). If there is no ambiguity, we write N(x), deg(x) and N(X) for NG(x), degG(x) and
NG(X), respectively. For an integer i�0, we let Vi(G) denote the set of vertices x of G with deg(x)= i. For X ⊆ V (G),
the subgraph induced by X in G is denoted by G[X]. A subset S of V (G) is called a cutset if G − S is disconnected.
A cutset with cardinality i is simply referred to as an i-cutset. For an integer k�1, we say that G is k-connected if
|V (G)|�k + 1 and G has no (k − 1)-cutset.

Let G be a 4-connected graph. A 4-cutset S of G is said to be trivial if there exists z ∈ V4(G) such that N(z) = S;
otherwise it is said to be nontrivial. For e ∈ E(G), we let G/e denote the graph obtained from G by contracting e
into one vertex (and replacing each resulting pair of double edges by a simple edge). We say that e is 4-contractible or
4-noncontractible according as G/e is 4-connected or not. Note that if |V (G)|�6, then e ∈ En(G) if and only if there
exists a 4-cutset S such that V (e) ⊆ S. A 4-noncontractible edge e = ab is said to be trivially 4-noncontractible if there
exists z ∈ V4(G) such that za, zb ∈ E(G). We let Ec(G), En(G) and Etn(G) denote the set of 4-contractible edges,
the set of 4-noncontractible edges and the set of trivially 4-noncontractible edges, respectively. Thus e ∈ Etn(G) if
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and only if there exists a trivial 4-cutset S such that V (e) ⊆ S. Finally we let Ẽ(G) denote the set of those edges of G
which are not contained in a triangle. Note that Ẽ(G) ∩ En(G) ⊆ En(G) − Etn(G).

The following characterization of 4-connected graphs with Ec(G)=∅ was obtained by Fontet [3] and independently
by Martinov [6].

Theorem A. Let G be a 4-connected graph of order n, and suppose that G has no 4-contractible edge. Then one of
the following holds:

(1) G is the square of the cycle of order n; i.e., we can write V (G) = {v1, v2, . . . , vn} so that E(G) = {vivj |i − j ∈
{±1, ±2}(mod n)}; or

(2) there exists a 3-regular graph H such that G is the line graph of H.

(It is easy to see that if a 4-connected graph satisfies (1) or (2), then G has no 4-contractible edge.)

From Theorem A, we see that if G is a 4-connected graph with Ec(G) = ∅, then G is 4-regular and each edge of
G is contained in a triangle. Thus if a 4-connected graph G satisfies V (G) − V4(G) �= ∅ or Ẽ(G) �= ∅, then G has
a 4-contractible edge. Further it is natural to expect that under the same assumption, there is a 4-contractible edge in
the neighborhood of each vertex in V (G) − V4(G) and also in the neighborhood of each edge in Ẽ(G). As for the
distribution of contractible edges in the neighborhood of a vertex with degree at least 5, the following result was proved
in [1].

Theorem B. Let G be a 4-connected graph with V (G) − V4(G) �= ∅, and let u ∈ V (G) − V4(G). Then there exists
e ∈ Ec(G) such that either e is incident with u or at least one of the endvertices of e is adjacent to u. Further if
G[NG(u) ∩ V4(G)] is not a path of order 4 (length 3), then there are two such 4-contractible edges.

In this paper, we prove the following theorem concerning the local distribution of contractible edges in the neigh-
borhood of an edge not contained in a triangle.

Theorem 1. Let G be a 4-connected graph with Ẽ(G) �= ∅, and let uv ∈ Ẽ(G). Suppose that uv ∈ En(G) and let S
be a 4-cutset with u, v ∈ S, and let A be the vertex set of a component of G − S. Then there exists e ∈ Ec(G) such that
either e is incident with u or there exists a ∈ NG(u) ∩ (S ∪ A) ∩ V4(G) such that e is incident with a.

We also prove a somewhat global result. To state our result, we need some more definitions.
Throughout this and the next paragraph, we let G be a 4-connected graph. Let Ṽ denote the set of those vertices

of G which are incident with an edge in Ẽ(G) ∩ En(G), and let G̃ denote the spanning subgraph of G with edge set
Ẽ(G) ∩ En(G); that is to say, Ṽ = ⋃

e∈Ẽ(G)∩En(G)
V (e) and G̃ = (V (G), Ẽ(G) ∩ En(G)). Set

L = {(S, A)|S is a 4-cutset, A is the union of the vertex sets of

some components of G − S, ∅ �= A �= V (G) − S}, (1.1)

L0 = {(S, A) ∈ L|S is a nontrivial 4-cutset }. (1.2)

For (S, A) ∈ L, we let Ā=V (G)−S −A. Thus if (S, A) ∈ L, then (S, Ā) ∈ L and NG(A)−A=NG(Ā)− Ā=S.
Now take (S1, A1), . . . , (Sk, Ak) ∈ L so that for each e ∈ Ẽ(G) ∩ En(G), there exists Si such that V (e) ⊆ Si .

We choose (S1, A1), . . . , (Sk, Ak) so that k is minimum and so that (|A1|, . . . , |Ak|) is lexicographically minimum,
subject to the condition that k is minimum (thus if Ẽ(G)∩En(G)=∅, then k=0). Note that the minimality of k implies
that for each 1� i�k, we have E(G[Si]) ∩ (Ẽ(G) ∩ En(G)) �= ∅ and hence (Si, Ai) ∈ L0. Set S = {S1, . . . , Sk}.
Further set

K = {(u, S, A)|u ∈ Ṽ , S ∈ S, (S, A) ∈ L0,

there exists e ∈ Ẽ(G) ∩ En(G) such that u ∈ V (e) ⊆ S}. (1.3)
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We define two subsets K∗ and K0 of K. Let K∗ be the set of those members (u, S, A) of K for which A is minimal;
that is to say,

K∗ = {(u, S, A) ∈ K| there is no (v, T , B) ∈ K

with v = u and (T , B) �= (S, A) such that B ⊆ A}. (1.4)

Finally, let K0 be the set of those members (u, S, A) of K∗ which satisfy one of the following two conditions:

(1) deg(u)�5; or
(2) deg(u) = 4, |N(u) ∩ A| = 1 and, if we write N(u) ∩ A = {a}, then ua ∈ Ec(G).

We can now state our result.

Theorem 2. Let G be a 4-connected graph, and let K0 be as above. Then we can assign to each (u, S, A) ∈ K0 a
4-contractible edge �(u, S, A) having the property stated in Theorem 1, so that for each e ∈ Ec(G) there are at most
two members (u, S, A) of K0 such that �(u, S, A) = e.

As an application of Theorems 1 and 2, we obtain the following corollary concerning the number of contractible
edges.

Corollary 3. Let G be a 4-regular 4-connected graph. Then |Ec(G)|� |Ẽ(G)|/2.

The bound |Ẽ(G)|/2 of Corollary 3 is sharp. To see this, let ��2 be an integer, and define a graph G of order 8� as
follows:

V (G) = {ai, bi, ci, di, ti , ui, vi, wi |1� i��},
E(G) = {aibi, bici, cidi, diai, tiai, tibi, uici, uidi, vibi, vici ,

widi, wiai, tiui, viwi, vi ti+1, wiui+1|1� i��}
(indices are to be read modulo �). Then G is 4-regular 4-connected, and Ẽ(G) = {tiui, viwi, vi ti+1, wiui+1|1� i��},
Ec(G) = {viti+1, wiui+1|1� i��}. Thus |Ec(G)| = 2� = |Ẽ(G)|/2.

For a 4-connected graph G which is not necessarily 4-regular, we can show that if |Ẽ(G)|�16, then |Ec(G)|�
(|Ẽ(G)| + 8)/4. However, the verification of this statement involves lengthy calculations, and will thus be discussed
in a separate paper.

The organization of this paper is as follows. Section 2 contains preliminary results. We prove Theorem 1 in
Sections 3 and 4, Theorem 2 in Section 5 through 7, and Corollary 3 in Section 8. We remark that Proposition 3.1,
which is proved in Section 3, may be of independent interest in connection with Theorem B.

2. 4-Cutsets

Throughout the rest of this paper, we let G denote a 4-connected graph with Ẽ(G) �= ∅ (note that in proving
Theorem 2 and Corollary 3, we may clearly assume Ẽ(G) �= ∅). Thus |V (G)|�8. We write V4 for V4(G). Also let L,
L0 be as in the two paragraphs preceding the statement of Theorem 2 (see (1.1) and (1.2)).

In this section, we prove preliminary results concerning the contractibility of edges. We start with four easy lemmas
concerning 4-cutsets.

Lemma 2.1. Let (S, A), (T , B) ∈ L0, and suppose that A ∩ B = ∅ and A ∩ B̄ = ∅. Then S ∩ T = ∅, and |S ∩ B| =
|S ∩ B̄| = |A ∩ T | = |Ā ∩ T | = 2.
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Proof. Since A∩B =A∩ B̄ =∅ and S is a nontrivial 4-cutset, |A∩T |= |A|�2. Set Q= (S ∩T )∪ (S ∩ B̄)∪ (Ā∩T ).
If Ā ∩ B̄ �= ∅, then Q separates Ā ∩ B̄ and A ∪ B, and hence |Q|�4, which implies |S ∩ B̄| = |Q| − |S ∩ T | − |Ā ∩
T |�4 − |S ∩T | − |Ā∩T | = |A∩T |�2. If Ā∩ B̄ =∅, then since T is a nontrivial 4-cutset, we have |S ∩ B̄| = |B̄|�2.
Thus |S ∩ B̄|�2 in either case. Similarly |S ∩B|�2. Since |S|=4, this implies |S ∩B|= |S ∩ B̄|=2 and S ∩T =∅. If
Ā∩B or Ā∩B̄, say Ā∩B̄, is nonempty, then we have |S∩B̄|� |A∩T |, which forces |A∩T |=2 and hence |Ā∩T |=2.
Thus we may assume Ā∩B = Ā∩ B̄ =∅. Then we obtain |Ā∩T |= |Ā|�2, which implies |A∩T |= |Ā∩T |= 2. �

Lemma 2.2. Let (S, A), (T , B) ∈ L0, and suppose that S ∩ T �= ∅. Then either A ∩ B �= ∅ and Ā ∩ B̄ �= ∅, or
A ∩ B̄ �= ∅ and Ā ∩ B �= ∅.

Proof. Suppose that we have A ∩ B = ∅ or Ā ∩ B̄ = ∅, and we also have A ∩ B̄ = ∅ or Ā ∩ B = ∅. By symmetry, we
may assume A ∩ B = ∅ and A ∩ B̄ = ∅. But then S ∩ T = ∅ by Lemma 2.1, which contradicts the assumption that
S ∩ T �= ∅. �

Lemma 2.3. Let (S, A), (T , B) ∈ L, and suppose that A ∩ B �= ∅ and Ā ∩ B̄ �= ∅. Then ((S ∩ T ) ∪ (S ∩ B) ∪ (A ∩
T ), A ∩ B) ∈ L and ((S ∩ T ) ∪ (S ∩ B̄) ∪ (A ∩ T̄ ), Ā ∩ B̄) ∈ L.

Proof. Set R = (S ∩T )∪ (S ∩B)∪ (A∩T ) and Q= (S ∩T )∪ (S ∩ B̄)∪ (Ā∩T ). Then R separates A∩B and Ā∪ B̄,
and Q separates Ā ∩ B̄ and A ∪ B. Hence |R|, |Q|�4. On the other hand, |R| + |Q| = |S| + |T | = 8. Consequently
|R| = |Q| = 4, and hence (R, A ∩ B), (Q, Ā ∩ B̄) ∈ L. �

Lemma 2.4. Let (S, A) ∈ L.

(i) If W ⊆ S and |W |� |A|, then |N(W) ∩ A|� |W |. Further if |W | < |A| and |N(W) ∩ A| = |W |, then ((S − W) ∪
(N(W) ∩ A), A − (N(W) ∩ A)) ∈ L.

(ii) If x ∈ S, then N(x) ∩ A �= ∅. Further if (S, A) ∈ L0 and |N(x) ∩ A| = 1, then ((S − {x}) ∪ (N(x) ∩ A), A −
(N(x) ∩ A)) ∈ L.

Proof. Note that (ii) follows from (i) by letting W = {x}. Thus it suffices to prove (i). Now if A − (N(W) ∩ A) �= ∅,
then (S − W) ∪ (N(W) ∩ A) separates A − (N(W) ∩ A) and Ā ∪ W . Thus, the desired conclusions follow from the
assumption that G is 4-connected. �

In the following four lemmas, we consider edges which are adjacent to the endvertices of an edge contained in two
triangles. Recall that Ṽ = ⋃

e∈Ẽ(G)∩En(G)
V (e).

Lemma 2.5. Let ab ∈ E(G) with deg(a) = deg(b) = 4. Then N(a) − {b} �= N(b) − {a}.

Proof. If N(a) − {b} = N(b) − {a}, then N(a) − {b} separates {a, b} from the rest, which contradicts the assumption
that G is 4-connected. �

Lemma 2.6. Let u, a, b, w be four distinct vertices with ua, ub, ab, aw, bw ∈ E(G) and deg(a) = deg(b) = 4, and
write N(a) = {u, b, w, x} and N(b) = {u, a, w, y}. Then x �= y, and we have ax, by ∈ Ec(G) ∪ Etn(G) and a, b /∈ Ṽ .

Proof. By Lemma 2.5, x �= y. In view of the symmetry of the roles of a and b, it suffices to prove ax ∈ Ec(G)∪Etn(G)

and a /∈ Ṽ . By way of contradiction, suppose that ax /∈ Ec(G) ∪ Etn(G). Then there exists (S, A) ∈ L0 with a, x ∈ S.
By Lemma 2.4 (ii), N(a) ∩ A �= ∅ and N(a) ∩ Ā �= ∅. Since a vertex in N(a) ∩ A and a vertex in N(a) ∩ Ā are
nonadjacent, this means that one of u and w lies in A and the other one lies in Ā. We may assume u ∈ A and w ∈ Ā.
Then b ∈ S. Since N(b) = {u, a, w, y}, it follows that we have N({a, b}) ∩ A = {u} or N({a, b}) ∩ Ā = {w}, which
contradicts Lemma 2.4 (i). Thus ax ∈ Ec(G) ∪ Etn(G). Now again by way of contradiction, suppose that a ∈ Ṽ .
Then there exists e ∈ Ẽ(G) ∩ En(G) such that e is incident with a. Since au, ab, aw are contained in a triangle,
e �= au, ab, aw. Hence e = ax. But since Ẽ(G)∩En(G) ⊆ En(G)−Etn(G), this contradicts the earlier assertion that
ax ∈ Ec(G) ∪ Etn(G). Thus a /∈ Ṽ . �
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Lemma 2.7. Under the notation of Lemma 2.6, suppose that deg(u), deg(w)�5. Then ax, by ∈ Ec(G).

Proof. Suppose that ax ∈ En(G). Then by Lemma 2.6, ax ∈ Etn(G), and hence there exists c ∈ V4 such that
ca, cx ∈ E(G). Then c ∈ N(a) − {x} = {u, w, b}. Since deg(u), deg(w)�5, this forces c = b, which contradicts
Lemma 2.5. Thus ax ∈ Ec(G), and we can similarly show that by ∈ Ec(G). �

Lemma 2.8. Under the notation of Lemma 2.6, suppose that deg(u)�5 and deg(w) = 4. Then one of the following
holds:

(1) xw /∈ E(G) and ax ∈ Ec(G), or
(2) yw /∈ E(G) and by ∈ Ec(G).

Proof. If xw, yw ∈ E(G), then N({a, b, w}) − {a, b, w} = {u, x, y}, which contradicts the assumption that G is
4-connected. Thus we have xw /∈ E(G) or yw /∈ E(G). We may assume that xw /∈ E(G). Now suppose that ax ∈
En(G). Then by Lemma 2.6, ax ∈ Etn(G). Hence there exists c ∈ V4 such that ca, cx ∈ E(G). Arguing as in Lemma
2.7, we see that c = w. But this contradicts the assumption that xw /∈ E(G). �

We now prove two auxiliary results.

Lemma 2.9. Let (P, X) ∈ L0 and u ∈ P . Suppose that X is minimal, subject to the condition that u ∈ P (i.e.,
there is no (R, Z) ∈ L0 with (P, X) �= (R, Z) such that u ∈ R and Z ⊆ X). Then ua ∈ Ec(G) ∪ Etn(G) for each
a ∈ N(u) ∩ X.

Proof. Let a ∈ N(u) ∩ X, and suppose that ua ∈ En(G) − Etn(G). Then there exists (Q, Y ) ∈ L0 with u, a ∈ Q.
Note that u ∈ P ∩ Q. Thus in view of Lemma 2.2, we may assume X ∩ Y �= ∅ and X̄ ∩ Ȳ �= ∅. Set U = (P ∩
Q) ∪ (P ∩ Y ) ∪ (X ∩ Q). Then by Lemma 2.3, (U, X ∩ Y ) ∈ L. But since u, a ∈ (P ∪ X) ∩ Q ⊆ U , this implies
(U, X ∩ Y ) ∈ L0, which contradicts the minimality of X. �

Lemma 2.10. Let (R, Z) ∈ L0 and a ∈ R. Suppose that |N(a) ∩ Z| = 1, and write N(a) ∩ Z = {x}. Then ax ∈
Ec(G) ∪ Etn(G).

Proof. Suppose that ax ∈ En(G) − Etn(G). Then there exists (Q, Y ) ∈ L0 with a, x ∈ Q. By Lemma 2.2, we may
assume Z ∩ Y �= ∅ and Z̄ ∩ Ȳ �= ∅. Then by Lemma 2.3, ((R ∩ Q) ∪ (R ∩ Y ) ∪ (Z ∩ Q), Z ∩ Y ) ∈ L. Hence by
Lemma 2.4, N(a) ∩ (Z ∩ Y ) �= ∅, which contradicts the assumption that N(a) ∩ Z = {x}. �

The last three lemmas are analogous to Lemmas 2.6 through 2.8.

Lemma 2.11. Let u, a, b be three distinct vertices with ua, ub, ab ∈ E(G) and deg(a) = 4, and write N(a) =
{u, b, x, y}. Suppose that there exists (R, Z) ∈ L0 such that u, a ∈ R, b, y ∈ Z and x ∈ Z̄. Suppose further that Z is
minimal, subject to the condition that u, a ∈ R and b ∈ Z. Then the following hold.

(i) xy /∈ E(G).
(ii) ax ∈ Ec(G) ∪ Etn(G).

(iii) ay ∈ Ec(G) ∪ Etn(G).
(iv) a /∈ Ṽ .

Proof. Since x ∈ Z̄ and y ∈ Z, we clearly have xy /∈ E(G) and, applying Lemma 2.10 to (R, Z̄), we obtain ax ∈
Ec(G) ∪ Etn(G). Thus (i) and (ii) are proved. To prove (iii), suppose that ay ∈ En(G) − Etn(G). Then there exists
(Q, Y ) ∈ L0 with a, y ∈ Q. By Lemma 2.2, we may assume Z ∩ Y �= ∅ and Z̄ ∩ Ȳ �= ∅. Set U = (R ∩ Q) ∪
(R ∩ Y ) ∪ (Z ∩ Q). Since a, y ∈ U , it follows from Lemma 2.3 that (U, Z ∩ Y ) ∈ L0. Hence by Lemma 2.4 (ii),
N(a) ∩ (Z ∩ Y ) �= ∅, which implies N(a) ∩ (Z ∩ Y ) = {b}. Since ub ∈ E(G), this forces u ∈ (Q ∪ Y ) ∩ R, and
hence u ∈ U . Since a ∈ U and b ∈ Z ∩ Y , this contradicts the minimality of Z, completing the proof of (iii). Now to
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prove (iv), suppose that a ∈ Ṽ . Then there exists e ∈ Ẽ(G) ∩ En(G)such that e is incident with a. Since au, ab are
contained in a triangle, e �= au, ab. Consequently e = ax or ay, which contradicts (ii) or (iii). �

Lemma 2.12. Under the notation of Lemma 2.11, suppose that deg(b)�5. Then ax ∈ Ec(G) or ay ∈ Ec(G).

Proof. Suppose that ax, ay ∈ En(G). Then by Lemma 2.11 (ii) and (iii), ax, ay ∈ Etn(G). Hence there exist c, c′ ∈
V4 such that ca, cx ∈ E(G) and c′a, c′y ∈ E(G). Since deg(b)�5, c, c′ �= b. Since xy /∈ E(G) by Lemma 2.11 (i),
c, c′ /∈ {x, y}. Consequently deg(u) = 4 and c = c′ = u. But this contradicts Lemma 2.5. �

Lemma 2.13. Under the notation of Lemma 2.11, suppose that deg(b), deg(u)�5. Then ax, ay ∈ Ec(G).

Proof. Suppose that ax ∈ En(G). Then ax ∈ Etn(G) by Lemma 2.11 (ii), and hence there exists c ∈ V4 such
that ca, cx ∈ E(G). Since deg(b), deg(u)�5, c �= b, u. Hence c = y. But this contradicts Lemma 2.11 (i). Thus
ax ∈ Ec(G). By means of Lemma 2.11 (iii), we similarly obtain ay ∈ Ec(G). �

3. Neighborhood of a vertex of degree 5

In this section, we prove a result which shows that Theorem 1 holds if deg(u)�5. Specifically, we prove the following
proposition in a series of claims.

Proposition 3.1. Let (P, X) ∈ L0 and u ∈ P , and suppose that deg(u)�5. Then one of the following holds:

(1) there exists a ∈ N(u) ∩ X such that ua ∈ Ec(G); or
(2) there exists a ∈ N(u) ∩ (P ∪ X) ∩ V4 for which there exists e ∈ Ec(G) such that e is incident with a.

Through this section, let (P, X), u be as in Proposition 3.1. We may assume that X is minimal, subject to the condition
that u ∈ P (i.e., there is no (R, Z) ∈ L0 with (R, Z) �= (P, X) such that u ∈ R and Z ⊆ X).

Claim 3.2. Suppose that there exists an edge e joining a vertex in N(u)∩X ∩V4 and a vertex in N(u)∩ (P ∪X)∩V4.
Suppose that e ∈ En(G), and write e = ab. Then a or b, say a, satisfies the following conditions.

(i) If we write N(a) = {u, b, x, y}, then xy /∈ E(G).
(ii) a /∈ Ṽ .

(iii) There exists e′ ∈ Ec(G) such that e′ is incident with a.

Proof. If ab ∈ Etn(G), then there exists w ∈ V4 such that wa, wb ∈ E(G), and hence the desired conclusions follow
from Lemmas 2.6 and 2.8. Thus we may assume that ab ∈ En(G) − Etn(G). Then there exists (R, Z) ∈ L0 with
a, b ∈ R. We first show that u /∈ R. Suppose that u ∈ R. Then by Lemma 2.2, we may assume X∩Z �= ∅ and X̄∩Z̄ �= ∅.
Since a, b ∈ (P ∪ X) ∩ R, it follows from Lemma 2.3 that ((P ∩ R) ∪ (P ∩ Z) ∪ (X ∩ R), X ∩ Z) ∈ L0, which
contradicts the minimality of X. Thus u /∈ R. We may assume u ∈ Z. We may also assume that we have chosen (R, Z)

so that Z is minimal, subject to the condition that a, b ∈ R and u ∈ Z. By Lemma 2.4 (i), we have N(a) ∩ Z �= {u} or
N(b) ∩ Z �= {u}. We may assume N(a) ∩ Z �= {u}. Since N(a) ∩ Z̄ �= ∅ by Lemma 2.4 (ii), we have |N(a) ∩ Z| = 2
and |N(a) ∩ Z̄| = 1. Write N(a) ∩ Z = {u, y} and N(a) ∩ Z̄ = {x}. Then b, a, u, x, y satisfy the assumptions of
Lemmas 2.11 and 2.12 with the roles of b and u replaced by each other. Consequently the desired conclusions follow
from (i), (iv) of Lemmas 2.11 and 2.12. �

Claim 3.3. Let a ∈ X, and suppose that ua ∈ En(G). Then ua ∈ Etn(G).

Proof. This follows from Lemma 2.9. �

Claim 3.4. Suppose that each edge joining u and a vertex in X is 4-noncontractible, and that there is no edge which
joins a vertex in N(u) ∩ X ∩ V4 and a vertex in N(u) ∩ (P ∪ X) ∩ V4. Then N(u) ∩ X ∩ V4 = ∅.
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Proof. Suppose that N(u) ∩ X ∩ V4 �= ∅, and take a ∈ N(u) ∩ X ∩ V4. We have ua ∈ Etn(G) by Claim 3.3. Hence
there exists b ∈ V4 such that ub, ab ∈ E(G). From a ∈ X and ab ∈ E(G), it follows that b ∈ P ∪ X. Thus ab is an
edge joining a vertex in N(u) ∩ X ∩ V4 and a vertex in N(u) ∩ (P ∪ X) ∩ V4, a contradiction. �

Claim 3.5. Suppose that each edge joining u and a vertex in X is 4-noncontractible, and that there is no edge which
joins a vertex in N(u) ∩ X ∩ V4 and a vertex in N(u) ∩ (P ∪ X) ∩ V4. Then there exists a ∈ N(u) ∩ P ∩ V4 and
b ∈ N(u) ∩ X such that ab ∈ E(G), |N(a) ∩ X| = 2 and |N(a) ∩ X̄| = 1.

Proof. Take z ∈ N(u)∩X. Then uz ∈ Etn(G) by Claim 3.3, and hence there exists az ∈ V4 such that azu, azz ∈ E(G).
Since N(u)∩X ∩V4 =∅ by Claim 3.4, az ∈ P . Since deg(az)= 4 and u ∈ N(az)∩P , |N(az)∩X|+ |N(az)∩ X̄|�3,
and hence it follows from Lemma 2.4 (ii) that 1� |N(az) ∩ X|�2. Now by way of contradiction, suppose that the
claim is false. Then |N(az) ∩ X| = 1, i.e., N(az) ∩ X = {z}. Since z ∈ N(u) ∩ X is arbitrary, this means that ay �= az

for any y, z ∈ N(u) ∩ X with y �= z and if we set W = {az|z ∈ N(u) ∩ X}, then we have |W | = |N(u) ∩ X|
and N({u} ∪ W) ∩ X = N(u) ∩ X, and hence |N({u} ∪ W) ∩ X| = |W | = |{u} ∪ W | − 1. In view of Lemma 2.4
(i), this implies |{u} ∪ W |� |X| + 1, i.e., |W |� |X|. Again fix z ∈ N(u) ∩ X. Since N(ay) ∩ X = {y} for each
y ∈ (N(u) ∩ X) − {z}, N(z) ⊆ (P − (W − {az})) ∪ (X − {z}). Consequently deg(z)� |P | − |W | + |X|� |P | = 4,
which implies z ∈ N(u) ∩ X ∩ V4. But this contradicts Claim 3.4, completing the proof. �

Claim 3.6. Suppose that each edge joining u and a vertex in X is 4-noncontractible, and that there is no edge which
joins a vertex in N(u) ∩ X ∩ V4 and a vertex in N(u) ∩ (P ∪ X) ∩ V4. Further let a, b be as in Claim 3.5, and write
N(a) ∩ X = {b, y} and N(a) ∩ X̄ = {x}. Then xy /∈ E(G), a /∈ Ṽ , and ax, ay ∈ Ec(G).

Proof. Note that deg(b)�5 by Claim 3.4, and deg(u)�5 by the assumption of Proposition 3.1. Thus the desired
conclusions follow from (i) and (iv) of Lemmas 2.11 and 2.13. �

Proposition 3.1 now follows from Claims 3.2 and 3.6.

4. Non-meshing 4-cutsets

In this section, we prove Theorem 1, and fix notation for the proof of Theorem 2. Following Cheriyan and Thurimella
[2] and Jordán [4], for two disjoint 4-cutsets S, T of G, we say that S meshes with T if S intersects with at least two
components of G − T . It is easy to see that if S meshes with T, then T intersects with every component of G − S, and
hence T meshes with S and S intersects with every component of G − T . Now let (S1, A1), . . . , (Sk, Ak) and S be
as in the paragraph preceding the statement of Theorem 2. Note that the minimality of k implies that (Si, Ai) ∈ L0
for each 1� i�k. The following claim is virtually proved in Kriesell [5, Lemma 3], but we include its proof for the
convenience of the reader.

Claim 4.1. No two members of S mesh with each other.

Proof. Suppose that there exist i, j(i < j) such that Si meshes with Sj . Then Ai∩Sj �= ∅. We first show that Ai∩Aj =∅.
Suppose that Ai ∩Aj �= ∅. Set R = (Si ∩Sj )∪ (Si ∩Aj)∪ (Ai ∩Sj ) and Q= (Si ∩Sj )∪ (Si ∩ Āj )∪ (Āi ∩Sj ). Then
|R|�4, and hence |Si ∩ Āj | = 4 − |Si ∩ Sj | − |Si ∩ Aj |� |R| − |Si ∩ Sj | − |Si ∩ Aj | = |Ai ∩ Sj |. If Āi ∩ Āj = ∅,
then |Āj | = |Si ∩ Āj | + |Ai ∩ Āj |� |Ai ∩ Sj | + |Ai ∩ Āj | < |Ai |, and hence we get a contradiction to the minimality
of (|A1|, |A2|, . . . , |Ak|) by replacing (Si, Ai) and (Sj , Aj ) by (Sj , Āj ) and (Si, Ai), respectively. Thus Āi ∩ Āj �= ∅.
Hence (R, Ai ∩ Aj), (Q, Āi ∩ Āj ) ∈ L by Lemma 2.3. Note that each edge contained in G[Si] or G[Sj ] is contained
in G[R] or G[Q]. Consequently, we get a contradiction by replacing (Si, Ai) and (Sj , Aj ) by (R, Ai ∩ Aj) and
(Q, Āi ∩ Āj ), respectively. Thus Ai ∩ Aj = ∅ as desired, and we similarly obtain Ai ∩ Āj = ∅.

Consequently Si ∩Sj =∅ and |Si ∩Aj |=|Si ∩ Āj |=|Ai ∩Sj |=|Āi ∩Sj |=2 by Lemma 2.1. Write Ai ∩Sj ={a, b}.
If ab ∈ E(G), then since N(a), N(b) ⊆ (Ai ∩ Sj ) ∪ Si , ab is contained in a triangle. This means that each edge in
Ẽ(G)∩En(G) which is contained in G[Sj ] is contained in G[Āi ∩Sj ]. Now if Āi ∩Aj �= ∅, then we get a contradiction
by replacing (Sj , Aj ) by ((Si ∩ Aj) ∩ (Āi ∩ Sj ), Āi ∩ Aj). Thus Āi ∩ Aj = ∅, which implies Āi ∩ Āj �= ∅ because
E(G[Sj ])∩(Ẽ(G)∩En(G)) �= ∅. We now get a contradiction to the minimality of k by replacing (Si, Ai) and (Sj , Aj )

by ((Si ∩ Āj ) ∪ (Āi ∩ Sj ), Āi ∩ Āj ). This completes the proof of Claim 4.1. �
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Let K, K∗ and K0 be as in the paragraph preceding Theorem 2 (see (1.3), (1.4) and conditions (1) and (2) stated
at the end of the paragraph).

The following claim immediately follows from the definition of K∗.

Claim 4.2. Let u ∈ Ṽ . Then for each (u, S, A) ∈ K, there exists a member (v, T , B) of K∗ with v = u and B ⊆ A.
In particular, there exist at least two members (v, T , B) of K∗ with v = u.

Claim 4.3. Let (u, S, A), (v, T , B) ∈ K∗ with u = v and (S, A) �= (T , B). Then (S ∪ A) ∩ B = A ∩ (T ∪ B) = ∅.

Proof. If S = T , the desired conclusion clearly holds. Thus we may assume that S �= T . By Claim 4.1, we have that
S ∩ B̄ = T ∩ Ā = ∅, S ∩ B = T ∩ Ā = ∅, S ∩ B̄ = T ∩ A = ∅, or S ∩ B = T ∩ A = ∅. Suppose that S ∩ B̄ = T ∩ Ā = ∅.
Then since S �= T , we have A ∩ T �= ∅ and |(S ∩ T ) ∪ (Ā ∩ T ) ∪ (S ∩ B̄)| = |T | − |A ∩ T | < 4, and hence Ā ∩ B̄ = ∅.
Since S ∩ B̄ = ∅ and A ∩ T �= ∅, this implies B̄ is a proper subset of A. But since (u, T , B̄) ∈ K and (u, S, A) ∈ K∗,
this contradicts the definition of K∗. If S ∩ B = T ∩ Ā = ∅ or S ∩ B̄ = T ∩ A = ∅, then we obtain B ⊆ A or A ⊆ B,
respectively, and hence we similarly get a contradiction. Thus S ∩ B = T ∩ A = ∅. Since S �= T , this also implies
A ∩ B = ∅, as desired. �

Recall that G̃ = (V (G), Ẽ(G) ∩ En(G)).

Claim 4.4. Let u ∈ Ṽ . Then the following hold.

(i) There exists a member (v, T , B) of K0 with v = u.
(ii) Suppose that degG(u)�5, or deg

G̃
(u)�2, or there exist three members (v, T , B) of K∗ with v =u. Then for each

(u, S, A) ∈ K∗, we have (u, S, A) ∈ K0. In particular, if degG(u) = 4 and deg
G̃
(u)�2, then deg

G̃
(u) = 2 and

there exist precisely two members (v, T , B) of K0 with v = u.

Proof. If degG(u)�5, the desired conclusion immediately follows from Claim 4.2 and the definition of K0. Thus we
may assume degG(u) = 4. We first prove (ii). Thus let u be as in (ii) with degG(u) = 4. Then by Lemma 2.4 (ii) and
Claim 4.3, it follows that |NG(u)∩A|=1 for each (u, S, A) ∈ K∗, and that for each a ∈ NG(u)−N

G̃
(u), there exists

(u, S, A) ∈ K∗ such that a ∈ A. Again by Claim 4.3, this implies that for each (u, S, A) ∈ K∗, NG(u)∩S=N
G̃
(u)∩S.

Note that this also implies that if deg
G̃
(u)�2, then we have deg

G̃
(u)=2 and there exist precisely two members (v, T , B)

of K∗ with v = u. Now let (u, S, A) ∈ K∗, and write NG(u) ∩ A = {a}. To complete the proof of (ii), it suffices to
show that (u, S, A) ∈ K0. Suppose that (u, S, A) /∈K0. Then ua ∈ En(G), and hence ua ∈ Etn(G) by Lemma 2.10,
which implies that there exists c ∈ V4 such that cu, ca ∈ E(G). Since NG(u) ∩ A = {a}, this forces c ∈ S. But since
uc is contained in a triangle, c /∈ N

G̃
(u), which contradicts the earlier assertion that NG(u) ∩ S = N

G̃
(u) ∩ S. Thus (ii)

is proved.
We now prove (i). We may assume that there exists (u, S, A) ∈ K∗ such that (u, S, A) /∈K0. Then arguing as

above, we see that |NG(u) ∩ (S ∪ A)|�3 (note that if |NG(u) ∩ A|�2, we clearly have |NG(u) ∩ (S ∪ A)|�3). Take
(u, T , B) ∈ K∗ with B ⊆ Ā. Then |NG(u) ∩ B| = 1. Write NG(u) ∩ B = {b}. Suppose that (u, T , B) /∈K0. Then
there exists c′ ∈ V4 such that c′u, c′b ∈ E(G). This in turn implies |NG(u) ∩ A| = 1. Write NG(u) ∩ A = {a}. Then
there exists c ∈ V4 such that cu, ca ∈ E(G). Since degG(u) = 4, deg

G̃
(u)�1 and ab /∈ E(G), this forces c = c′. But

then applying Lemma 2.6 with a and b replaced by u and c, we obtain u /∈ Ṽ , which contradicts the assumption that
u ∈ Ṽ . Thus (i) is also proved. �

We can now easily prove Theorem 1.

Proof of Theorem 1. Let u, S, A be as in Theorem 1. Then (S, A) ∈ L0. Hence if degG(u)�5, then the desired
conclusion follows from Proposition 3.1. Thus we may assume degG(u) = 4. But then from Claim 4.4 (i) and the
definition of K0, we see that there exists e ∈ Ec(G) such that e is incident with u, as desired. �

5. Definition of �(u, S, A), �(u, S, A) and �(u, S, A)

In this section, to each (u, S, A) ∈ K0, we assign an edge �(u, S, A), and an endvertex �(u, S, A) of �(u, S, A),
and a 4-contractible edge �(u, S, A) incident with �(u, S, A). We start with a claim
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Claim 5.1. Let (u, S, A) ∈ K0, and set W = {z ∈ S − {u} − N
G̃
(u)||NG(z) ∩ A| = 1}. Then ((S − W) ∪ (NG(W) ∩

A), A − (NG(W) ∩ A)) ∈ L0.

Proof. By the definition of K, there exists e ∈ Ẽ(G) ∩ En(G) such that u ∈ V (e) ⊆ S. Hence W ⊆ S − V (e),
which implies |W |�2. On the other hand, since (S, A) ∈ L0, |A|�2. Thus |W |� |A|. Suppose that |W | = |A|. Then
|W | = |A| = 2. By Lemma 2.4 (i), NG({x, z}) ∩ A = A for each x ∈ V (e) and each z ∈ W . Since we also have
NG(W) ∩ A = A by Lemma 2.4 (i) and since |NG(z) ∩ A| = 1 for each z ∈ W , this means that NG(x) ∩ A = A for
each x ∈ V (e). But then e is contained in a triangle, a contradiction. Thus |W | < |A|. Consequently it follows from
Lemma 2.4 (i) that ((S −W)∪ (NG(W)∩A), A− (NG(W)∩A)) ∈ L, which implies the desired conclusion because
V (e) ⊆ S − W . �

Now let (u, S, A) ∈ K0, and letW be as in Claim 5.1. We let (Pu,S,A, Xu,S,A) be a member ofL0 with u ∈ Pu,S,A and
Xu,S,A ⊆ A−(NG(W)∩A) such that Xu,S,A is minimal, i.e., there is no (R, Z) ∈ L0 with (R, Z) �= (Pu,S,A, Xu,S,A)

such that u ∈ R and Z ⊆ Xu,S,A. We remark that we do not require that there should exist an edge e ∈ En(G) with
u ∈ V (e) ⊆ Pu,S,A. The following claim immediately follows from the definition of (Pu,S,A, Xu,S,A).

Claim 5.2. Let (u, S, A) ∈ K0. Let z ∈ S − {u} − N
G̃
(u) and suppose that |NG(z) ∩ A| = 1. Then z /∈ Pu,S,A.

Let again (u, S, A) ∈ K0, and let (P, X)= (Pu,S,A, Xu,S,A) be as above. We define the type of (u, S, A) as follows:
(u, S, A) is of type 1 if there exists a 4-contractible edge joining u and a vertex in X; (u, S, A) is of type 2 if it is not of
type 1 and there exists a 4-contractible edge joining a vertex in NG(u)∩X ∩V4 and a vertex in NG(u)∩ (P ∪X)∩V4;
(u, S, A) is type 3 if it is not of type 1 or 2 but there exists an edge joining a vertex in NG(u) ∩ X ∩ V4 and a vertex in
NG(u) ∩ (P ∪ X) ∩ V4; (u, S, A) is type 4 if it is not of type i for any i = 1, 2, 3. We let Ki denote the set of those
members of K0 which are the type i (i = 1, 2, 3, 4). The following claim will be used implicitly throughout the rest of
this paper.

Claim 5.3. Let (u, S, A) ∈ K0 − K1. Then deg(u)�5.

Proof. Suppose that deg(u) = 4. Then by the definition of K0, |NG(u) ∩ A| = 1 and, if we write NG(u) ∩ A = {a},
then ua ∈ Ec(G). By Lemma 2.4 (ii), a ∈ X. Consequently (u, S, A) ∈ K1 by definition, which contradicts the
assumption that (u, S, A) ∈ K0 − K1. �

We first define �(u, S, A). If (u, S, A) ∈ K1, let �(u, S, A) be a 4-contractible edge joining u and a vertex in
X; if (u, S, A) ∈ K2, let �(u, S, A) be a 4-contractible edge joining a vertex in NG(u) ∩ X ∩ V4 and a vertex in
NG(u) ∩ (P ∪ X) ∩ V4; if (u, S, A) ∈ K3, let �(u, S, A) be an edge joining a vertex in NG(u) ∩ X ∩ V4 and a vertex
in NG(u) ∩ (P ∪ X) ∩ V4; if (u, S, A) ∈ K4, let �(u, S, A) = ab where a, b are as in Claim 3.5. The following claim
follows from the definition of �(u, S, A).

Claim 5.4. Let 2� i, j �4 with i �= j , and let (u1, S1, A1) ∈ Ki and (u2, S2, A2) ∈ Kj . Then �(u1, S1, A1) �=
�(u2, S2, A2).

Claim 5.5. Let (u1, S1, A1), (u2, S2, A2) ∈ K0 with u1 = u2 and (S1, A1) �= (S2, A2). Then �(u1, S1, A1) �=
�(u2, S2, A2).

Proof. By Claim 4.3, A1 ∩ A2 = ∅. Hence Xu1,S1,A1 ∩ Xu2,S2,A2 ⊆ A1 ∩ A2 = ∅. Since at least one of the endvertices
of �(uj , Sj , Aj ) is in Xuj ,Sj ,Aj

, this implies �(u1, S1, A1) �= �(u2, S2, A2). �

Claim 5.6. Let e be an edge joining two vertices of degree 4. Then there exist at most two members (u, S, A) of
K2 ∪ K3 for which �(u, S, A) = e.

Proof. Suppose that there exist three members (uj , Sj , Aj ) (1�j �3) of K2 ∪ K3 such that �(uj , Sj , Aj ) = e. By
Claim 5.5, the uj are all distinct. But this contradicts Lemma 2.5. �



3458 K. Ando, Y. Egawa / Discrete Mathematics 308 (2008) 3449–3460

We now define �(u, S, A). If (u, S, A) ∈ K1, let �(u, S, A) = u. Now assume (u, S, A) ∈ K2. In this case, we
let �(u, S, A) be an endvertex of �(u, S, A). If �(u, S, A) has an endvertex in P and there is no (w, R, Z) ∈ K2 with
(w, R, Z) �= (u, S, A) such that �(w, R, Z) = �(u, S, A), then we let �(u, S, A) be the endvertex of �(u, S, A) in X.
Next assume (u, S, A) ∈ K3. In this case, we let �(u, S, A) be an endvertex of �(u, S, A) which satisfies (ii) and (iii) of
Claim 3.2. If there is no (w, R, Z) ∈ K3 with (w, R, Z) �= (u, S, A) such that �(w, R, Z)=�(u, S, A), then we choose
�(u, S, A) so that it also satisfies (i) of Claim 3.2. Finally if (u, S, A) ∈ K4, let �(u, S, A) = a, where a is as in Claim
3.5. Note that if (u1, S1, A1), (u2, S2, A2) ∈ K3 with (u1, S1, A1) �= (u2, S2, A2) and �(u1, S1, A1) = �(u2, S2, A2),
then u1 �= u2 by Claim 5.5, and hence it follows from Lemmas 2.6 and 2.7 that both endvertices of �(u1, S1, A1) satisfy
(ii) and (iii) of Claim 3.2. Thus in view of Claim 5.6, we can define �(u, S, A) so that the following claim holds.

Claim 5.7. Let (u1, S1, A1), (u2, S2, A2)∈K2∪K3 with (u1, S1, A1)�=(u2, S2, A2)and�(u1, S1, A1)=�(u2, S2, A2).
Then �(u1, S1, A1) �= �(u2, S2, A2).

Finally we define �(u, S, A). If (u, S, A) ∈ K1 ∪ K2, simply let �(u, S, A) = �(u, S, A); if (u, S, A) ∈ K3,
let �(u, S, A) be a 4-contractible edge incident with �(u, S, A), whose existence is guaranteed by Claim 3.3 (iii) or
Lemma 2.7 (it is possible that the other endvertex of �(u, S, A) lies X); if (u, S, A) ∈ K4, let �(u, S, A) = ax, where
a, x are as in Claim 3.6.

6. Properties of �(u, S, A)

We continue with the notation of the preceding section. Our main concern is �(u, S, A) but, in this section, we
consider �(u, S, A).

Claim 6.1. Let (u, S, A), (v, T , B) ∈ K0 −K1 with u = v and (S, A) �= (T , B). Then �(u, S, A) and �(v, T , B) do
not share an endvertex of degree 4.

Proof. Suppose that �(u, S, A) and �(v, T , B) share an endvertex a of degree 4. Let (P, X) = (Pu,S,A, Xu,S,A). Then
a ∈ P ∪ X ⊆ S ∪ A. Similarly a ∈ T ∪ B. Hence a ∈ (S ∪ A) ∩ (T ∪ B) ⊆ S ∩ T by Claim 4.3. Since deg(a) = 4
and u ∈ NG(a) ∩ S ∩ T , |NG(a) ∩ (A ∪ B)|�3. Since A ∩ B = ∅ by Claim 4.3, this together with Lemma 2.4 (ii)
implies that we have |NG(a) ∩ A| = 1 or |N(a) ∩ B| = 1. We may assume |NG(a) ∩ A| = 1. On the other hand, since
ua is contained in a triangle, a /∈ N

G̃
(u). But since a ∈ (P ∪ X) ∩ S ⊆ P , this contradicts Claim 5.2. �

Claim 6.2. Let (u, S, A), (v, T , B) ∈ K4 with (u, S, A) �= (v, T , B). Then �(u, S, A) �= �(v, T , B).

Proof. Suppose that �(u, S, A) = �(v, T , B). Let (P, X) = (Pu,S,A, Xu,S,A), and let a, b, x, y be as in Claims 3.5 and
3.6. Then �(u, S, A) = �(v, T , B) = ab, and hence v ∈ NG(a) ∩ NG(b). In particular v ∈ NG(a) − {b} = {u, x, y}.
Since we get xb /∈ E(G) from x ∈ X̄ and b ∈ X, v �= x. We also have v �= u by Claim 5.5. Thus v = y, and hence
y, a ∈ Pv,T ,B . Consequently ya ∈ En(G), which contradicts Claim 3.6. �

7. Properties of �(u, S, A)

In this section, we complete the proof of Theorem 2 by showing that we have (�(u, S, A), �(u, S, A)) �= (�(v, T , B),

�(v, T , B)) for any distinct members (u, S, A), (v, T , B) of K0. The first two claims immediately from Claims 5.5
and 5.7, respectively.

Claim 7.1. Let (u, S, A), (v, T , B) ∈ K1 with (u, S, A) �= (v, T , B). Then (�(u, S, A), �(u, S, A)) �= (�(v, T , B),

�(v, T , B)).

Claim 7.2. Let (u, S, A), (v, T , B) ∈ K2 with (u, S, A) �= (v, T , B). Then (�(u, S, A), �(u, S, A)) �= (�(v, T , B),

�(v, T , B)).

Claim 7.3. Let (u, S, A) ∈ K2 and (v, T , B) ∈ K1, and suppose that �(u, S, A) = �(v, T , B). Then v ∈ Pu,S,A,
and there is no (w, R, Z) ∈ K2 with (w, R, Z) �= (u, S, A) such that �(w, R, Z) = �(u, S, A).
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Proof. Write �(u, S, A) = �(v, T , B) = vb. Also let vz be an edge in E(G) ∩ En(G) such that v, z ∈ T . Let
(P, X)=(Pu,S,A, Xu,S,A). Suppose that v ∈ X. Then since vz ∈ E(G), we have z ∈ P ∪X, and hence z ∈ (P ∪X)∩T .
Since deg(v)=4, it follows from the definition of K0 that N(v)∩B ={b}. Since u ∈ N(v)∩N(b), this implies u ∈ T ,
and hence u ∈ P ∩ T . Thus by Lemmas 2.2 and 2.3, there exists a 4-cutset U with U ⊇ (P ∪ X) ∩ T such that G − U

has a component H with V (H) ⊆ X − (X ∩ T ) ⊆ X − {v}. But then since v ∈ X ∩ T ⊆ U , z ∈ (P ∪ X) ∩ T ⊆ U

and vz ∈ Ẽ(G)∩En(G) ⊆ En(G)−Etn(G), U is a nontrivial 4-cutset, which contradicts the minimality of X because
u ∈ P ∩ T ⊆ U (see the remark made in the paragraph preceding Claim 5.2). Thus v ∈ P . Now suppose that there
exists (w, R, Z) ∈ K2 with (w, R, Z) �= (u, S, A) such that �(w, R, Z) = �(u, S, A). Then w �= u by Claim 5.5.
Hence applying Lemma 2.6 with a = v, we see that v /∈ Ṽ . But this contradicts the assumption that (v, T , B) ∈ K1.
Thus there is no such (w, R, Z). �

Claim 7.4. Let (u, S, A) ∈ K2 and (v, T , B) ∈ K1. Then (�(u, S, A), �(u, S, A)) �= (�(v, T , B), �(v, T , B)).

Proof. We may assume �(u, S, A) = �(v, T , B). Write �(u, S, A) = vb. We have �(v, T , B) = v by definition.
On the other hand, in view of Claim 7.3, �(u, S, A) = b by the choice of �(u, S, A) described in Section 5. Thus
�(u, S, A) �= �(v, T , B). �

Claim 7.5. Let (u, S, A) ∈ K3 ∪ K4 and (v, T , B) ∈ K1. Then �(u, S, A) �= �(v, T , B).

Proof. By Lemma 2.6, Claim 3.3 or Claim 3.6, �(u, S, A) /∈ Ṽ . On the other hand, �(v, T , B) = v ∈ Ṽ . Thus
�(u, S, A) �= �(v, T , B). �

Claim 7.6. Let (u, S, A) ∈ K3 ∪ K4 and (v, T , B) ∈ K2. Then �(u, S, A) �= �(v, T , B).

Proof. Suppose that �(u, S, A)=�(v, T , B). Write �(u, S, A)=ab with �(u, S, A)=a. Then deg(a)=4. Also write
�(u, S, A)=�(v, T , B)=ax. Then v ∈ N(a)∩N(x). First assume that there exists (w, R, Z) ∈ K3 with (w, R, Z) �=
(u, S, A) such that �(w, R, Z) = �(u, S, A). Then deg(b) = 4. By Claim 5.5, w �= u. Thus N(a) = {u, b, w, x}. Since
deg(v)�5 and deg(b) = 4, v �= b. Since v ∈ N(a) ∩ N(x) ⊆ N(a) − {x}, this implies v = u or w. On the other hand,
deg(a) = 4 and a is a common endvertex of �(v, T , B) and �(u, S, A) = �(w, R, Z). Since �(v, T , B) = �(v, T , B),
this contradicts Claim 6.1. Next assume that there is no such (w, R, Z). Write N(a) = {u, b, x, y}. If (u, S, A) ∈ K3,
then xy /∈ E(G) by the choice of �(u, S, A); if (u, S, A) ∈ K4, then xy /∈ E(G) by Claim 3.6. Thus xy /∈ E(G), which
implies v �= y. Now if (u, S, A) ∈ K3, then deg(b) = 4; if(u, S, A) ∈ K4, then xb /∈ E(G) by Claim 3.6. In either
case, v �= b. Consequently, v = u, which again contradicts Claim 6.1. �

Claim 7.7. Let (u, S, A), (v, T , B) ∈ K3 with (u, S, A) �= (v, T , B). Then (�(u, S, A), �(u, S, A)) �= (�(v, T , B),

�(v, T , B)).

Proof. Suppose that (�(u, S, A), �(u, S, A))=(�(v, T , B), �(v, T , B)). Write�(u, S, A)=ab,�(u, S, A)=�(v, T , B)

= ax, and N(a) = {u, b, x, y}. Then �(u, S, A) = �(v, T , B) = a, and v ∈ N(a) − {x}. Since deg(a) = 4 and a is a
common endvertex of �(u, S, A) and �(v, T , B), v �= u by Claim 6.1. Since deg(b) = 4, v �= b. Thus v = y, and hence
�(v, T , B) = au or ab. On the other hand, since deg(u)�5, �(v, T , B) �= au. Consequently �(v, T , B) = ab, which
contradicts Claim 5.7.

We are now in a position to complete the proof of Theorem 2.
Let (u, S, A), (v, T , B) ∈ K0 with (u, S, A) �= (v, T , B). We aim at showing that (�(u, S, A), �(u, S, A)) �=

(�(v, T , B), �(v, T , B)). By Claims 7.1, 7.2 and 7.4 through 7.6, we may assume (u, S, A), (v, T , B) ∈ K3 ∪ K4.
In view of Claim 7.7, we may also assume (u, S, A) ∈ K4. Suppose that (�(u, S, A), �(u, S, A)) = (�(v, T , B),

�(v, T , B)). Let (P, X) = (Pu,S,A, Xu,S,A) and let a, b, x, y be as in Claims 3.5 and 3.6. Also let (Q, Y ) = (Pv,T ,B,

Xv,T ,B). Note that N(a) = {u, b, x, y}, and v ∈ N(a) − {x}. If v = y, then y, a ∈ Q, and hence ya ∈ En(G), which
contradicts Claim 3.6. Thus v �= y. We also have v �= u by Claim 6.1. Consequently v=b, which implies �(b, T , B)=au

or ay. Now suppose that (b, T , B) ∈ K3. Then both endvertices of �(b, T , B) have degree 4. Hence �(b, T , B) =
ay. But then ay ∈ En(G) by the definition of K3, which contradicts Claim 3.6. Thus (b, T , B) ∈ K4. Applying
Claim 3.6 to (Q, Y ), we now obtain b, a ∈ Q, x ∈ Ȳ and y, u ∈ Y , regardless of whether �(b, T , B) = au or ay. In
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particular, xu /∈ E(G). Set U = (P ∩ Q) ∪ (P ∩ Y ) ∪ (X ∩ Q). Since y ∈ X ∩ Y and x ∈ X̄ ∩ Ȳ , it follows from
Lemma 2.3 that (U, X ∩ Y ) ∈ L. Since u ∈ P ∩ Y ⊆ U , it follows from the minimality of X that (U, X ∩ Y ) /∈L0,
i.e., U is a trivial 4-cutset. Hence there exists c ∈ V4 such that N(c)=U . Since a, b, u ∈ U , c ∈ N(a)−{b, u}={x, y}.
On the other hand, since xu /∈ E(G), c �= x. Consequently c = y, which implies y ∈ N(u) ∩ X ∩ V4. But since
(u, S, A) ∈ K4, this contradicts Claim 3.4. Thus (�(u, S, A), �(u, S, A)) �= (�(v, T , B), �(v, T , B)), as desired.
This completes the proof of Theorem 2. �

8. Number of 4-contractible edges

In this section, we prove Corollary 3.
Let G be a 4-regular 4-connected graph. Let K0 be as in Section 4. For u ∈ Ṽ , let c(u) denote the num-

ber of those members (v, T , B) of K0 for which v = u. By Claim 4.4, c(u)�deg
G̃
(u) for each u ∈ Ṽ . Since

|Ec(G)|�(
∑

u∈Ṽ
c(u))/2 by Theorem 2, this implies |Ec(G)|�(

∑
u∈Ṽ

deg
G̃
(u))/2 = |Ẽ(G) ∩ En(G)|. Since we

clearly have |Ec(G)|� |Ẽ(G) − En(G)|, we obtain 2|Ec(G)|� |Ẽ(G) ∩ En(G)| + |Ẽ(G) − En(G)| = |Ẽ(G)|, as
desired. �
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