Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 308 (2008) 3449-3460

www.elsevier.com/locate/disc

Edges not contained in triangles and the distribution of contractible edges in a 4-connected graph

Kiyoshi Ando^a, Yoshimi Egawa^b

^aDepartment of Information and Communication Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-city, Tokyo 182-8585, Japan

^bDepartment of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received 27 April 2006; received in revised form 27 June 2007; accepted 4 July 2007 Available online 10 October 2007

Abstract

We prove results concerning the distribution of 4-contractible edges in a 4-connected graph G in connection with the edges of G not contained in a triangle. As a corollary, we show that if G is 4-regular 4-connected graph, then the number of 4-contractible edges of G is at least one half of the number of edges of G not contained in a triangle. © 2007 Elsevier B.V. All rights reserved.

MSC: 05C40

Keywords: 4-Connected graph; Contractible edge; Triangle

1. Introduction

In this paper, we consider only finite undirected simple graphs with no loops and no multiple edges.

Let G = (V(G), E(G)) be a graph. For $e \in E(G)$, we let V(e) denote the set of endvertices of e. For $x \in V(G)$, $N_G(x)$ denotes the neighborhood of x and $\deg_G(x)$ denotes the degree of x; thus $\deg_G(x) = |N_G(x)|$. For $X \subseteq V(G)$, we let $N_G(X) = \bigcup_{x \in X} N_G(x)$. If there is no ambiguity, we write N(x), $\deg(x)$ and N(X) for $N_G(x)$, $\deg_G(x)$ and $N_G(X)$, respectively. For an integer $i \ge 0$, we let $V_i(G)$ denote the set of vertices x of G with $\deg(x) = i$. For $X \subseteq V(G)$, the subgraph induced by X in G is denoted by G[X]. A subset S of V(G) is called a *cutset* if G - S is disconnected. A cutset with cardinality i is simply referred to as an *i-cutset*. For an integer $k \ge 1$, we say that G is k-connected if $|V(G)| \ge k + 1$ and G has no (k - 1)-cutset.

Let *G* be a 4-connected graph. A 4-cutset *S* of *G* is said to be *trivial* if there exists $z \in V_4(G)$ such that N(z) = S; otherwise it is said to be *nontrivial*. For $e \in E(G)$, we let G/e denote the graph obtained from *G* by contracting *e* into one vertex (and replacing each resulting pair of double edges by a simple edge). We say that *e* is 4-*contractible* or 4-*noncontractible* according as G/e is 4-connected or not. Note that if $|V(G)| \ge 6$, then $e \in E_n(G)$ if and only if there exists a 4-cutset *S* such that $V(e) \subseteq S$. A 4-noncontractible edge e = ab is said to be *trivially* 4-noncontractible if there exists $z \in V_4(G)$ such that $za, zb \in E(G)$. We let $E_c(G), E_n(G)$ and $E_{tn}(G)$ denote the set of 4-contractible edges, the set of 4-noncontractible edges and the set of trivially 4-noncontractible edges, respectively. Thus $e \in E_{tn}(G)$ if

E-mail address: ando@ice.uec.ac.jp (K. Ando).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter 0 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.07.013

and only if there exists a trivial 4-cutset *S* such that $V(e) \subseteq S$. Finally we let E(G) denote the set of those edges of *G* which are not contained in a triangle. Note that $\tilde{E}(G) \cap E_n(G) \subseteq E_n(G) - E_{tn}(G)$.

The following characterization of 4-connected graphs with $E_c(G) = \emptyset$ was obtained by Fontet [3] and independently by Martinov [6].

Theorem A. Let G be a 4-connected graph of order n, and suppose that G has no 4-contractible edge. Then one of the following holds:

- (1) *G* is the square of the cycle of order *n*; i.e., we can write $V(G) = \{v_1, v_2, \dots, v_n\}$ so that $E(G) = \{v_i v_j | i j \in \{\pm 1, \pm 2\} \pmod{n}\}$; or
- (2) there exists a 3-regular graph H such that G is the line graph of H.

(It is easy to see that if a 4-connected graph satisfies (1) or (2), then G has no 4-contractible edge.)

From Theorem A, we see that if G is a 4-connected graph with $E_c(G) = \emptyset$, then G is 4-regular and each edge of G is contained in a triangle. Thus if a 4-connected graph G satisfies $V(G) - V_4(G) \neq \emptyset$ or $\tilde{E}(G) \neq \emptyset$, then G has a 4-contractible edge. Further it is natural to expect that under the same assumption, there is a 4-contractible edge in the neighborhood of each vertex in $V(G) - V_4(G)$ and also in the neighborhood of each edge in $\tilde{E}(G)$. As for the distribution of contractible edges in the neighborhood of a vertex with degree at least 5, the following result was proved in [1].

Theorem B. Let G be a 4-connected graph with $V(G) - V_4(G) \neq \emptyset$, and let $u \in V(G) - V_4(G)$. Then there exists $e \in E_c(G)$ such that either e is incident with u or at least one of the endvertices of e is adjacent to u. Further if $G[N_G(u) \cap V_4(G)]$ is not a path of order 4 (length 3), then there are two such 4-contractible edges.

In this paper, we prove the following theorem concerning the local distribution of contractible edges in the neighborhood of an edge not contained in a triangle.

Theorem 1. Let G be a 4-connected graph with $\tilde{E}(G) \neq \emptyset$, and let $uv \in \tilde{E}(G)$. Suppose that $uv \in E_n(G)$ and let S be a 4-cutset with $u, v \in S$, and let A be the vertex set of a component of G - S. Then there exists $e \in E_c(G)$ such that either e is incident with u or there exists $a \in N_G(u) \cap (S \cup A) \cap V_4(G)$ such that e is incident with a.

We also prove a somewhat global result. To state our result, we need some more definitions.

Throughout this and the next paragraph, we let G be a 4-connected graph. Let \tilde{V} denote the set of those vertices of G which are incident with an edge in $\tilde{E}(G) \cap E_n(G)$, and let \tilde{G} denote the spanning subgraph of G with edge set $\tilde{E}(G) \cap E_n(G)$; that is to say, $\tilde{V} = \bigcup_{e \in \tilde{E}(G) \cap E_n(G)} V(e)$ and $\tilde{G} = (V(G), \tilde{E}(G) \cap E_n(G))$. Set

 $\mathscr{L} = \{(S, A) | S \text{ is a 4-cutset, } A \text{ is the union of the vertex sets of} \\ \text{some components of } G - S, \emptyset \neq A \neq V(G) - S\},$ (1.1)

$$\mathscr{L}_0 = \{(S, A) \in \mathscr{L} | S \text{ is a nontrivial 4-cutset } \}.$$
(1.2)

For $(S, A) \in \mathscr{L}$, we let $\overline{A} = V(G) - S - A$. Thus if $(S, A) \in \mathscr{L}$, then $(S, \overline{A}) \in \mathscr{L}$ and $N_G(A) - A = N_G(\overline{A}) - \overline{A} = S$. Now take $(S_1, A_1), \dots, (S_k, A_k) \in \mathscr{L}$ so that for each $e \in \tilde{E}(G) \cap E_n(G)$, there exists S_i such that $V(e) \subseteq S_i$.

We choose $(S_1, A_1), \ldots, (S_k, A_k)$ so that k is minimum and so that $(|A_1|, \ldots, |A_k|)$ is lexicographically minimum, subject to the condition that k is minimum (thus if $\tilde{E}(G) \cap E_n(G) = \emptyset$, then k = 0). Note that the minimality of k implies that for each $1 \le i \le k$, we have $E(G[S_i]) \cap (\tilde{E}(G) \cap E_n(G)) \neq \emptyset$ and hence $(S_i, A_i) \in \mathcal{L}_0$. Set $\mathcal{S} = \{S_1, \ldots, S_k\}$. Further set

$$\mathscr{K} = \{(u, S, A) | u \in V, S \in \mathscr{S}, (S, A) \in \mathscr{L}_0,$$

there exists $e \in \tilde{E}(G) \cap E_n(G)$ such that $u \in V(e) \subseteq S\}.$ (1.3)

We define two subsets \mathscr{K}^* and \mathscr{K}_0 of \mathscr{K} . Let \mathscr{K}^* be the set of those members (u, S, A) of \mathscr{K} for which A is minimal; that is to say,

$$\mathscr{H}^* = \{ (u, S, A) \in \mathscr{H} | \text{ there is no } (v, T, B) \in \mathscr{H} \\ \text{with } v = u \text{ and } (T, B) \neq (S, A) \text{ such that } B \subseteq A \}.$$

$$(1.4)$$

Finally, let \mathcal{H}_0 be the set of those members (u, S, A) of \mathcal{H}^* which satisfy one of the following two conditions:

- (1) $\deg(u) \ge 5$; or
- (2) deg(u) = 4, $|N(u) \cap A| = 1$ and, if we write $N(u) \cap A = \{a\}$, then $ua \in E_c(G)$.

We can now state our result.

Theorem 2. Let G be a 4-connected graph, and let \mathscr{K}_0 be as above. Then we can assign to each $(u, S, A) \in \mathscr{K}_0$ a 4-contractible edge $\varphi(u, S, A)$ having the property stated in Theorem 1, so that for each $e \in E_c(G)$ there are at most two members (u, S, A) of \mathscr{K}_0 such that $\varphi(u, S, A) = e$.

As an application of Theorems 1 and 2, we obtain the following corollary concerning the number of contractible edges.

Corollary 3. Let G be a 4-regular 4-connected graph. Then $|E_c(G)| \ge |\tilde{E}(G)|/2$.

The bound $|\tilde{E}(G)|/2$ of Corollary 3 is sharp. To see this, let $\ell \ge 2$ be an integer, and define a graph G of order 8ℓ as follows:

 $V(G) = \{a_i, b_i, c_i, d_i, t_i, u_i, v_i, w_i | 1 \le i \le \ell\},\$ $E(G) = \{a_i b_i, b_i c_i, c_i d_i, d_i a_i, t_i a_i, t_i b_i, u_i c_i, u_i d_i, v_i b_i, v_i c_i, w_i d_i, w_i a_i, t_i u_i, v_i w_i, v_i t_{i+1}, w_i u_{i+1} | 1 \le i \le \ell\}$

(indices are to be read modulo ℓ). Then *G* is 4-regular 4-connected, and $\tilde{E}(G) = \{t_i u_i, v_i w_i, v_i t_{i+1}, w_i u_{i+1} | 1 \leq i \leq \ell\}$, $E_c(G) = \{v_i t_{i+1}, w_i u_{i+1} | 1 \leq i \leq \ell\}$. Thus $|E_c(G)| = 2\ell = |\tilde{E}(G)|/2$.

For a 4-connected graph G which is not necessarily 4-regular, we can show that if $|\tilde{E}(G)| \ge 16$, then $|E_c(G)| \ge (|\tilde{E}(G)| + 8)/4$. However, the verification of this statement involves lengthy calculations, and will thus be discussed in a separate paper.

The organization of this paper is as follows. Section 2 contains preliminary results. We prove Theorem 1 in Sections 3 and 4, Theorem 2 in Section 5 through 7, and Corollary 3 in Section 8. We remark that Proposition 3.1, which is proved in Section 3, may be of independent interest in connection with Theorem B.

2. 4-Cutsets

Throughout the rest of this paper, we let G denote a 4-connected graph with $\tilde{E}(G) \neq \emptyset$ (note that in proving Theorem 2 and Corollary 3, we may clearly assume $\tilde{E}(G) \neq \emptyset$). Thus $|V(G)| \ge 8$. We write V_4 for $V_4(G)$. Also let \mathcal{L} , \mathcal{L}_0 be as in the two paragraphs preceding the statement of Theorem 2 (see (1.1) and (1.2)).

In this section, we prove preliminary results concerning the contractibility of edges. We start with four easy lemmas concerning 4-cutsets.

Lemma 2.1. Let $(S, A), (T, B) \in \mathcal{L}_0$, and suppose that $A \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$. Then $S \cap T = \emptyset$, and $|S \cap B| = |S \cap \overline{B}| = |A \cap T| = |\overline{A} \cap T| = 2$.

В	$\bar{A}\cap B$	$S\cap B$	$A\cap B$
T	$\bar{A}\cap T$	$S\cap T$	$A\cap T$
\bar{B}	$\bar{A}\cap\bar{B}$	$S\cap \bar{B}$	$A\cap \bar{B}$
	Ā	S	A

Proof. Since $A \cap B = A \cap \overline{B} = \emptyset$ and *S* is a nontrivial 4-cutset, $|A \cap T| = |A| \ge 2$. Set $Q = (S \cap T) \cup (S \cap \overline{B}) \cup (\overline{A} \cap T)$. If $\overline{A} \cap \overline{B} \ne \emptyset$, then *Q* separates $\overline{A} \cap \overline{B}$ and $A \cup B$, and hence $|Q| \ge 4$, which implies $|S \cap \overline{B}| = |Q| - |S \cap T| - |\overline{A} \cap T| \ge 4 - |S \cap T| - |\overline{A} \cap T| = |A \cap T| \ge 2$. If $\overline{A} \cap \overline{B} = \emptyset$, then since *T* is a nontrivial 4-cutset, we have $|S \cap \overline{B}| = |\overline{B}| \ge 2$. Thus $|S \cap \overline{B}| \ge 2$ in either case. Similarly $|S \cap B| \ge 2$. Since |S| = 4, this implies $|S \cap B| = |S \cap \overline{B}| = 2$ and $S \cap T = \emptyset$. If $\overline{A} \cap B$ or $\overline{A} \cap \overline{B}$, say $\overline{A} \cap \overline{B}$, is nonempty, then we have $|S \cap \overline{B}| \ge |A \cap T|$, which forces $|A \cap T| = 2$ and hence $|\overline{A} \cap T| = 2$. Thus we may assume $\overline{A} \cap B = \overline{A} \cap \overline{B} = \emptyset$. Then we obtain $|\overline{A} \cap T| = |\overline{A}| \ge 2$, which implies $|A \cap T| = |\overline{A} \cap T| = 2$.

Lemma 2.2. Let $(S, A), (T, B) \in \mathcal{L}_0$, and suppose that $S \cap T \neq \emptyset$. Then either $A \cap B \neq \emptyset$ and $\overline{A} \cap \overline{B} \neq \emptyset$, or $A \cap \overline{B} \neq \emptyset$ and $\overline{A} \cap B \neq \emptyset$.

Proof. Suppose that we have $A \cap B = \emptyset$ or $\overline{A} \cap \overline{B} = \emptyset$, and we also have $A \cap \overline{B} = \emptyset$ or $\overline{A} \cap B = \emptyset$. By symmetry, we may assume $A \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$. But then $S \cap T = \emptyset$ by Lemma 2.1, which contradicts the assumption that $S \cap T \neq \emptyset$. \Box

Lemma 2.3. Let $(S, A), (T, B) \in \mathcal{L}$, and suppose that $A \cap B \neq \emptyset$ and $\overline{A} \cap \overline{B} \neq \emptyset$. Then $((S \cap T) \cup (S \cap B) \cup (A \cap T), A \cap B) \in \mathcal{L}$ and $((S \cap T) \cup (S \cap \overline{B}) \cup (A \cap \overline{T}), \overline{A} \cap \overline{B}) \in \mathcal{L}$.

Proof. Set $R = (S \cap T) \cup (S \cap B) \cup (A \cap T)$ and $Q = (S \cap T) \cup (S \cap \overline{B}) \cup (\overline{A} \cap T)$. Then *R* separates $A \cap B$ and $\overline{A} \cup \overline{B}$, and *Q* separates $\overline{A} \cap \overline{B}$ and $A \cup B$. Hence $|R|, |Q| \ge 4$. On the other hand, |R| + |Q| = |S| + |T| = 8. Consequently |R| = |Q| = 4, and hence $(R, A \cap B), (Q, \overline{A} \cap \overline{B}) \in \mathcal{L}$. \Box

Lemma 2.4. Let $(S, A) \in \mathcal{L}$.

- (i) If $W \subseteq S$ and $|W| \leq |A|$, then $|N(W) \cap A| \geq |W|$. Further if |W| < |A| and $|N(W) \cap A| = |W|$, then $((S W) \cup (N(W) \cap A), A (N(W) \cap A)) \in \mathscr{L}$.
- (ii) If $x \in S$, then $N(x) \cap A \neq \emptyset$. Further if $(S, A) \in \mathcal{L}_0$ and $|N(x) \cap A| = 1$, then $((S \{x\}) \cup (N(x) \cap A), A (N(x) \cap A)) \in \mathcal{L}$.

Proof. Note that (ii) follows from (i) by letting $W = \{x\}$. Thus it suffices to prove (i). Now if $A - (N(W) \cap A) \neq \emptyset$, then $(S - W) \cup (N(W) \cap A)$ separates $A - (N(W) \cap A)$ and $\overline{A} \cup W$. Thus, the desired conclusions follow from the assumption that *G* is 4-connected. \Box

In the following four lemmas, we consider edges which are adjacent to the endvertices of an edge contained in two triangles. Recall that $\tilde{V} = \bigcup_{e \in \tilde{E}(G) \cap E_{n}(G)} V(e)$.

Lemma 2.5. Let $ab \in E(G)$ with deg(a) = deg(b) = 4. Then $N(a) - \{b\} \neq N(b) - \{a\}$.

Proof. If $N(a) - \{b\} = N(b) - \{a\}$, then $N(a) - \{b\}$ separates $\{a, b\}$ from the rest, which contradicts the assumption that *G* is 4-connected. \Box

Lemma 2.6. Let u, a, b, w be four distinct vertices with $ua, ub, ab, aw, bw \in E(G)$ and $\deg(a) = \deg(b) = 4$, and write $N(a) = \{u, b, w, x\}$ and $N(b) = \{u, a, w, y\}$. Then $x \neq y$, and we have $ax, by \in E_c(G) \cup E_{tn}(G)$ and $a, b \notin \tilde{V}$.

Proof. By Lemma 2.5, $x \neq y$. In view of the symmetry of the roles of *a* and *b*, it suffices to prove $ax \in E_c(G) \cup E_{tn}(G)$ and $a \notin \tilde{V}$. By way of contradiction, suppose that $ax \notin E_c(G) \cup E_{tn}(G)$. Then there exists $(S, A) \in \mathcal{L}_0$ with $a, x \in S$. By Lemma 2.4 (ii), $N(a) \cap A \neq \emptyset$ and $N(a) \cap \bar{A} \neq \emptyset$. Since a vertex in $N(a) \cap A$ and a vertex in $N(a) \cap \bar{A}$ are nonadjacent, this means that one of *u* and *w* lies in *A* and the other one lies in \bar{A} . We may assume $u \in A$ and $w \in \bar{A}$. Then $b \in S$. Since $N(b) = \{u, a, w, y\}$, it follows that we have $N(\{a, b\}) \cap A = \{u\}$ or $N(\{a, b\}) \cap \bar{A} = \{w\}$, which contradicts Lemma 2.4 (i). Thus $ax \in E_c(G) \cup E_{tn}(G)$. Now again by way of contradiction, suppose that $a \in \tilde{V}$. Then there exists $e \in \tilde{E}(G) \cap E_n(G)$ such that *e* is incident with *a*. Since au, ab, aw are contained in a triangle, $e \neq au, ab, aw$. Hence e = ax. But since $\tilde{E}(G) \cap E_n(G) \subseteq E_n(G) - E_{tn}(G)$, this contradicts the earlier assertion that $ax \in E_c(G) \cup E_{tn}(G)$. Thus $a \notin \tilde{V}$. \Box **Lemma 2.7.** Under the notation of Lemma 2.6, suppose that $\deg(u), \deg(w) \ge 5$. Then $ax, by \in E_{c}(G)$.

Proof. Suppose that $ax \in E_n(G)$. Then by Lemma 2.6, $ax \in E_{tn}(G)$, and hence there exists $c \in V_4$ such that $ca, cx \in E(G)$. Then $c \in N(a) - \{x\} = \{u, w, b\}$. Since $deg(u), deg(w) \ge 5$, this forces c = b, which contradicts Lemma 2.5. Thus $ax \in E_c(G)$, and we can similarly show that $by \in E_c(G)$. \Box

Lemma 2.8. Under the notation of Lemma 2.6, suppose that $\deg(u) \ge 5$ and $\deg(w) = 4$. Then one of the following holds:

- (1) $xw \notin E(G)$ and $ax \in E_{c}(G)$, or
- (2) $yw \notin E(G)$ and $by \in E_{c}(G)$.

Proof. If $xw, yw \in E(G)$, then $N(\{a, b, w\}) - \{a, b, w\} = \{u, x, y\}$, which contradicts the assumption that *G* is 4-connected. Thus we have $xw \notin E(G)$ or $yw \notin E(G)$. We may assume that $xw \notin E(G)$. Now suppose that $ax \in E_n(G)$. Then by Lemma 2.6, $ax \in E_{tn}(G)$. Hence there exists $c \in V_4$ such that $ca, cx \in E(G)$. Arguing as in Lemma 2.7, we see that c = w. But this contradicts the assumption that $xw \notin E(G)$. \Box

We now prove two auxiliary results.

Lemma 2.9. Let $(P, X) \in \mathcal{L}_0$ and $u \in P$. Suppose that X is minimal, subject to the condition that $u \in P$ (i.e., there is no $(R, Z) \in \mathcal{L}_0$ with $(P, X) \neq (R, Z)$ such that $u \in R$ and $Z \subseteq X$). Then $ua \in E_c(G) \cup E_{tn}(G)$ for each $a \in N(u) \cap X$.

Proof. Let $a \in N(u) \cap X$, and suppose that $ua \in E_n(G) - E_{tn}(G)$. Then there exists $(Q, Y) \in \mathcal{L}_0$ with $u, a \in Q$. Note that $u \in P \cap Q$. Thus in view of Lemma 2.2, we may assume $X \cap Y \neq \emptyset$ and $\overline{X} \cap \overline{Y} \neq \emptyset$. Set $U = (P \cap Q) \cup (P \cap Y) \cup (X \cap Q)$. Then by Lemma 2.3, $(U, X \cap Y) \in \mathcal{L}$. But since $u, a \in (P \cup X) \cap Q \subseteq U$, this implies $(U, X \cap Y) \in \mathcal{L}_0$, which contradicts the minimality of X. \Box

Lemma 2.10. Let $(R, Z) \in \mathcal{L}_0$ and $a \in R$. Suppose that $|N(a) \cap Z| = 1$, and write $N(a) \cap Z = \{x\}$. Then $ax \in E_c(G) \cup E_{tn}(G)$.

Proof. Suppose that $ax \in E_n(G) - E_{tn}(G)$. Then there exists $(Q, Y) \in \mathcal{L}_0$ with $a, x \in Q$. By Lemma 2.2, we may assume $Z \cap Y \neq \emptyset$ and $\overline{Z} \cap \overline{Y} \neq \emptyset$. Then by Lemma 2.3, $((R \cap Q) \cup (R \cap Y) \cup (Z \cap Q), Z \cap Y) \in \mathcal{L}$. Hence by Lemma 2.4, $N(a) \cap (Z \cap Y) \neq \emptyset$, which contradicts the assumption that $N(a) \cap Z = \{x\}$. \Box

The last three lemmas are analogous to Lemmas 2.6 through 2.8.

Lemma 2.11. Let u, a, b be three distinct vertices with $ua, ub, ab \in E(G)$ and deg(a) = 4, and write $N(a) = \{u, b, x, y\}$. Suppose that there exists $(R, Z) \in \mathcal{L}_0$ such that $u, a \in R, b, y \in Z$ and $x \in \overline{Z}$. Suppose further that Z is minimal, subject to the condition that $u, a \in R$ and $b \in Z$. Then the following hold.

(i) $xy \notin E(G)$. (ii) $ax \in E_{c}(G) \cup E_{tn}(G)$. (iii) $ay \in E_{c}(G) \cup E_{tn}(G)$. (iv) $a \notin \tilde{V}$.

Proof. Since $x \in \overline{Z}$ and $y \in Z$, we clearly have $xy \notin E(G)$ and, applying Lemma 2.10 to (R, \overline{Z}) , we obtain $ax \in E_c(G) \cup E_{tn}(G)$. Thus (i) and (ii) are proved. To prove (iii), suppose that $ay \in E_n(G) - E_{tn}(G)$. Then there exists $(Q, Y) \in \mathcal{L}_0$ with $a, y \in Q$. By Lemma 2.2, we may assume $Z \cap Y \neq \emptyset$ and $\overline{Z} \cap \overline{Y} \neq \emptyset$. Set $U = (R \cap Q) \cup (R \cap Y) \cup (Z \cap Q)$. Since $a, y \in U$, it follows from Lemma 2.3 that $(U, Z \cap Y) \in \mathcal{L}_0$. Hence by Lemma 2.4 (ii), $N(a) \cap (Z \cap Y) \neq \emptyset$, which implies $N(a) \cap (Z \cap Y) = \{b\}$. Since $ub \in E(G)$, this forces $u \in (Q \cup Y) \cap R$, and hence $u \in U$. Since $a \in U$ and $b \in Z \cap Y$, this contradicts the minimality of Z, completing the proof of (iii). Now to

prove (iv), suppose that $a \in \tilde{V}$. Then there exists $e \in \tilde{E}(G) \cap E_n(G)$ such that e is incident with a. Since au, ab are contained in a triangle, $e \neq au$, ab. Consequently e = ax or ay, which contradicts (ii) or (iii). \Box

Lemma 2.12. Under the notation of Lemma 2.11, suppose that $\deg(b) \ge 5$. Then $ax \in E_c(G)$ or $ay \in E_c(G)$.

Proof. Suppose that $ax, ay \in E_n(G)$. Then by Lemma 2.11 (ii) and (iii), $ax, ay \in E_{tn}(G)$. Hence there exist $c, c' \in V_4$ such that $ca, cx \in E(G)$ and $c'a, c'y \in E(G)$. Since $\deg(b) \ge 5$, $c, c' \ne b$. Since $xy \notin E(G)$ by Lemma 2.11 (i), $c, c' \notin \{x, y\}$. Consequently $\deg(u) = 4$ and c = c' = u. But this contradicts Lemma 2.5. \Box

Lemma 2.13. Under the notation of Lemma 2.11, suppose that $\deg(b), \deg(u) \ge 5$. Then $ax, ay \in E_{c}(G)$.

Proof. Suppose that $ax \in E_n(G)$. Then $ax \in E_{tn}(G)$ by Lemma 2.11 (ii), and hence there exists $c \in V_4$ such that $ca, cx \in E(G)$. Since deg(b), deg(u) ≥ 5 , $c \neq b$, u. Hence c = y. But this contradicts Lemma 2.11 (i). Thus $ax \in E_c(G)$. By means of Lemma 2.11 (iii), we similarly obtain $ay \in E_c(G)$.

3. Neighborhood of a vertex of degree 5

In this section, we prove a result which shows that Theorem 1 holds if $deg(u) \ge 5$. Specifically, we prove the following proposition in a series of claims.

Proposition 3.1. Let $(P, X) \in \mathcal{L}_0$ and $u \in P$, and suppose that $\deg(u) \ge 5$. Then one of the following holds:

- (1) there exists $a \in N(u) \cap X$ such that $ua \in E_{c}(G)$; or
- (2) there exists $a \in N(u) \cap (P \cup X) \cap V_4$ for which there exists $e \in E_c(G)$ such that e is incident with a.

Through this section, let (P, X), u be as in Proposition 3.1. We may assume that X is minimal, subject to the condition that $u \in P$ (i.e., there is no $(R, Z) \in \mathcal{L}_0$ with $(R, Z) \neq (P, X)$ such that $u \in R$ and $Z \subseteq X$).

Claim 3.2. Suppose that there exists an edge *e* joining a vertex in $N(u) \cap X \cap V_4$ and a vertex in $N(u) \cap (P \cup X) \cap V_4$. Suppose that $e \in E_n(G)$, and write e = ab. Then *a* or *b*, say *a*, satisfies the following conditions.

- (i) If we write $N(a) = \{u, b, x, y\}$, then $xy \notin E(G)$.
- (ii) $a \notin V$.
- (iii) There exists $e' \in E_{c}(G)$ such that e' is incident with a.

Proof. If $ab \in E_{tn}(G)$, then there exists $w \in V_4$ such that $wa, wb \in E(G)$, and hence the desired conclusions follow from Lemmas 2.6 and 2.8. Thus we may assume that $ab \in E_n(G) - E_{tn}(G)$. Then there exists $(R, Z) \in \mathcal{L}_0$ with $a, b \in R$. We first show that $u \notin R$. Suppose that $u \in R$. Then by Lemma 2.2, we may assume $X \cap Z \neq \emptyset$ and $\overline{X} \cap \overline{Z} \neq \emptyset$. Since $a, b \in (P \cup X) \cap R$, it follows from Lemma 2.3 that $((P \cap R) \cup (P \cap Z) \cup (X \cap R), X \cap Z) \in \mathcal{L}_0$, which contradicts the minimality of X. Thus $u \notin R$. We may assume $u \in Z$. We may also assume that we have chosen (R, Z)so that Z is minimal, subject to the condition that $a, b \in R$ and $u \in Z$. By Lemma 2.4 (i), we have $N(a) \cap Z \neq \{u\}$ or $N(b) \cap Z \neq \{u\}$. We may assume $N(a) \cap Z \neq \{u\}$. Since $N(a) \cap \overline{Z} \neq \emptyset$ by Lemma 2.4 (ii), we have $|N(a) \cap Z| = 2$ and $|N(a) \cap \overline{Z}| = 1$. Write $N(a) \cap Z = \{u, y\}$ and $N(a) \cap \overline{Z} = \{x\}$. Then b, a, u, x, y satisfy the assumptions of Lemmas 2.11 and 2.12 with the roles of b and u replaced by each other. Consequently the desired conclusions follow from (i), (iv) of Lemmas 2.11 and 2.12. \Box

Claim 3.3. Let $a \in X$, and suppose that $ua \in E_n(G)$. Then $ua \in E_{tn}(G)$.

Proof. This follows from Lemma 2.9. \Box

Claim 3.4. Suppose that each edge joining *u* and *a* vertex in *X* is 4-noncontractible, and that there is no edge which joins a vertex in $N(u) \cap X \cap V_4$ and a vertex in $N(u) \cap (P \cup X) \cap V_4$. Then $N(u) \cap X \cap V_4 = \emptyset$.

3455

Proof. Suppose that $N(u) \cap X \cap V_4 \neq \emptyset$, and take $a \in N(u) \cap X \cap V_4$. We have $ua \in E_{tn}(G)$ by Claim 3.3. Hence there exists $b \in V_4$ such that $ub, ab \in E(G)$. From $a \in X$ and $ab \in E(G)$, it follows that $b \in P \cup X$. Thus ab is an edge joining a vertex in $N(u) \cap X \cap V_4$ and a vertex in $N(u) \cap (P \cup X) \cap V_4$, a contradiction. \Box

Claim 3.5. Suppose that each edge joining u and a vertex in X is 4-noncontractible, and that there is no edge which joins a vertex in $N(u) \cap X \cap V_4$ and a vertex in $N(u) \cap (P \cup X) \cap V_4$. Then there exists $a \in N(u) \cap P \cap V_4$ and $b \in N(u) \cap X$ such that $ab \in E(G)$, $|N(a) \cap X| = 2$ and $|N(a) \cap \overline{X}| = 1$.

Proof. Take $z \in N(u) \cap X$. Then $uz \in E_{tn}(G)$ by Claim 3.3, and hence there exists $a_z \in V_4$ such that $a_z u, a_z z \in E(G)$. Since $N(u) \cap X \cap V_4 = \emptyset$ by Claim 3.4, $a_z \in P$. Since $\deg(a_z) = 4$ and $u \in N(a_z) \cap P$, $|N(a_z) \cap X| + |N(a_z) \cap \overline{X}| \leq 3$, and hence it follows from Lemma 2.4 (ii) that $1 \leq |N(a_z) \cap X| \leq 2$. Now by way of contradiction, suppose that the claim is false. Then $|N(a_z) \cap X| = 1$, i.e., $N(a_z) \cap X = \{z\}$. Since $z \in N(u) \cap X$ is arbitrary, this means that $a_y \neq a_z$ for any $y, z \in N(u) \cap X$ with $y \neq z$ and if we set $W = \{a_z | z \in N(u) \cap X\}$, then we have $|W| = |N(u) \cap X|$ and $N(\{u\} \cup W) \cap X = N(u) \cap X$, and hence $|N(\{u\} \cup W) \cap X| = |W| = |\{u\} \cup W| - 1$. In view of Lemma 2.4 (i), this implies $|\{u\} \cup W| \ge |X| + 1$, i.e., $|W| \ge |X|$. Again fix $z \in N(u) \cap X$. Since $N(a_y) \cap X = \{y\}$ for each $y \in (N(u) \cap X) - \{z\}$, $N(z) \subseteq (P - (W - \{a_z\})) \cup (X - \{z\})$. Consequently $\deg(z) \le |P| - |W| + |X| \le |P| = 4$, which implies $z \in N(u) \cap X \cap V_4$. But this contradicts Claim 3.4, completing the proof. \Box

Claim 3.6. Suppose that each edge joining u and a vertex in X is 4-noncontractible, and that there is no edge which joins a vertex in $N(u) \cap X \cap V_4$ and a vertex in $N(u) \cap (P \cup X) \cap V_4$. Further let a, b be as in Claim 3.5, and write $N(a) \cap X = \{b, y\}$ and $N(a) \cap \overline{X} = \{x\}$. Then $xy \notin E(G)$, $a \notin \widetilde{V}$, and ax, $ay \in E_c(G)$.

Proof. Note that $\deg(b) \ge 5$ by Claim 3.4, and $\deg(u) \ge 5$ by the assumption of Proposition 3.1. Thus the desired conclusions follow from (i) and (iv) of Lemmas 2.11 and 2.13. \Box

Proposition 3.1 now follows from Claims 3.2 and 3.6.

4. Non-meshing 4-cutsets

In this section, we prove Theorem 1, and fix notation for the proof of Theorem 2. Following Cheriyan and Thurimella [2] and Jordán [4], for two disjoint 4-cutsets S, T of G, we say that S meshes with T if S intersects with at least two components of G - T. It is easy to see that if S meshes with T, then T intersects with every component of G - S, and hence T meshes with S and S intersects with every component of G - T. Now let $(S_1, A_1), \ldots, (S_k, A_k)$ and \mathscr{S} be as in the paragraph preceding the statement of Theorem 2. Note that the minimality of k implies that $(S_i, A_i) \in \mathscr{L}_0$ for each $1 \le i \le k$. The following claim is virtually proved in Kriesell [5, Lemma 3], but we include its proof for the convenience of the reader.

Claim 4.1. No two members of \mathcal{S} mesh with each other.

Proof. Suppose that there exist *i*, j(i < j) such that S_i meshes with S_j . Then $A_i \cap S_j \neq \emptyset$. We first show that $A_i \cap A_j = \emptyset$. Suppose that $A_i \cap A_j \neq \emptyset$. Set $R = (S_i \cap S_j) \cup (S_i \cap A_j) \cup (A_i \cap S_j)$ and $Q = (S_i \cap S_j) \cup (S_i \cap \bar{A}_j) \cup (\bar{A}_i \cap S_j)$. Then $|R| \ge 4$, and hence $|S_i \cap \bar{A}_j| = 4 - |S_i \cap S_j| - |S_i \cap A_j| \le |R| - |S_i \cap S_j| - |S_i \cap A_j| = |A_i \cap S_j|$. If $\bar{A}_i \cap \bar{A}_j = \emptyset$, then $|\bar{A}_j| = |S_i \cap \bar{A}_j| + |A_i \cap \bar{A}_j| \le |A_i \cap A_j| < |A_i|$, and hence we get a contradiction to the minimality of $(|A_1|, |A_2|, \ldots, |A_k|)$ by replacing (S_i, A_i) and (S_j, A_j) by (S_j, \bar{A}_j) and (S_i, A_i) , respectively. Thus $\bar{A}_i \cap \bar{A}_j \neq \emptyset$. Hence $(R, A_i \cap A_j), (Q, \bar{A}_i \cap \bar{A}_j) \in \mathscr{L}$ by Lemma 2.3. Note that each edge contained in $G[S_i]$ or $G[S_j]$ is contained in G[R] or G[Q]. Consequently, we get a contradiction by replacing (S_i, A_i) and (S_j, A_j) by $(R, A_i \cap A_j)$ and $(Q, \bar{A}_i \cap \bar{A}_j)$, respectively. Thus $A_i \cap A_j = \emptyset$ as desired, and we similarly obtain $A_i \cap \bar{A}_j = \emptyset$.

Consequently $S_i \cap S_j = \emptyset$ and $|S_i \cap A_j| = |S_i \cap \bar{A}_j| = |A_i \cap S_j| = 2$ by Lemma 2.1. Write $A_i \cap S_j = \{a, b\}$. If $ab \in E(G)$, then since $N(a), N(b) \subseteq (A_i \cap S_j) \cup S_i$, ab is contained in a triangle. This means that each edge in $\tilde{E}(G) \cap E_n(G)$ which is contained in $G[S_j]$ is contained in $G[\bar{A}_i \cap S_j]$. Now if $\bar{A}_i \cap A_j \neq \emptyset$, then we get a contradiction by replacing (S_j, A_j) by $((S_i \cap A_j) \cap (\bar{A}_i \cap S_j), \bar{A}_i \cap A_j)$. Thus $\bar{A}_i \cap A_j = \emptyset$, which implies $\bar{A}_i \cap \bar{A}_j \neq \emptyset$ because $E(G[S_j]) \cap (\tilde{E}(G) \cap E_n(G)) \neq \emptyset$. We now get a contradiction to the minimality of *k* by replacing (S_i, A_i) and (S_j, A_j) by $((S_i \cap \bar{A}_j) \cup (\bar{A}_i \cap S_j), \bar{A}_i \cap \bar{A}_j)$. This completes the proof of Claim 4.1. \Box Let \mathscr{K} , \mathscr{K}^* and \mathscr{K}_0 be as in the paragraph preceding Theorem 2 (see (1.3), (1.4) and conditions (1) and (2) stated at the end of the paragraph).

The following claim immediately follows from the definition of \mathscr{K}^* .

Claim 4.2. Let $u \in \tilde{V}$. Then for each $(u, S, A) \in \mathcal{K}$, there exists a member (v, T, B) of \mathcal{K}^* with v = u and $B \subseteq A$. In particular, there exist at least two members (v, T, B) of \mathcal{K}^* with v = u.

Claim 4.3. Let $(u, S, A), (v, T, B) \in \mathscr{K}^*$ with u = v and $(S, A) \neq (T, B)$. Then $(S \cup A) \cap B = A \cap (T \cup B) = \emptyset$.

Proof. If S = T, the desired conclusion clearly holds. Thus we may assume that $S \neq T$. By Claim 4.1, we have that $S \cap \overline{B} = T \cap \overline{A} = \emptyset$, $S \cap B = T \cap \overline{A} = \emptyset$, $S \cap \overline{B} = T \cap A = \emptyset$, or $S \cap B = T \cap A = \emptyset$. Suppose that $S \cap \overline{B} = T \cap \overline{A} = \emptyset$. Then since $S \neq T$, we have $A \cap T \neq \emptyset$ and $|(S \cap T) \cup (\overline{A} \cap T) \cup (S \cap \overline{B})| = |T| - |A \cap T| < 4$, and hence $\overline{A} \cap \overline{B} = \emptyset$. Since $S \cap \overline{B} = \emptyset$ and $A \cap T \neq \emptyset$, this implies \overline{B} is a proper subset of A. But since $(u, T, \overline{B}) \in \mathcal{K}$ and $(u, S, A) \in \mathcal{K}^*$, this contradicts the definition of \mathcal{K}^* . If $S \cap B = T \cap \overline{A} = \emptyset$ or $S \cap \overline{B} = T \cap A = \emptyset$, then we obtain $B \subseteq A$ or $A \subseteq B$, respectively, and hence we similarly get a contradiction. Thus $S \cap B = T \cap A = \emptyset$. Since $S \neq T$, this also implies $A \cap B = \emptyset$, as desired. \Box

Recall that $\tilde{G} = (V(G), \tilde{E}(G) \cap E_n(G)).$

Claim 4.4. Let $u \in \tilde{V}$. Then the following hold.

- (i) There exists a member (v, T, B) of \mathscr{K}_0 with v = u.
- (ii) Suppose that $\deg_G(u) \ge 5$, or $\deg_{\tilde{G}}(u) \ge 2$, or there exist three members (v, T, B) of \mathscr{K}^* with v = u. Then for each $(u, S, A) \in \mathscr{K}^*$, we have $(u, S, A) \in \mathscr{K}_0$. In particular, if $\deg_G(u) = 4$ and $\deg_{\tilde{G}}(u) \ge 2$, then $\deg_{\tilde{G}}(u) = 2$ and there exist precisely two members (v, T, B) of \mathscr{K}_0 with v = u.

Proof. If $\deg_G(u) \ge 5$, the desired conclusion immediately follows from Claim 4.2 and the definition of \mathscr{H}_0 . Thus we may assume $\deg_G(u) = 4$. We first prove (ii). Thus let u be as in (ii) with $\deg_G(u) = 4$. Then by Lemma 2.4 (ii) and Claim 4.3, it follows that $|N_G(u) \cap A| = 1$ for each $(u, S, A) \in \mathscr{H}^*$, and that for each $a \in N_G(u) - N_{\tilde{G}}(u)$, there exists $(u, S, A) \in \mathscr{H}^*$ such that $a \in A$. Again by Claim 4.3, this implies that for each $(u, S, A) \in \mathscr{H}^*$, $N_G(u) \cap S = N_{\tilde{G}}(u) \cap S$. Note that this also implies that if $\deg_{\tilde{G}}(u) \ge 2$, then we have $\deg_{\tilde{G}}(u) = 2$ and there exist precisely two members (v, T, B) of \mathscr{H}^* with v = u. Now let $(u, S, A) \in \mathscr{H}^*$, and write $N_G(u) \cap A = \{a\}$. To complete the proof of (ii), it suffices to show that $(u, S, A) \in \mathscr{H}_0$. Suppose that $(u, S, A) \notin \mathscr{H}_0$. Then $ua \in E_n(G)$, and hence $ua \in E_{tn}(G)$ by Lemma 2.10, which implies that there exists $c \in V_4$ such that $cu, ca \in E(G)$. Since $N_G(u) \cap A = \{a\}$, this forces $c \in S$. But since uc is contained in a triangle, $c \notin N_{\tilde{G}}(u)$, which contradicts the earlier assertion that $N_G(u) \cap S = N_{\tilde{G}}(u) \cap S$. Thus (ii) is proved.

We now prove (i). We may assume that there exists $(u, S, A) \in \mathscr{H}^*$ such that $(u, S, A) \notin \mathscr{H}_0$. Then arguing as above, we see that $|N_G(u) \cap (S \cup A)| \ge 3$ (note that if $|N_G(u) \cap A| \ge 2$, we clearly have $|N_G(u) \cap (S \cup A)| \ge 3$). Take $(u, T, B) \in \mathscr{H}^*$ with $B \subseteq \overline{A}$. Then $|N_G(u) \cap B| = 1$. Write $N_G(u) \cap B = \{b\}$. Suppose that $(u, T, B) \notin \mathscr{H}_0$. Then there exists $c' \in V_4$ such that $c'u, c'b \in E(G)$. This in turn implies $|N_G(u) \cap A| = 1$. Write $N_G(u) \cap A = \{a\}$. Then there exists $c \in V_4$ such that $cu, ca \in E(G)$. Since $\deg_G(u) = 4$, $\deg_{\tilde{G}}(u) \ge 1$ and $ab \notin E(G)$, this forces c = c'. But then applying Lemma 2.6 with a and b replaced by u and c, we obtain $u \notin \tilde{V}$, which contradicts the assumption that $u \in \tilde{V}$. Thus (i) is also proved. \Box

We can now easily prove Theorem 1.

Proof of Theorem 1. Let u, S, A be as in Theorem 1. Then $(S, A) \in \mathcal{L}_0$. Hence if $\deg_G(u) \ge 5$, then the desired conclusion follows from Proposition 3.1. Thus we may assume $\deg_G(u) = 4$. But then from Claim 4.4 (i) and the definition of \mathcal{K}_0 , we see that there exists $e \in E_c(G)$ such that e is incident with u, as desired. \Box

5. Definition of $\lambda(u, S, A)$, $\alpha(u, S, A)$ and $\varphi(u, S, A)$

In this section, to each $(u, S, A) \in \mathscr{K}_0$, we assign an edge $\lambda(u, S, A)$, and an endvertex $\alpha(u, S, A)$ of $\lambda(u, S, A)$, and a 4-contractible edge $\varphi(u, S, A)$ incident with $\alpha(u, S, A)$. We start with a claim

Claim 5.1. Let $(u, S, A) \in \mathscr{K}_0$, and set $W = \{z \in S - \{u\} - N_{\tilde{G}}(u) | |N_G(z) \cap A| = 1\}$. Then $((S - W) \cup (N_G(W) \cap A), A - (N_G(W) \cap A)) \in \mathscr{L}_0$.

Proof. By the definition of \mathscr{K} , there exists $e \in E(G) \cap E_n(G)$ such that $u \in V(e) \subseteq S$. Hence $W \subseteq S - V(e)$, which implies $|W| \leq 2$. On the other hand, since $(S, A) \in \mathscr{L}_0$, $|A| \geq 2$. Thus $|W| \leq |A|$. Suppose that |W| = |A|. Then |W| = |A| = 2. By Lemma 2.4 (i), $N_G(\{x, z\}) \cap A = A$ for each $x \in V(e)$ and each $z \in W$. Since we also have $N_G(W) \cap A = A$ by Lemma 2.4 (i) and since $|N_G(z) \cap A| = 1$ for each $z \in W$, this means that $N_G(x) \cap A = A$ for each $x \in V(e)$. But then e is contained in a triangle, a contradiction. Thus |W| < |A|. Consequently it follows from Lemma 2.4 (i) that $((S - W) \cup (N_G(W) \cap A), A - (N_G(W) \cap A)) \in \mathscr{L}$, which implies the desired conclusion because $V(e) \subseteq S - W$. \Box

Now let $(u, S, A) \in \mathcal{K}_0$, and let W be as in Claim 5.1. We let $(P_{u,S,A}, X_{u,S,A})$ be a member of \mathcal{L}_0 with $u \in P_{u,S,A}$ and $X_{u,S,A} \subseteq A - (N_G(W) \cap A)$ such that $X_{u,S,A}$ is minimal, i.e., there is no $(R, Z) \in \mathcal{L}_0$ with $(R, Z) \neq (P_{u,S,A}, X_{u,S,A})$ such that $u \in R$ and $Z \subseteq X_{u,S,A}$. We remark that we do not require that there should exist an edge $e \in E_n(G)$ with $u \in V(e) \subseteq P_{u,S,A}$. The following claim immediately follows from the definition of $(P_{u,S,A}, X_{u,S,A})$.

Claim 5.2. Let $(u, S, A) \in \mathscr{K}_0$. Let $z \in S - \{u\} - N_{\tilde{G}}(u)$ and suppose that $|N_G(z) \cap A| = 1$. Then $z \notin P_{u,S,A}$.

Let again $(u, S, A) \in \mathcal{H}_0$, and let $(P, X) = (P_{u,S,A}, X_{u,S,A})$ be as above. We define the type of (u, S, A) as follows: (u, S, A) is of type 1 if there exists a 4-contractible edge joining u and a vertex in X; (u, S, A) is of type 2 if it is not of type 1 and there exists a 4-contractible edge joining a vertex in $N_G(u) \cap X \cap V_4$ and a vertex in $N_G(u) \cap (P \cup X) \cap V_4$; (u, S, A) is type 3 if it is not of type 1 or 2 but there exists an edge joining a vertex in $N_G(u) \cap X \cap V_4$ and a vertex in $N_G(u) \cap (P \cup X) \cap V_4$; (u, S, A) is type 4 if it is not of type *i* for any i = 1, 2, 3. We let \mathcal{H}_i denote the set of those members of \mathcal{H}_0 which are the type i (i = 1, 2, 3, 4). The following claim will be used implicitly throughout the rest of this paper.

Claim 5.3. Let $(u, S, A) \in \mathscr{K}_0 - \mathscr{K}_1$. Then deg $(u) \ge 5$.

Proof. Suppose that $\deg(u) = 4$. Then by the definition of \mathscr{K}_0 , $|N_G(u) \cap A| = 1$ and, if we write $N_G(u) \cap A = \{a\}$, then $ua \in E_c(G)$. By Lemma 2.4 (ii), $a \in X$. Consequently $(u, S, A) \in \mathscr{K}_1$ by definition, which contradicts the assumption that $(u, S, A) \in \mathscr{K}_0 - \mathscr{K}_1$. \Box

We first define $\lambda(u, S, A)$. If $(u, S, A) \in \mathscr{K}_1$, let $\lambda(u, S, A)$ be a 4-contractible edge joining u and a vertex in X; if $(u, S, A) \in \mathscr{K}_2$, let $\lambda(u, S, A)$ be a 4-contractible edge joining a vertex in $N_G(u) \cap X \cap V_4$ and a vertex in $N_G(u) \cap (P \cup X) \cap V_4$; if $(u, S, A) \in \mathscr{K}_3$, let $\lambda(u, S, A)$ be an edge joining a vertex in $N_G(u) \cap X \cap V_4$ and a vertex in $N_G(u) \cap (P \cup X) \cap V_4$; if $(u, S, A) \in \mathscr{K}_4$, let $\lambda(u, S, A) = ab$ where a, b are as in Claim 3.5. The following claim follows from the definition of $\lambda(u, S, A)$.

Claim 5.4. Let $2 \le i, j \le 4$ with $i \ne j$, and let $(u_1, S_1, A_1) \in \mathscr{K}_i$ and $(u_2, S_2, A_2) \in \mathscr{K}_j$. Then $\lambda(u_1, S_1, A_1) \ne \lambda(u_2, S_2, A_2)$.

Claim 5.5. Let $(u_1, S_1, A_1), (u_2, S_2, A_2) \in \mathscr{K}_0$ with $u_1 = u_2$ and $(S_1, A_1) \neq (S_2, A_2)$. Then $\lambda(u_1, S_1, A_1) \neq \lambda(u_2, S_2, A_2)$.

Proof. By Claim 4.3, $A_1 \cap A_2 = \emptyset$. Hence $X_{u_1,S_1,A_1} \cap X_{u_2,S_2,A_2} \subseteq A_1 \cap A_2 = \emptyset$. Since at least one of the endvertices of $\lambda(u_j, S_j, A_j)$ is in X_{u_i,S_j,A_j} , this implies $\lambda(u_1, S_1, A_1) \neq \lambda(u_2, S_2, A_2)$. \Box

Claim 5.6. Let e be an edge joining two vertices of degree 4. Then there exist at most two members (u, S, A) of $\mathscr{K}_2 \cup \mathscr{K}_3$ for which $\lambda(u, S, A) = e$.

Proof. Suppose that there exist three members (u_j, S_j, A_j) $(1 \le j \le 3)$ of $\mathscr{K}_2 \cup \mathscr{K}_3$ such that $\lambda(u_j, S_j, A_j) = e$. By Claim 5.5, the u_j are all distinct. But this contradicts Lemma 2.5. \Box

We now define $\alpha(u, S, A)$. If $(u, S, A) \in \mathcal{H}_1$, let $\alpha(u, S, A) = u$. Now assume $(u, S, A) \in \mathcal{H}_2$. In this case, we let $\alpha(u, S, A)$ be an endvertex of $\lambda(u, S, A)$. If $\lambda(u, S, A)$ has an endvertex in *P* and there is no $(w, R, Z) \in \mathcal{H}_2$ with $(w, R, Z) \neq (u, S, A)$ such that $\lambda(w, R, Z) = \lambda(u, S, A)$, then we let $\alpha(u, S, A)$ be the endvertex of $\lambda(u, S, A)$ in *X*. Next assume $(u, S, A) \in \mathcal{H}_3$. In this case, we let $\alpha(u, S, A)$ be an endvertex of $\lambda(u, S, A)$ which satisfies (ii) and (iii) of Claim 3.2. If there is no $(w, R, Z) \in \mathcal{H}_3$ with $(w, R, Z) \neq (u, S, A)$ such that $\lambda(w, R, Z) = \lambda(u, S, A)$, then we choose $\alpha(u, S, A)$ so that it also satisfies (i) of Claim 3.2. Finally if $(u, S, A) \in \mathcal{H}_4$, let $\alpha(u, S, A) = a$, where *a* is as in Claim 3.5. Note that if $(u_1, S_1, A_1), (u_2, S_2, A_2) \in \mathcal{H}_3$ with $(u_1, S_1, A_1) \neq (u_2, S_2, A_2)$ and $\lambda(u_1, S_1, A_1) = \lambda(u_2, S_2, A_2)$, then $u_1 \neq u_2$ by Claim 5.5, and hence it follows from Lemmas 2.6 and 2.7 that both endvertices of $\lambda(u_1, S_1, A_1)$ satisfy (ii) and (iii) of Claim 3.2. Thus in view of Claim 5.6, we can define $\alpha(u, S, A)$ so that the following claim holds.

Claim 5.7. Let (u_1, S_1, A_1) , $(u_2, S_2, A_2) \in \mathscr{H}_2 \cup \mathscr{H}_3$ with $(u_1, S_1, A_1) \neq (u_2, S_2, A_2)$ and $\lambda(u_1, S_1, A_1) = \lambda(u_2, S_2, A_2)$. Then $\alpha(u_1, S_1, A_1) \neq \alpha(u_2, S_2, A_2)$.

Finally we define $\varphi(u, S, A)$. If $(u, S, A) \in \mathscr{K}_1 \cup \mathscr{K}_2$, simply let $\varphi(u, S, A) = \lambda(u, S, A)$; if $(u, S, A) \in \mathscr{K}_3$, let $\varphi(u, S, A)$ be a 4-contractible edge incident with $\alpha(u, S, A)$, whose existence is guaranteed by Claim 3.3 (iii) or Lemma 2.7 (it is possible that the other endvertex of $\varphi(u, S, A)$ lies \overline{X}); if $(u, S, A) \in \mathscr{K}_4$, let $\varphi(u, S, A) = ax$, where a, x are as in Claim 3.6.

6. Properties of $\lambda(u, S, A)$

We continue with the notation of the preceding section. Our main concern is $\varphi(u, S, A)$ but, in this section, we consider $\lambda(u, S, A)$.

Claim 6.1. Let $(u, S, A), (v, T, B) \in \mathcal{K}_0 - \mathcal{K}_1$ with u = v and $(S, A) \neq (T, B)$. Then $\lambda(u, S, A)$ and $\lambda(v, T, B)$ do not share an endvertex of degree 4.

Proof. Suppose that $\lambda(u, S, A)$ and $\lambda(v, T, B)$ share an endvertex *a* of degree 4. Let $(P, X) = (P_{u,S,A}, X_{u,S,A})$. Then $a \in P \cup X \subseteq S \cup A$. Similarly $a \in T \cup B$. Hence $a \in (S \cup A) \cap (T \cup B) \subseteq S \cap T$ by Claim 4.3. Since deg(a) = 4 and $u \in N_G(a) \cap S \cap T$, $|N_G(a) \cap (A \cup B)| \leq 3$. Since $A \cap B = \emptyset$ by Claim 4.3, this together with Lemma 2.4 (ii) implies that we have $|N_G(a) \cap A| = 1$ or $|N(a) \cap B| = 1$. We may assume $|N_G(a) \cap A| = 1$. On the other hand, since *ua* is contained in a triangle, $a \notin N_{\tilde{G}}(u)$. But since $a \in (P \cup X) \cap S \subseteq P$, this contradicts Claim 5.2. \Box

Claim 6.2. Let $(u, S, A), (v, T, B) \in \mathscr{K}_4$ with $(u, S, A) \neq (v, T, B)$. Then $\lambda(u, S, A) \neq \lambda(v, T, B)$.

Proof. Suppose that $\lambda(u, S, A) = \lambda(v, T, B)$. Let $(P, X) = (P_{u,S,A}, X_{u,S,A})$, and let a, b, x, y be as in Claims 3.5 and 3.6. Then $\lambda(u, S, A) = \lambda(v, T, B) = ab$, and hence $v \in N_G(a) \cap N_G(b)$. In particular $v \in N_G(a) - \{b\} = \{u, x, y\}$. Since we get $xb \notin E(G)$ from $x \in \overline{X}$ and $b \in X$, $v \neq x$. We also have $v \neq u$ by Claim 5.5. Thus v = y, and hence $y, a \in P_{v,T,B}$. Consequently $ya \in E_n(G)$, which contradicts Claim 3.6. \Box

7. Properties of $\varphi(u, S, A)$

In this section, we complete the proof of Theorem 2 by showing that we have $(\varphi(u, S, A), \alpha(u, S, A)) \neq (\varphi(v, T, B), \alpha(v, T, B))$ for any distinct members (u, S, A), (v, T, B) of \mathscr{K}_0 . The first two claims immediately from Claims 5.5 and 5.7, respectively.

Claim 7.1. Let $(u, S, A), (v, T, B) \in \mathcal{H}_1$ with $(u, S, A) \neq (v, T, B)$. Then $(\varphi(u, S, A), \alpha(u, S, A)) \neq (\varphi(v, T, B), \alpha(v, T, B))$.

Claim 7.2. Let $(u, S, A), (v, T, B) \in \mathscr{K}_2$ with $(u, S, A) \neq (v, T, B)$. Then $(\varphi(u, S, A), \alpha(u, S, A)) \neq (\varphi(v, T, B), \alpha(v, T, B))$.

Claim 7.3. Let $(u, S, A) \in \mathscr{H}_2$ and $(v, T, B) \in \mathscr{H}_1$, and suppose that $\varphi(u, S, A) = \varphi(v, T, B)$. Then $v \in P_{u,S,A}$, and there is no $(w, R, Z) \in \mathscr{H}_2$ with $(w, R, Z) \neq (u, S, A)$ such that $\varphi(w, R, Z) = \varphi(u, S, A)$.

Proof. Write $\varphi(u, S, A) = \varphi(v, T, B) = vb$. Also let vz be an edge in $E(G) \cap E_n(G)$ such that $v, z \in T$. Let $(P, X) = (P_{u,S,A}, X_{u,S,A})$. Suppose that $v \in X$. Then since $vz \in E(G)$, we have $z \in P \cup X$, and hence $z \in (P \cup X) \cap T$. Since deg(v) = 4, it follows from the definition of \mathscr{K}_0 that $N(v) \cap B = \{b\}$. Since $u \in N(v) \cap N(b)$, this implies $u \in T$, and hence $u \in P \cap T$. Thus by Lemmas 2.2 and 2.3, there exists a 4-cutset U with $U \supseteq (P \cup X) \cap T$ such that G - U has a component H with $V(H) \subseteq X - (X \cap T) \subseteq X - \{v\}$. But then since $v \in X \cap T \subseteq U$, $z \in (P \cup X) \cap T \subseteq U$ and $vz \in \tilde{E}(G) \cap E_n(G) \subseteq E_n(G) - E_{tn}(G)$, U is a nontrivial 4-cutset, which contradicts the minimality of X because $u \in P \cap T \subseteq U$ (see the remark made in the paragraph preceding Claim 5.2). Thus $v \in P$. Now suppose that there exists $(w, R, Z) \in \mathscr{K}_2$ with $(w, R, Z) \neq (u, S, A)$ such that $\varphi(w, R, Z) = \varphi(u, S, A)$. Then $w \neq u$ by Claim 5.5. Hence applying Lemma 2.6 with a = v, we see that $v \notin \tilde{V}$. But this contradicts the assumption that $(v, T, B) \in \mathscr{K}_1$. Thus there is no such (w, R, Z). \Box

Claim 7.4. Let $(u, S, A) \in \mathcal{H}_2$ and $(v, T, B) \in \mathcal{H}_1$. Then $(\varphi(u, S, A), \alpha(u, S, A)) \neq (\varphi(v, T, B), \alpha(v, T, B))$.

Proof. We may assume $\varphi(u, S, A) = \varphi(v, T, B)$. Write $\varphi(u, S, A) = vb$. We have $\alpha(v, T, B) = v$ by definition. On the other hand, in view of Claim 7.3, $\alpha(u, S, A) = b$ by the choice of $\alpha(u, S, A)$ described in Section 5. Thus $\alpha(u, S, A) \neq \alpha(v, T, B)$. \Box

Claim 7.5. Let $(u, S, A) \in \mathscr{K}_3 \cup \mathscr{K}_4$ and $(v, T, B) \in \mathscr{K}_1$. Then $\alpha(u, S, A) \neq \alpha(v, T, B)$.

Proof. By Lemma 2.6, Claim 3.3 or Claim 3.6, $\alpha(u, S, A) \notin \tilde{V}$. On the other hand, $\alpha(v, T, B) = v \in \tilde{V}$. Thus $\alpha(u, S, A) \neq \alpha(v, T, B)$. \Box

Claim 7.6. Let $(u, S, A) \in \mathscr{K}_3 \cup \mathscr{K}_4$ and $(v, T, B) \in \mathscr{K}_2$. Then $\varphi(u, S, A) \neq \varphi(v, T, B)$.

Proof. Suppose that $\varphi(u, S, A) = \varphi(v, T, B)$. Write $\lambda(u, S, A) = ab$ with $\alpha(u, S, A) = a$. Then deg(a) = 4. Also write $\varphi(u, S, A) = \varphi(v, T, B) = ax$. Then $v \in N(a) \cap N(x)$. First assume that there exists $(w, R, Z) \in \mathcal{K}_3$ with $(w, R, Z) \neq (u, S, A)$ such that $\lambda(w, R, Z) = \lambda(u, S, A)$. Then deg(b) = 4. By Claim 5.5, $w \neq u$. Thus $N(a) = \{u, b, w, x\}$. Since deg $(v) \ge 5$ and deg(b) = 4, $v \neq b$. Since $v \in N(a) \cap N(x) \subseteq N(a) - \{x\}$, this implies v = u or w. On the other hand, deg(a) = 4 and a is a common endvertex of $\varphi(v, T, B)$ and $\lambda(u, S, A) = \lambda(w, R, Z)$. Since $\varphi(v, T, B) = \lambda(v, T, B)$, this contradicts Claim 6.1. Next assume that there is no such (w, R, Z). Write $N(a) = \{u, b, x, y\}$. If $(u, S, A) \in \mathcal{K}_3$, then $xy \notin E(G)$ by the choice of $\alpha(u, S, A)$; if $(u, S, A) \in \mathcal{K}_4$, then $xy \notin E(G)$ by Claim 3.6. Thus $xy \notin E(G)$, which implies $v \neq y$. Now if $(u, S, A) \in \mathcal{K}_3$, then deg(b) = 4; if $(u, S, A) \in \mathcal{K}_4$, then $xb \notin E(G)$ by Claim 3.6. In either case, $v \neq b$. Consequently, v = u, which again contradicts Claim 6.1.

Claim 7.7. Let $(u, S, A), (v, T, B) \in \mathscr{K}_3$ with $(u, S, A) \neq (v, T, B)$. Then $(\varphi(u, S, A), \alpha(u, S, A)) \neq (\varphi(v, T, B), \alpha(v, T, B))$.

Proof. Suppose that $(\varphi(u, S, A), \alpha(u, S, A)) = (\varphi(v, T, B), \alpha(v, T, B))$. Write $\lambda(u, S, A) = ab, \varphi(u, S, A) = \varphi(v, T, B) = ax$, and $N(a) = \{u, b, x, y\}$. Then $\alpha(u, S, A) = \alpha(v, T, B) = a$, and $v \in N(a) - \{x\}$. Since deg(a) = 4 and a is a common endvertex of $\lambda(u, S, A)$ and $\lambda(v, T, B), v \neq u$ by Claim 6.1. Since deg $(b) = 4, v \neq b$. Thus v = y, and hence $\lambda(v, T, B) = au$ or ab. On the other hand, since deg $(u) \ge 5$, $\lambda(v, T, B) \neq au$. Consequently $\lambda(v, T, B) = ab$, which contradicts Claim 5.7.

We are now in a position to complete the proof of Theorem 2.

Let $(u, S, A), (v, T, B) \in \mathscr{H}_0$ with $(u, S, A) \neq (v, T, B)$. We aim at showing that $(\varphi(u, S, A), \alpha(u, S, A)) \neq (\varphi(v, T, B), \alpha(v, T, B))$. By Claims 7.1, 7.2 and 7.4 through 7.6, we may assume $(u, S, A), (v, T, B) \in \mathscr{H}_3 \cup \mathscr{H}_4$. In view of Claim 7.7, we may also assume $(u, S, A) \in \mathscr{H}_4$. Suppose that $(\varphi(u, S, A), \alpha(u, S, A)) = (\varphi(v, T, B), \alpha(v, T, B))$. Let $(P, X) = (P_{u,S,A}, X_{u,S,A})$ and let a, b, x, y be as in Claims 3.5 and 3.6. Also let $(Q, Y) = (P_{v,T,B}, X_{v,T,B})$. Note that $N(a) = \{u, b, x, y\}$, and $v \in N(a) - \{x\}$. If v = y, then $y, a \in Q$, and hence $ya \in E_n(G)$, which contradicts Claim 3.6. Thus $v \neq y$. We also have $v \neq u$ by Claim 6.1. Consequently v=b, which implies $\lambda(b, T, B)=au$ or ay. Now suppose that $(b, T, B) \in \mathscr{H}_3$. Then both endvertices of $\lambda(b, T, B)$ have degree 4. Hence $\lambda(b, T, B) = ay$. But then $ay \in E_n(G)$ by the definition of \mathscr{H}_3 , which contradicts Claim 3.6. Thus $(b, T, B) \in \mathscr{H}_4$. Applying Claim 3.6 to (Q, Y), we now obtain $b, a \in Q, x \in \overline{Y}$ and $y, u \in Y$, regardless of whether $\lambda(b, T, B) = au$ or ay. In particular, $xu \notin E(G)$. Set $U = (P \cap Q) \cup (P \cap Y) \cup (X \cap Q)$. Since $y \in X \cap Y$ and $x \in \overline{X} \cap \overline{Y}$, it follows from Lemma 2.3 that $(U, X \cap Y) \in \mathscr{L}$. Since $u \in P \cap Y \subseteq U$, it follows from the minimality of X that $(U, X \cap Y) \notin \mathscr{L}_0$, i.e., U is a trivial 4-cutset. Hence there exists $c \in V_4$ such that N(c) = U. Since $a, b, u \in U, c \in N(a) - \{b, u\} = \{x, y\}$. On the other hand, since $xu \notin E(G), c \neq x$. Consequently c = y, which implies $y \in N(u) \cap X \cap V_4$. But since $(u, S, A) \in \mathscr{H}_4$, this contradicts Claim 3.4. Thus $(\varphi(u, S, A), \alpha(u, S, A)) \neq (\varphi(v, T, B), \alpha(v, T, B))$, as desired. This completes the proof of Theorem 2. \Box

8. Number of 4-contractible edges

In this section, we prove Corollary 3.

Let G be a 4-regular 4-connected graph. Let \mathscr{H}_0 be as in Section 4. For $u \in \tilde{V}$, let c(u) denote the number of those members (v, T, B) of \mathscr{H}_0 for which v = u. By Claim 4.4, $c(u) \ge \deg_{\tilde{G}}(u)$ for each $u \in \tilde{V}$. Since $|E_c(G)| \ge (\sum_{u \in \tilde{V}} c(u))/2$ by Theorem 2, this implies $|E_c(G)| \ge (\sum_{u \in \tilde{V}} \deg_{\tilde{G}}(u))/2 = |\tilde{E}(G) \cap E_n(G)|$. Since we clearly have $|E_c(G)| \ge |\tilde{E}(G) - E_n(G)|$, we obtain $2|E_c(G)| \ge |\tilde{E}(G) \cap E_n(G)| + |\tilde{E}(G) - E_n(G)| = |\tilde{E}(G)|$, as desired. \Box

References

- [1] K. Ando, Y. Egawa, Contractible edges in a 4-connected graph with vertices of degree greater than 4, submitted for publication.
- [2] J. Cheriyan, R. Thurimella, Fast algorithms for k-shredders and k-node connectivity augmentation, Proceedings of the 28th Annual ACM Symposium on the Theory of Computation (STOC), 1996, pp. 37–46.
- [3] M. Fontet, Graphes 4-essentials, CR. Acad. Sci. Paris 287 (1978) 289-290.
- [4] T. Jordán, On the number of shredders, J. Graph Theory 31 (1999) 195-200.
- [5] M. Kriesell, Average degree and contractibility, preprint.
- [6] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6 (1982) 343-344.