Edges not contained in triangles and the distribution of contractible edges in a 4-connected graph

Kiyoshi Ando ${ }^{\text {a }}$, Yoshimi Egawa ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Information and Communication Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-city, Tokyo 182-8585, Japan
${ }^{\mathrm{b}}$ Department of Mathematical Information Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Received 27 April 2006; received in revised form 27 June 2007; accepted 4 July 2007
Available online 10 October 2007

Abstract

We prove results concerning the distribution of 4-contractible edges in a 4-connected graph G in connection with the edges of G not contained in a triangle. As a corollary, we show that if G is 4 -regular 4 -connected graph, then the number of 4 -contractible edges of G is at least one half of the number of edges of G not contained in a triangle.

© 2007 Elsevier B.V. All rights reserved.
MSC: 05C40
Keywords: 4-Connected graph; Contractible edge; Triangle

1. Introduction

In this paper, we consider only finite undirected simple graphs with no loops and no multiple edges.
Let $G=(V(G), E(G))$ be a graph. For $e \in E(G)$, we let $V(e)$ denote the set of endvertices of e. For $x \in V(G)$, $N_{G}(x)$ denotes the neighborhood of x and $\operatorname{deg}_{G}(x)$ denotes the degree of x; thus $\operatorname{deg}_{G}(x)=\left|N_{G}(x)\right|$. For $X \subseteq V(G)$, we let $N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$. If there is no ambiguity, we write $N(x), \operatorname{deg}(x)$ and $N(X)$ for $N_{G}(x), \operatorname{deg}_{G}(x)$ and $N_{G}(X)$, respectively. For an integer $i \geqslant 0$, we let $V_{i}(G)$ denote the set of vertices x of G with $\operatorname{deg}(x)=i$. For $X \subseteq V(G)$, the subgraph induced by X in G is denoted by $G[X]$. A subset S of $V(G)$ is called a cutset if $G-S$ is disconnected. A cutset with cardinality i is simply referred to as an i-cutset. For an integer $k \geqslant 1$, we say that G is k-connected if $|V(G)| \geqslant k+1$ and G has no $(k-1)$-cutset.

Let G be a 4-connected graph. A 4-cutset S of G is said to be trivial if there exists $z \in V_{4}(G)$ such that $N(z)=S$; otherwise it is said to be nontrivial. For $e \in E(G)$, we let G / e denote the graph obtained from G by contracting e into one vertex (and replacing each resulting pair of double edges by a simple edge). We say that e is 4 -contractible or 4-noncontractible according as G / e is 4-connected or not. Note that if $|V(G)| \geqslant 6$, then $e \in E_{\mathrm{n}}(G)$ if and only if there exists a 4-cutset S such that $V(e) \subseteq S$. A 4-noncontractible edge $e=a b$ is said to be trivially 4-noncontractible if there exists $z \in V_{4}(G)$ such that $z a, z b \in E(G)$. We let $E_{\mathrm{c}}(G), E_{\mathrm{n}}(G)$ and $E_{\mathrm{tn}}(G)$ denote the set of 4-contractible edges, the set of 4-noncontractible edges and the set of trivially 4-noncontractible edges, respectively. Thus $e \in E_{\mathrm{tn}}(G)$ if

[^0]and only if there exists a trivial 4-cutset S such that $V(e) \subseteq S$. Finally we let $\tilde{E}(G)$ denote the set of those edges of G which are not contained in a triangle. Note that $\tilde{E}(G) \cap E_{\mathrm{n}}(G) \subseteq E_{\mathrm{n}}(G)-E_{\mathrm{tn}}(G)$.

The following characterization of 4-connected graphs with $E_{\mathrm{c}}(G)=\emptyset$ was obtained by Fontet [3] and independently by Martinov [6].

Theorem A. Let G be a 4-connected graph of order n, and suppose that G has no 4-contractible edge. Then one of the following holds:
(1) G is the square of the cycle of order n; i.e., we can write $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ so that $E(G)=\left\{v_{i} v_{j} \mid i-j \in\right.$ $\{ \pm 1, \pm 2\}(\bmod n)\}$; or
(2) there exists a 3-regular graph H such that G is the line graph of H.
(It is easy to see that if a 4-connected graph satisfies (1) or (2), then G has no 4-contractible edge.)
From Theorem A, we see that if G is a 4-connected graph with $E_{\mathcal{C}}(G)=\emptyset$, then G is 4-regular and each edge of G is contained in a triangle. Thus if a 4-connected graph G satisfies $V(G)-V_{4}(G) \neq \emptyset$ or $\tilde{E}(G) \neq \emptyset$, then G has a 4-contractible edge. Further it is natural to expect that under the same assumption, there is a 4-contractible edge in the neighborhood of each vertex in $V(G)-V_{4}(G)$ and also in the neighborhood of each edge in $\tilde{E}(G)$. As for the distribution of contractible edges in the neighborhood of a vertex with degree at least 5 , the following result was proved in [1].

Theorem B. Let G be a 4 -connected graph with $V(G)-V_{4}(G) \neq \emptyset$, and let $u \in V(G)-V_{4}(G)$. Then there exists $e \in E_{\mathrm{c}}(G)$ such that either e is incident with u or at least one of the endvertices of e is adjacent to u. Further if $G\left[N_{G}(u) \cap V_{4}(G)\right]$ is not a path of order 4 (length 3), then there are two such 4-contractible edges.

In this paper, we prove the following theorem concerning the local distribution of contractible edges in the neighborhood of an edge not contained in a triangle.

Theorem 1. Let G be a 4-connected graph with $\tilde{E}(G) \neq \emptyset$, and let $u v \in \tilde{E}(G)$. Suppose that $u v \in E_{\mathrm{n}}(G)$ and let S be a 4 -cutset with $u, v \in S$, and let A be the vertex set of a component of $G-S$. Then there exists $e \in E_{\mathrm{c}}(G)$ such that either e is incident with u or there exists $a \in N_{G}(u) \cap(S \cup A) \cap V_{4}(G)$ such that e is incident with a.

We also prove a somewhat global result. To state our result, we need some more definitions.
Throughout this and the next paragraph, we let G be a 4-connected graph. Let \tilde{V} denote the set of those vertices of G which are incident with an edge in $\tilde{E}(G) \cap E_{\mathrm{n}}(G)$, and let \tilde{G} denote the spanning subgraph of G with edge set $\tilde{E}(G) \cap E_{\mathrm{n}}(G)$; that is to say, $\tilde{V}=\bigcup_{e \in \tilde{E}(G) \cap E_{\mathrm{n}}(G)} V(e)$ and $\tilde{G}=\left(V(G), \tilde{E}(G) \cap E_{\mathrm{n}}(G)\right)$. Set

$$
\begin{align*}
\mathscr{L}= & \{(S, A) \mid S \text { is a 4-cutset, } A \text { is the union of the vertex sets of } \\
& \text { some components of } G-S, \emptyset \neq A \neq V(G)-S\}, \tag{1.1}
\end{align*}
$$

$$
\begin{equation*}
\mathscr{L}_{0}=\{(S, A) \in \mathscr{L} \mid S \text { is a nontrivial 4-cutset }\} . \tag{1.2}
\end{equation*}
$$

For $(S, A) \in \mathscr{L}$, we let $\bar{A}=V(G)-S-A$. Thus if $(S, A) \in \mathscr{L}$, then $(S, \bar{A}) \in \mathscr{L}$ and $N_{G}(A)-A=N_{G}(\bar{A})-\bar{A}=S$.
Now take $\left(S_{1}, A_{1}\right), \ldots,\left(S_{k}, A_{k}\right) \in \mathscr{L}$ so that for each $e \in \tilde{E}(G) \cap E_{\mathrm{n}}(G)$, there exists S_{i} such that $V(e) \subseteq S_{i}$. We choose $\left(S_{1}, A_{1}\right), \ldots,\left(S_{k}, A_{k}\right)$ so that k is minimum and so that $\left(\left|A_{1}\right|, \ldots,\left|A_{k}\right|\right)$ is lexicographically minimum, subject to the condition that k is minimum (thus if $\tilde{E}(G) \cap E_{\mathrm{n}}(G)=\emptyset$, then $k=0$). Note that the minimality of k implies that for each $1 \leqslant i \leqslant k$, we have $E\left(G\left[S_{i}\right]\right) \cap\left(\tilde{E}(G) \cap E_{\mathrm{n}}(G)\right) \neq \emptyset$ and hence $\left(S_{i}, A_{i}\right) \in \mathscr{L}_{0}$. Set $\mathscr{S}=\left\{S_{1}, \ldots, S_{k}\right\}$. Further set

$$
\begin{align*}
\mathscr{K}= & \left\{(u, S, A) \mid u \in \tilde{V}, S \in \mathscr{S},(S, A) \in \mathscr{L}_{0},\right. \\
& \text { there exists } \left.e \in \tilde{E}(G) \cap E_{\mathrm{n}}(G) \text { such that } u \in V(e) \subseteq S\right\} . \tag{1.3}
\end{align*}
$$

We define two subsets \mathscr{K}^{*} and \mathscr{K}_{0} of \mathscr{K}. Let \mathscr{K}^{*} be the set of those members (u, S, A) of \mathscr{K} for which A is minimal; that is to say,

$$
\begin{align*}
\mathscr{K}^{*}= & \{(u, S, A) \in \mathscr{K} \mid \text { there is no }(v, T, B) \in \mathscr{K} \\
& \text { with } v=u \text { and }(T, B) \neq(S, A) \text { such that } B \subseteq A\} . \tag{1.4}
\end{align*}
$$

Finally, let \mathscr{K}_{0} be the set of those members (u, S, A) of \mathscr{K}^{*} which satisfy one of the following two conditions:
(1) $\operatorname{deg}(u) \geqslant 5$; or
(2) $\operatorname{deg}(u)=4,|N(u) \cap A|=1$ and, if we write $N(u) \cap A=\{a\}$, then $u a \in E_{\mathrm{c}}(G)$.

We can now state our result.
Theorem 2. Let G be a 4-connected graph, and let \mathscr{K}_{0} be as above. Then we can assign to each (u, $\left.S, A\right) \in \mathscr{K}_{0}$ a 4-contractible edge $\varphi(u, S, A)$ having the property stated in Theorem 1 , so that for each $e \in E_{\mathrm{c}}(G)$ there are at most two members (u, S, A) of \mathscr{K}_{0} such that $\varphi(u, S, A)=e$.

As an application of Theorems 1 and 2, we obtain the following corollary concerning the number of contractible edges.

Corollary 3. Let G be a 4 -regular 4 -connected graph. Then $\left|E_{\mathrm{c}}(G)\right| \geqslant|\tilde{E}(G)| / 2$.
The bound $|\tilde{E}(G)| / 2$ of Corollary 3 is sharp. To see this, let $\ell \geqslant 2$ be an integer, and define a graph G of order 8ℓ as follows:

$$
\begin{aligned}
V(G)= & \left\{a_{i}, b_{i}, c_{i}, d_{i}, t_{i}, u_{i}, v_{i}, w_{i} \mid 1 \leqslant i \leqslant \ell\right\}, \\
E(G)= & \left\{a_{i} b_{i}, b_{i} c_{i}, c_{i} d_{i}, d_{i} a_{i}, t_{i} a_{i}, t_{i} b_{i}, u_{i} c_{i}, u_{i} d_{i}, v_{i} b_{i}, v_{i} c_{i},\right. \\
& \left.w_{i} d_{i}, w_{i} a_{i}, t_{i} u_{i}, v_{i} w_{i}, v_{i} t_{i+1}, w_{i} u_{i+1} \mid 1 \leqslant i \leqslant \ell\right\}
\end{aligned}
$$

(indices are to be read modulo ℓ). Then G is 4-regular 4-connected, and $\tilde{E}(G)=\left\{t_{i} u_{i}, v_{i} w_{i}, v_{i} t_{i+1}, w_{i} u_{i+1} \mid 1 \leqslant i \leqslant \ell\right\}$, $E_{\mathrm{c}}(G)=\left\{v_{i} t_{i+1}, w_{i} u_{i+1} \mid 1 \leqslant i \leqslant \ell\right\}$. Thus $\left|E_{\mathrm{c}}(G)\right|=2 \ell=|\tilde{E}(G)| / 2$.
For a 4-connected graph G which is not necessarily 4-regular, we can show that if $|\tilde{E}(G)| \geqslant 16$, then $\left|E_{\mathrm{c}}(G)\right| \geqslant$ $(|\tilde{E}(G)|+8) / 4$. However, the verification of this statement involves lengthy calculations, and will thus be discussed in a separate paper.

The organization of this paper is as follows. Section 2 contains preliminary results. We prove Theorem 1 in Sections 3 and 4, Theorem 2 in Section 5 through 7, and Corollary 3 in Section 8. We remark that Proposition 3.1, which is proved in Section 3, may be of independent interest in connection with Theorem B.

2. 4-Cutsets

Throughout the rest of this paper, we let G denote a 4-connected graph with $\tilde{E}(G) \neq \emptyset$ (note that in proving Theorem 2 and Corollary 3 , we may clearly assume $\tilde{E}(G) \neq \emptyset)$. Thus $|V(G)| \geqslant 8$. We write V_{4} for $V_{4}(G)$. Also let \mathscr{L}, \mathscr{L}_{0} be as in the two paragraphs preceding the statement of Theorem 2 (see (1.1) and (1.2)).

In this section, we prove preliminary results concerning the contractibility of edges. We start with four easy lemmas concerning 4 -cutsets.

Lemma 2.1. Let $(S, A),(T, B) \in \mathscr{L}_{0}$, and suppose that $A \cap B=\emptyset$ and $A \cap \bar{B}=\emptyset$. Then $S \cap T=\emptyset$, and $|S \cap B|=$ $|S \cap \bar{B}|=|A \cap T|=|\bar{A} \cap T|=2$.

B	$\bar{A} \cap B$	$S \cap B$	$A \cap B$
T	$\bar{A} \cap T$	$S \cap T$	$A \cap T$
\bar{B}	$\bar{A} \cap \bar{B}$	$S \cap \bar{B}$	$A \cap \bar{B}$
\bar{A}			

Proof. Since $A \cap B=A \cap \bar{B}=\emptyset$ and S is a nontrivial 4-cutset, $|A \cap T|=|A| \geqslant 2$. Set $Q=(S \cap T) \cup(S \cap \bar{B}) \cup(\bar{A} \cap T)$. If $\bar{A} \cap \bar{B} \neq \emptyset$, then Q separates $\bar{A} \cap \bar{B}$ and $A \cup B$, and hence $|Q| \geqslant 4$, which implies $|S \cap \bar{B}|=|Q|-|S \cap T|-\mid \bar{A} \cap$ $T|\geqslant 4-|S \cap T|-|\bar{A} \cap T|=|A \cap T| \geqslant 2$. If $\bar{A} \cap \bar{B}=\emptyset$, then since T is a nontrivial 4-cutset, we have $| S \cap \bar{B}|=|\bar{B}| \geqslant 2$. Thus $|S \cap \bar{B}| \geqslant 2$ in either case. Similarly $|S \cap B| \geqslant 2$. Since $|S|=4$, this implies $|S \cap B|=|S \cap \bar{B}|=2$ and $S \cap T=\emptyset$. If $\bar{A} \cap B$ or $\bar{A} \cap \bar{B}$, say $\bar{A} \cap \bar{B}$, is nonempty, then we have $|S \cap \bar{B}| \geqslant|A \cap T|$, which forces $|A \cap T|=2$ and hence $|\bar{A} \cap T|=2$. Thus we may assume $\bar{A} \cap B=\bar{A} \cap \bar{B}=\emptyset$. Then we obtain $|\bar{A} \cap T|=|\bar{A}| \geqslant 2$, which implies $|A \cap T|=|\bar{A} \cap T|=2$.

Lemma 2.2. Let $(S, A),(T, B) \in \mathscr{L}_{0}$, and suppose that $S \cap T \neq \emptyset$. Then either $A \cap B \neq \emptyset$ and $\bar{A} \cap \bar{B} \neq \emptyset$, or $A \cap \bar{B} \neq \emptyset$ and $\bar{A} \cap B \neq \emptyset$.

Proof. Suppose that we have $A \cap B=\emptyset$ or $\bar{A} \cap \bar{B}=\emptyset$, and we also have $A \cap \bar{B}=\emptyset$ or $\bar{A} \cap B=\emptyset$. By symmetry, we may assume $A \cap B=\emptyset$ and $A \cap \bar{B}=\emptyset$. But then $S \cap T=\emptyset$ by Lemma 2.1, which contradicts the assumption that $S \cap T \neq \emptyset$.

Lemma 2.3. Let $(S, A),(T, B) \in \mathscr{L}$, and suppose that $A \cap B \neq \emptyset$ and $\bar{A} \cap \bar{B} \neq \emptyset$. Then $((S \cap T) \cup(S \cap B) \cup(A \cap$ $T), A \cap B) \in \mathscr{L}$ and $((S \cap T) \cup(S \cap \bar{B}) \cup(A \cap \bar{T}), \bar{A} \cap \bar{B}) \in \mathscr{L}$.

Proof. Set $R=(S \cap T) \cup(S \cap B) \cup(A \cap T)$ and $Q=(S \cap T) \cup(S \cap \bar{B}) \cup(\bar{A} \cap T)$. Then R separates $A \cap B$ and $\bar{A} \cup \bar{B}$, and Q separates $\bar{A} \cap \bar{B}$ and $A \cup B$. Hence $|R|,|Q| \geqslant 4$. On the other hand, $|R|+|Q|=|S|+|T|=8$. Consequently $|R|=|Q|=4$, and hence $(R, A \cap B),(Q, \bar{A} \cap \bar{B}) \in \mathscr{L}$.

Lemma 2.4. $\operatorname{Let}(S, A) \in \mathscr{L}$.
(i) If $W \subseteq S$ and $|W| \leqslant|A|$, then $|N(W) \cap A| \geqslant|W|$. Further if $|W|<|A|$ and $|N(W) \cap A|=|W|$, then $((S-W) \cup$ $(N(W) \cap A), A-(N(W) \cap A)) \in \mathscr{L}$.
(ii) If $x \in S$, then $N(x) \cap A \neq \emptyset$. Further if $(S, A) \in \mathscr{L}_{0}$ and $|N(x) \cap A|=1$, then $((S-\{x\}) \cup(N(x) \cap A), A-$ $(N(x) \cap A)) \in \mathscr{L}$.

Proof. Note that (ii) follows from (i) by letting $W=\{x\}$. Thus it suffices to prove (i). Now if $A-(N(W) \cap A) \neq \emptyset$, then $(S-W) \cup(N(W) \cap A)$ separates $A-(N(W) \cap A)$ and $\bar{A} \cup W$. Thus, the desired conclusions follow from the assumption that G is 4-connected.

In the following four lemmas, we consider edges which are adjacent to the endvertices of an edge contained in two triangles. Recall that $\tilde{V}=\bigcup_{e \in \tilde{E}(G) \cap E_{\mathrm{n}}(G)} V(e)$.

Lemma 2.5. Let $a b \in E(G)$ with $\operatorname{deg}(a)=\operatorname{deg}(b)=4$. Then $N(a)-\{b\} \neq N(b)-\{a\}$.
Proof. If $N(a)-\{b\}=N(b)-\{a\}$, then $N(a)-\{b\}$ separates $\{a, b\}$ from the rest, which contradicts the assumption that G is 4-connected.

Lemma 2.6. Let u, a, b, w be four distinct vertices with $u a, u b, a b, a w, b w \in E(G)$ and $\operatorname{deg}(a)=\operatorname{deg}(b)=4$, and write $N(a)=\{u, b, w, x\}$ and $N(b)=\{u, a, w, y\}$. Then $x \neq y$, and we have $a x, b y \in E_{\mathrm{c}}(G) \cup E_{\mathrm{tn}}(G)$ and $a, b \notin \tilde{V}$.

Proof. By Lemma 2.5, $x \neq y$. In view of the symmetry of the roles of a and b, it suffices to prove $a x \in E_{\mathrm{c}}(G) \cup E_{\text {tn }}(G)$ and $a \notin \tilde{V}$. By way of contradiction, suppose that $a x \notin E_{\mathrm{c}}(G) \cup E_{\mathrm{tn}}(G)$. Then there exists $(S, A) \in \mathscr{L}_{0}$ with $a, x \in S$. By Lemma 2.4 (ii), $N(a) \cap A \neq \emptyset$ and $N(a) \cap \bar{A} \neq \emptyset$. Since a vertex in $N(a) \cap A$ and a vertex in $N(a) \cap \bar{A}$ are nonadjacent, this means that one of u and w lies in A and the other one lies in \bar{A}. We may assume $u \in A$ and $w \in \bar{A}$. Then $b \in S$. Since $N(b)=\{u, a, w, y\}$, it follows that we have $N(\{a, b\}) \cap A=\{u\}$ or $N(\{a, b\}) \cap \bar{A}=\{w\}$, which contradicts Lemma 2.4 (i). Thus $a x \in E_{\mathrm{c}}(G) \cup E_{\mathrm{tn}}(G)$. Now again by way of contradiction, suppose that $a \in \tilde{V}$. Then there exists $e \in \tilde{E}(G) \cap E_{\mathrm{n}}(G)$ such that e is incident with a. Since $a u, a b, a w$ are contained in a triangle, $e \neq a u, a b, a w$. Hence $e=a x$. But since $\tilde{E}(G) \cap E_{\mathrm{n}}(G) \subseteq E_{\mathrm{n}}(G)-E_{\mathrm{tn}}(G)$, this contradicts the earlier assertion that $a x \in E_{\mathrm{c}}(G) \cup E_{\mathrm{tn}}(G)$. Thus $a \notin \tilde{V}$.

Lemma 2.7. Under the notation of Lemma 2.6, suppose that $\operatorname{deg}(u), \operatorname{deg}(w) \geqslant 5$. Then ax, by $\in E_{\mathrm{c}}(G)$.
Proof. Suppose that $a x \in E_{\mathrm{n}}(G)$. Then by Lemma 2.6, $a x \in E_{\mathrm{tn}}(G)$, and hence there exists $c \in V_{4}$ such that $c a, c x \in E(G)$. Then $c \in N(a)-\{x\}=\{u, w, b\}$. Since $\operatorname{deg}(u), \operatorname{deg}(w) \geqslant 5$, this forces $c=b$, which contradicts Lemma 2.5. Thus $a x \in E_{\mathrm{c}}(G)$, and we can similarly show that by $\in E_{\mathrm{c}}(G)$.

Lemma 2.8. Under the notation of Lemma 2.6, suppose that $\operatorname{deg}(u) \geqslant 5$ and $\operatorname{deg}(w)=4$. Then one of the following holds:
(1) $x w \notin E(G)$ and $a x \in E_{\mathrm{c}}(G)$, or
(2) $y w \notin E(G)$ and by $\in E_{\mathrm{c}}(G)$.

Proof. If $x w, y w \in E(G)$, then $N(\{a, b, w\})-\{a, b, w\}=\{u, x, y\}$, which contradicts the assumption that G is 4-connected. Thus we have $x w \notin E(G)$ or $y w \notin E(G)$. We may assume that $x w \notin E(G)$. Now suppose that $a x \in$ $E_{\mathrm{n}}(G)$. Then by Lemma 2.6, $a x \in E_{\mathrm{tn}}(G)$. Hence there exists $c \in V_{4}$ such that $c a, c x \in E(G)$. Arguing as in Lemma 2.7, we see that $c=w$. But this contradicts the assumption that $x w \notin E(G)$.

We now prove two auxiliary results.
Lemma 2.9. Let $(P, X) \in \mathscr{L}_{0}$ and $u \in P$. Suppose that X is minimal, subject to the condition that $u \in P$ (i.e., there is no $(R, Z) \in \mathscr{L}_{0}$ with $(P, X) \neq(R, Z)$ such that $u \in R$ and $\left.Z \subseteq X\right)$. Then $u a \in E_{\mathrm{c}}(G) \cup E_{\operatorname{tn}}(G)$ for each $a \in N(u) \cap X$.

Proof. Let $a \in N(u) \cap X$, and suppose that $u a \in E_{\mathrm{n}}(G)-E_{\mathrm{tn}}(G)$. Then there exists $(Q, Y) \in \mathscr{L}_{0}$ with $u, a \in Q$. Note that $u \in P \cap Q$. Thus in view of Lemma 2.2, we may assume $X \cap Y \neq \emptyset$ and $\bar{X} \cap \bar{Y} \neq \emptyset$. Set $U=(P \cap$ $Q) \cup(P \cap Y) \cup(X \cap Q)$. Then by Lemma 2.3, $(U, X \cap Y) \in \mathscr{L}$. But since $u, a \in(P \cup X) \cap Q \subseteq U$, this implies $(U, X \cap Y) \in \mathscr{L}_{0}$, which contradicts the minimality of X.

Lemma 2.10. Let $(R, Z) \in \mathscr{L}_{0}$ and $a \in R$. Suppose that $|N(a) \cap Z|=1$, and write $N(a) \cap Z=\{x\}$. Then ax \in $E_{\mathrm{c}}(G) \cup E_{\mathrm{tn}}(G)$.

Proof. Suppose that $a x \in E_{\mathrm{n}}(G)-E_{\mathrm{tn}}(G)$. Then there exists $(Q, Y) \in \mathscr{L}_{0}$ with $a, x \in Q$. By Lemma 2.2, we may assume $Z \cap Y \neq \emptyset$ and $\bar{Z} \cap \bar{Y} \neq \emptyset$. Then by Lemma 2.3, $((R \cap Q) \cup(R \cap Y) \cup(Z \cap Q), Z \cap Y) \in \mathscr{L}$. Hence by Lemma 2.4, $N(a) \cap(Z \cap Y) \neq \emptyset$, which contradicts the assumption that $N(a) \cap Z=\{x\}$.

The last three lemmas are analogous to Lemmas 2.6 through 2.8.
Lemma 2.11. Let u, a, b be three distinct vertices with $u a, u b, a b \in E(G)$ and $\operatorname{deg}(a)=4$, and write $N(a)=$ $\{u, b, x, y\}$. Suppose that there exists $(R, Z) \in \mathscr{L}_{0}$ such that $u, a \in R, b, y \in Z$ and $x \in \bar{Z}$. Suppose further that Z is minimal, subject to the condition that $u, a \in R$ and $b \in Z$. Then the following hold.
(i) $x y \notin E(G)$.
(ii) $a x \in E_{\mathrm{c}}(G) \cup E_{\mathrm{tn}}(G)$.
(iii) $a y \in E_{\mathrm{c}}(G) \cup E_{\mathrm{tn}}(G)$.
(iv) $a \notin \tilde{V}$.

Proof. Since $x \in \bar{Z}$ and $y \in Z$, we clearly have $x y \notin E(G)$ and, applying Lemma 2.10 to (R, \bar{Z}), we obtain $a x \in$ $E_{\mathrm{c}}(G) \cup E_{\mathrm{tn}}(G)$. Thus (i) and (ii) are proved. To prove (iii), suppose that $a y \in E_{\mathrm{n}}(G)-E_{\mathrm{tn}}(G)$. Then there exists $(Q, Y) \in \mathscr{L}_{0}$ with $a, y \in Q$. By Lemma 2.2, we may assume $Z \cap Y \neq \emptyset$ and $\bar{Z} \cap \bar{Y} \neq \emptyset$. Set $U=(R \cap Q) \cup$ $(R \cap Y) \cup(Z \cap Q)$. Since $a, y \in U$, it follows from Lemma 2.3 that $(U, Z \cap Y) \in \mathscr{L}_{0}$. Hence by Lemma 2.4 (ii), $N(a) \cap(Z \cap Y) \neq \emptyset$, which implies $N(a) \cap(Z \cap Y)=\{b\}$. Since $u b \in E(G)$, this forces $u \in(Q \cup Y) \cap R$, and hence $u \in U$. Since $a \in U$ and $b \in Z \cap Y$, this contradicts the minimality of Z, completing the proof of (iii). Now to
prove (iv), suppose that $a \in \tilde{V}$. Then there exists $e \in \tilde{E}(G) \cap E_{\mathrm{n}}(G)$ such that e is incident with a. Since $a u, a b$ are contained in a triangle, $e \neq a u, a b$. Consequently $e=a x$ or $a y$, which contradicts (ii) or (iii).

Lemma 2.12. Under the notation of Lemma 2.11, suppose that $\operatorname{deg}(b) \geqslant 5$. Then $a x \in E_{\mathrm{c}}(G)$ or ay $\in E_{\mathrm{c}}(G)$.
Proof. Suppose that $a x, a y \in E_{\mathrm{n}}(G)$. Then by Lemma 2.11 (ii) and (iii), $a x, a y \in E_{\mathrm{tn}}(G)$. Hence there exist $c, c^{\prime} \in$ V_{4} such that $c a, c x \in E(G)$ and $c^{\prime} a, c^{\prime} y \in E(G)$. Since $\operatorname{deg}(b) \geqslant 5, c, c^{\prime} \neq b$. Since $x y \notin E(G)$ by Lemma 2.11 (i), $c, c^{\prime} \notin\{x, y\}$. Consequently $\operatorname{deg}(u)=4$ and $c=c^{\prime}=u$. But this contradicts Lemma 2.5.

Lemma 2.13. Under the notation of Lemma 2.11, suppose that $\operatorname{deg}(b), \operatorname{deg}(u) \geqslant 5$. Then ax, ay $\in E_{\mathrm{c}}(G)$.
Proof. Suppose that $a x \in E_{\mathrm{n}}(G)$. Then $a x \in E_{\text {tn }}(G)$ by Lemma 2.11 (ii), and hence there exists $c \in V_{4}$ such that $c a, c x \in E(G)$. Since $\operatorname{deg}(b), \operatorname{deg}(u) \geqslant 5, c \neq b, u$. Hence $c=y$. But this contradicts Lemma 2.11 (i). Thus $a x \in E_{\mathrm{C}}(G)$. By means of Lemma 2.11 (iii), we similarly obtain $a y \in E_{\mathrm{c}}(G)$.

3. Neighborhood of a vertex of degree 5

In this section, we prove a result which shows that Theorem 1 holds if $\operatorname{deg}(u) \geqslant 5$. Specifically, we prove the following proposition in a series of claims.

Proposition 3.1. Let $(P, X) \in \mathscr{L}_{0}$ and $u \in P$, and suppose that $\operatorname{deg}(u) \geqslant 5$. Then one of the following holds:
(1) there exists $a \in N(u) \cap X$ such that $u a \in E_{\mathrm{C}}(G)$; or
(2) there exists $a \in N(u) \cap(P \cup X) \cap V_{4}$ for which there exists $e \in E_{\mathrm{c}}(G)$ such that e is incident with a.

Through this section, let $(P, X), u$ be as in Proposition 3.1. We may assume that X is minimal, subject to the condition that $u \in P$ (i.e., there is no $(R, Z) \in \mathscr{L}_{0}$ with $(R, Z) \neq(P, X)$ such that $u \in R$ and $\left.Z \subseteq X\right)$.

Claim 3.2. Suppose that there exists an edge e joining a vertex in $N(u) \cap X \cap V_{4}$ and a vertex in $N(u) \cap(P \cup X) \cap V_{4}$. Suppose that $e \in E_{\mathrm{n}}(G)$, and write $e=a b$. Then a or b, say a, satisfies the following conditions.
(i) If we write $N(a)=\{u, b, x, y\}$, then $x y \notin E(G)$.
(ii) $a \notin \tilde{V}$.
(iii) There exists $e^{\prime} \in E_{\mathrm{c}}(G)$ such that e^{\prime} is incident with a.

Proof. If $a b \in E_{\mathrm{tn}}(G)$, then there exists $w \in V_{4}$ such that $w a, w b \in E(G)$, and hence the desired conclusions follow from Lemmas 2.6 and 2.8. Thus we may assume that $a b \in E_{n}(G)-E_{\mathrm{tn}}(G)$. Then there exists $(R, Z) \in \mathscr{L}_{0}$ with $a, b \in R$. We first show that $u \notin R$. Suppose that $u \in R$. Then by Lemma 2.2, we may assume $X \cap Z \neq \emptyset$ and $\bar{X} \cap \bar{Z} \neq \emptyset$. Since $a, b \in(P \cup X) \cap R$, it follows from Lemma 2.3 that $((P \cap R) \cup(P \cap Z) \cup(X \cap R), X \cap Z) \in \mathscr{L}_{0}$, which contradicts the minimality of X. Thus $u \notin R$. We may assume $u \in Z$. We may also assume that we have chosen (R, Z) so that Z is minimal, subject to the condition that $a, b \in R$ and $u \in Z$. By Lemma 2.4 (i), we have $N(a) \cap Z \neq\{u\}$ or $N(b) \cap Z \neq\{u\}$. We may assume $N(a) \cap Z \neq\{u\}$. Since $N(a) \cap \bar{Z} \neq \emptyset$ by Lemma 2.4 (ii), we have $|N(a) \cap Z|=2$ and $|N(a) \cap \bar{Z}|=1$. Write $N(a) \cap Z=\{u, y\}$ and $N(a) \cap \bar{Z}=\{x\}$. Then b, a, u, x, y satisfy the assumptions of Lemmas 2.11 and 2.12 with the roles of b and u replaced by each other. Consequently the desired conclusions follow from (i), (iv) of Lemmas 2.11 and 2.12.

Claim 3.3. Let $a \in X$, and suppose that $u a \in E_{\mathrm{n}}(G)$. Then $u a \in E_{\mathrm{tn}}(G)$.
Proof. This follows from Lemma 2.9.
Claim 3.4. Suppose that each edge joining u and a vertex in X is 4-noncontractible, and that there is no edge which joins a vertex in $N(u) \cap X \cap V_{4}$ and a vertex in $N(u) \cap(P \cup X) \cap V_{4}$. Then $N(u) \cap X \cap V_{4}=\emptyset$.

Proof. Suppose that $N(u) \cap X \cap V_{4} \neq \emptyset$, and take $a \in N(u) \cap X \cap V_{4}$. We have $u a \in E_{\mathrm{tn}}(G)$ by Claim 3.3. Hence there exists $b \in V_{4}$ such that $u b, a b \in E(G)$. From $a \in X$ and $a b \in E(G)$, it follows that $b \in P \cup X$. Thus $a b$ is an edge joining a vertex in $N(u) \cap X \cap V_{4}$ and a vertex in $N(u) \cap(P \cup X) \cap V_{4}$, a contradiction.

Claim 3.5. Suppose that each edge joining u and a vertex in X is 4 -noncontractible, and that there is no edge which joins a vertex in $N(u) \cap X \cap V_{4}$ and a vertex in $N(u) \cap(P \cup X) \cap V_{4}$. Then there exists $a \in N(u) \cap P \cap V_{4}$ and $b \in N(u) \cap X$ such that $a b \in E(G),|N(a) \cap X|=2$ and $|N(a) \cap \bar{X}|=1$.

Proof. Take $z \in N(u) \cap X$. Then $u z \in E_{\mathrm{tn}}(G)$ by Claim 3.3, and hence there exists $a_{z} \in V_{4}$ such that $a_{z} u, a_{z} z \in E(G)$. Since $N(u) \cap X \cap V_{4}=\emptyset$ by Claim 3.4, $a_{z} \in P$. Since $\operatorname{deg}\left(a_{z}\right)=4$ and $u \in N\left(a_{z}\right) \cap P,\left|N\left(a_{z}\right) \cap X\right|+\left|N\left(a_{z}\right) \cap \bar{X}\right| \leqslant 3$, and hence it follows from Lemma 2.4 (ii) that $1 \leqslant\left|N\left(a_{z}\right) \cap X\right| \leqslant 2$. Now by way of contradiction, suppose that the claim is false. Then $\left|N\left(a_{z}\right) \cap X\right|=1$, i.e., $N\left(a_{z}\right) \cap X=\{z\}$. Since $z \in N(u) \cap X$ is arbitrary, this means that $a_{y} \neq a_{z}$ for any $y, z \in N(u) \cap X$ with $y \neq z$ and if we set $W=\left\{a_{z} \mid z \in N(u) \cap X\right\}$, then we have $|W|=|N(u) \cap X|$ and $N(\{u\} \cup W) \cap X=N(u) \cap X$, and hence $|N(\{u\} \cup W) \cap X|=|W|=|\{u\} \cup W|-1$. In view of Lemma 2.4 (i), this implies $|\{u\} \cup W| \geqslant|X|+1$, i.e., $|W| \geqslant|X|$. Again fix $z \in N(u) \cap X$. Since $N\left(a_{y}\right) \cap X=\{y\}$ for each $y \in(N(u) \cap X)-\{z\}, N(z) \subseteq\left(P-\left(W-\left\{a_{z}\right\}\right)\right) \cup(X-\{z\})$. Consequently $\operatorname{deg}(z) \leqslant|P|-|W|+|X| \leqslant|P|=4$, which implies $z \in N(u) \cap X \cap V_{4}$. But this contradicts Claim 3.4, completing the proof.

Claim 3.6. Suppose that each edge joining u and a vertex in X is 4-noncontractible, and that there is no edge which joins a vertex in $N(u) \cap X \cap V_{4}$ and a vertex in $N(u) \cap(P \cup X) \cap V_{4}$. Further let a, b be as in Claim 3.5, and write $N(a) \cap X=\{b, y\}$ and $N(a) \cap \bar{X}=\{x\}$. Then $x y \notin E(G), a \notin \tilde{V}$, and $a x$, ay $\in E_{\mathrm{c}}(G)$.

Proof. Note that $\operatorname{deg}(b) \geqslant 5$ by Claim 3.4, and $\operatorname{deg}(u) \geqslant 5$ by the assumption of Proposition 3.1. Thus the desired conclusions follow from (i) and (iv) of Lemmas 2.11 and 2.13.

Proposition 3.1 now follows from Claims 3.2 and 3.6.

4. Non-meshing 4-cutsets

In this section, we prove Theorem 1, and fix notation for the proof of Theorem 2. Following Cheriyan and Thurimella [2] and Jordán [4], for two disjoint 4-cutsets S, T of G, we say that S meshes with T if S intersects with at least two components of $G-T$. It is easy to see that if S meshes with T, then T intersects with every component of $G-S$, and hence T meshes with S and S intersects with every component of $G-T$. Now let $\left(S_{1}, A_{1}\right), \ldots,\left(S_{k}, A_{k}\right)$ and \mathscr{S} be as in the paragraph preceding the statement of Theorem 2. Note that the minimality of k implies that $\left(S_{i}, A_{i}\right) \in \mathscr{L}_{0}$ for each $1 \leqslant i \leqslant k$. The following claim is virtually proved in Kriesell [5, Lemma 3], but we include its proof for the convenience of the reader.

Claim 4.1. No two members of \mathscr{S} mesh with each other.
Proof. Suppose that there exist $i, j(i<j)$ such that S_{i} meshes with S_{j}. Then $A_{i} \cap S_{j} \neq \emptyset$. We first show that $A_{i} \cap A_{j}=\emptyset$. Suppose that $A_{i} \cap A_{j} \neq \emptyset$. Set $R=\left(S_{i} \cap S_{j}\right) \cup\left(S_{i} \cap A_{j}\right) \cup\left(A_{i} \cap S_{j}\right)$ and $Q=\left(S_{i} \cap S_{j}\right) \cup\left(S_{i} \cap \bar{A}_{j}\right) \cup\left(\bar{A}_{i} \cap S_{j}\right)$. Then $|R| \geqslant 4$, and hence $\left|S_{i} \cap \bar{A}_{j}\right|=4-\left|S_{i} \cap S_{j}\right|-\left|S_{i} \cap A_{j}\right| \leqslant|R|-\left|S_{i} \cap S_{j}\right|-\left|S_{i} \cap A_{j}\right|=\left|A_{i} \cap S_{j}\right|$. If $\bar{A}_{i} \cap \bar{A}_{j}=\emptyset$, then $\left|\bar{A}_{j}\right|=\left|S_{i} \cap \bar{A}_{j}\right|+\left|A_{i} \cap \bar{A}_{j}\right| \leqslant\left|A_{i} \cap S_{j}\right|+\left|A_{i} \cap \bar{A}_{j}\right|<\left|A_{i}\right|$, and hence we get a contradiction to the minimality of $\left(\left|A_{1}\right|,\left|A_{2}\right|, \ldots,\left|A_{k}\right|\right)$ by replacing $\left(S_{i}, A_{i}\right)$ and $\left(S_{j}, A_{j}\right)$ by $\left(S_{j}, \bar{A}_{j}\right)$ and (S_{i}, A_{i}), respectively. Thus $\bar{A}_{i} \cap \bar{A}_{j} \neq \emptyset$. Hence $\left(R, A_{i} \cap A_{j}\right),\left(Q, \bar{A}_{i} \cap \bar{A}_{j}\right) \in \mathscr{L}$ by Lemma 2.3. Note that each edge contained in $G\left[S_{i}\right]$ or $G\left[S_{j}\right]$ is contained in $G[R]$ or $G[Q]$. Consequently, we get a contradiction by replacing (S_{i}, A_{i}) and (S_{j}, A_{j}) by ($R, A_{i} \cap A_{j}$) and ($Q, \bar{A}_{i} \cap \bar{A}_{j}$), respectively. Thus $A_{i} \cap A_{j}=\emptyset$ as desired, and we similarly obtain $A_{i} \cap \bar{A}_{j}=\emptyset$.

Consequently $S_{i} \cap S_{j}=\emptyset$ and $\left|S_{i} \cap A_{j}\right|=\left|S_{i} \cap \bar{A}_{j}\right|=\left|A_{i} \cap S_{j}\right|=\left|\bar{A}_{i} \cap S_{j}\right|=2$ by Lemma 2.1. Write $A_{i} \cap S_{j}=\{a, b\}$. If $a b \in E(G)$, then since $N(a), N(b) \subseteq\left(A_{i} \cap S_{j}\right) \cup S_{i}, a b$ is contained in a triangle. This means that each edge in $\tilde{E}(G) \cap E_{\mathrm{n}}(G)$ which is contained in $G\left[S_{j}\right]$ is contained in $G\left[\bar{A}_{i} \cap S_{j}\right]$. Now if $\bar{A}_{i} \cap A_{j} \neq \emptyset$, then we get a contradiction by replacing $\left(S_{j}, A_{j}\right)$ by $\left(\left(S_{i} \cap A_{j}\right) \cap\left(\bar{A}_{i} \cap S_{j}\right), \bar{A}_{i} \cap A_{j}\right)$. Thus $\bar{A}_{i} \cap A_{j}=\emptyset$, which implies $\bar{A}_{i} \cap \bar{A}_{j} \neq \emptyset$ because $E\left(G\left[S_{j}\right]\right) \cap\left(\tilde{E}(G) \cap E_{\mathrm{n}}(G)\right) \neq \emptyset$. We now get a contradiction to the minimality of k by replacing $\left(S_{i}, A_{i}\right)$ and $\left(S_{j}, A_{j}\right)$ by $\left(\left(S_{i} \cap \bar{A}_{j}\right) \cup\left(\bar{A}_{i} \cap S_{j}\right), \bar{A}_{i} \cap \bar{A}_{j}\right)$. This completes the proof of Claim 4.1.

Let $\mathscr{K}, \mathscr{K}^{*}$ and \mathscr{K}_{0} be as in the paragraph preceding Theorem 2 (see (1.3), (1.4) and conditions (1) and (2) stated at the end of the paragraph).

The following claim immediately follows from the definition of \mathscr{K}^{*}.
Claim 4.2. Let $u \in \tilde{V}$. Then for each $(u, S, A) \in \mathscr{K}$, there exists a member (v, T, B) of \mathscr{K}^{*} with $v=u$ and $B \subseteq A$. In particular, there exist at least two members (v, T, B) of \mathscr{K}^{*} with $v=u$.

Claim 4.3. Let $(u, S, A),(v, T, B) \in \mathscr{K}^{*}$ with $u=v$ and $(S, A) \neq(T, B)$. Then $(S \cup A) \cap B=A \cap(T \cup B)=\emptyset$.
Proof. If $S=T$, the desired conclusion clearly holds. Thus we may assume that $S \neq T$. By Claim 4.1, we have that $S \cap \bar{B}=T \cap \bar{A}=\emptyset, S \cap B=T \cap \bar{A}=\emptyset, S \cap \bar{B}=T \cap A=\emptyset$, or $S \cap B=T \cap A=\emptyset$. Suppose that $S \cap \bar{B}=T \cap \bar{A}=\emptyset$. Then since $S \neq T$, we have $A \cap T \neq \emptyset$ and $|(S \cap T) \cup(\bar{A} \cap T) \cup(S \cap \bar{B})|=|T|-|A \cap T|<4$, and hence $\bar{A} \cap \bar{B}=\emptyset$. Since $S \cap \bar{B}=\emptyset$ and $A \cap T \neq \emptyset$, this implies \bar{B} is a proper subset of A. But since $(u, T, \bar{B}) \in \mathscr{K}$ and $(u, S, A) \in \mathscr{K}^{*}$, this contradicts the definition of \mathscr{K}^{*}. If $S \cap B=T \cap \bar{A}=\emptyset$ or $S \cap \bar{B}=T \cap A=\emptyset$, then we obtain $B \subseteq A$ or $A \subseteq B$, respectively, and hence we similarly get a contradiction. Thus $S \cap B=T \cap A=\emptyset$. Since $S \neq T$, this also implies $A \cap B=\emptyset$, as desired.

Recall that $\tilde{G}=\left(V(G), \tilde{E}(G) \cap E_{\mathrm{n}}(G)\right)$.

Claim 4.4. Let $u \in \tilde{V}$. Then the following hold.

(i) There exists a member (v, T, B) of \mathscr{K}_{0} with $v=u$.
(ii) Suppose that $\operatorname{deg}_{G}(u) \geqslant 5$, or $\operatorname{deg}_{\tilde{G}}(u) \geqslant 2$, or there exist three members (v, T, B) of \mathscr{K}^{*} with $v=u$. Then for each $(u, S, A) \in \mathscr{K}^{*}$, we have $(u, S, A) \in \mathscr{K}_{0}$. In particular, if $\operatorname{deg}_{G}(u)=4$ and $\operatorname{deg}_{\tilde{G}}(u) \geqslant 2$, then $\operatorname{deg}_{\tilde{G}}(u)=2$ and there exist precisely two members (v, T, B) of \mathscr{K}_{0} with $v=u$.

Proof. If $\operatorname{deg}_{G}(u) \geqslant 5$, the desired conclusion immediately follows from Claim 4.2 and the definition of \mathscr{K}_{0}. Thus we may assume $\operatorname{deg}_{G}(u)=4$. We first prove (ii). Thus let u be as in (ii) with $\operatorname{deg}_{G}(u)=4$. Then by Lemma 2.4 (ii) and Claim 4.3, it follows that $\left|N_{G}(u) \cap A\right|=1$ for each $(u, S, A) \in \mathscr{K}^{*}$, and that for each $a \in N_{G}(u)-N_{\tilde{G}}(u)$, there exists $(u, S, A) \in \mathscr{K}^{*}$ such that $a \in A$. Again by Claim 4.3, this implies that for each $(u, S, A) \in \mathscr{K}^{*}, N_{G}(u) \cap S=N_{\tilde{G}}(u) \cap S$. Note that this also implies that if $\operatorname{deg}_{\tilde{G}}(u) \geqslant 2$, then we have $\operatorname{deg}_{\tilde{G}}(u)=2$ and there exist precisely two members (v, T, B) of \mathscr{K}^{*} with $v=u$. Now let $(u, S, A) \in \mathscr{K}^{*}$, and write $N_{G}(u) \cap A=\{a\}$. To complete the proof of (ii), it suffices to show that $(u, S, A) \in \mathscr{K}_{0}$. Suppose that $(u, S, A) \notin \mathscr{K}_{0}$. Then $u a \in E_{\mathrm{n}}(G)$, and hence $u a \in E_{\mathrm{tn}}(G)$ by Lemma 2.10, which implies that there exists $c \in V_{4}$ such that $c u, c a \in E(G)$. Since $N_{G}(u) \cap A=\{a\}$, this forces $c \in S$. But since $u c$ is contained in a triangle, $c \notin N_{\tilde{G}}(u)$, which contradicts the earlier assertion that $N_{G}(u) \cap S=N_{\tilde{G}}(u) \cap S$. Thus (ii) is proved.

We now prove (i). We may assume that there exists $(u, S, A) \in \mathscr{K}^{*}$ such that $(u, S, A) \notin \mathscr{K}_{0}$. Then arguing as above, we see that $\left|N_{G}(u) \cap(S \cup A)\right| \geqslant 3$ (note that if $\left|N_{G}(u) \cap A\right| \geqslant 2$, we clearly have $\left|N_{G}(u) \cap(S \cup A)\right| \geqslant 3$). Take $(u, T, B) \in \mathscr{K}^{*}$ with $B \subseteq \bar{A}$. Then $\left|N_{G}(u) \cap B\right|=1$. Write $N_{G}(u) \cap B=\{b\}$. Suppose that $(u, T, B) \notin \mathscr{K}_{0}$. Then there exists $c^{\prime} \in V_{4}$ such that $c^{\prime} u, c^{\prime} b \in E(G)$. This in turn implies $\left|N_{G}(u) \cap A\right|=1$. Write $N_{G}(u) \cap A=\{a\}$. Then there exists $c \in V_{4}$ such that $c u, c a \in E(G)$. Since $\operatorname{deg}_{G}(u)=4, \operatorname{deg}_{\tilde{G}}(u) \geqslant 1$ and $a b \notin E(G)$, this forces $c=c^{\prime}$. But then applying Lemma 2.6 with a and b replaced by u and c, we obtain $u \notin \tilde{V}$, which contradicts the assumption that $u \in \tilde{V}$. Thus (i) is also proved.

We can now easily prove Theorem 1.
Proof of Theorem 1. Let u, S, A be as in Theorem 1. Then $(S, A) \in \mathscr{L}_{0}$. Hence if $\operatorname{deg}_{G}(u) \geqslant 5$, then the desired conclusion follows from Proposition 3.1. Thus we may assume $\operatorname{deg}_{G}(u)=4$. But then from Claim 4.4 (i) and the definition of \mathscr{K}_{0}, we see that there exists $e \in E_{\mathrm{c}}(G)$ such that e is incident with u, as desired.

5. Definition of $\lambda(u, S, A), \alpha(u, S, A)$ and $\varphi(u, S, A)$

In this section, to each $(u, S, A) \in \mathscr{K}_{0}$, we assign an edge $\lambda(u, S, A)$, and an endvertex $\alpha(u, S, A)$ of $\lambda(u, S, A)$, and a 4-contractible edge $\varphi(u, S, A)$ incident with $\alpha(u, S, A)$. We start with a claim

Claim 5.1. Let $(u, S, A) \in \mathscr{K}_{0}$, and set $W=\left\{z \in S-\{u\}-N_{\tilde{G}}(u) \| N_{G}(z) \cap A \mid=1\right\}$. Then $\left((S-W) \cup\left(N_{G}(W) \cap\right.\right.$ A), $\left.A-\left(N_{G}(W) \cap A\right)\right) \in \mathscr{L}_{0}$.

Proof. By the definition of \mathscr{K}, there exists $e \in \tilde{E}(G) \cap E_{\mathrm{n}}(G)$ such that $u \in V(e) \subseteq S$. Hence $W \subseteq S-V(e)$, which implies $|W| \leqslant 2$. On the other hand, since $(S, A) \in \mathscr{L}_{0},|A| \geqslant 2$. Thus $|W| \leqslant|A|$. Suppose that $|W|=|A|$. Then $|W|=|A|=2$. By Lemma 2.4 (i), $N_{G}(\{x, z\}) \cap A=A$ for each $x \in V(e)$ and each $z \in W$. Since we also have $N_{G}(W) \cap A=A$ by Lemma 2.4 (i) and since $\left|N_{G}(z) \cap A\right|=1$ for each $z \in W$, this means that $N_{G}(x) \cap A=A$ for each $x \in V(e)$. But then e is contained in a triangle, a contradiction. Thus $|W|<|A|$. Consequently it follows from Lemma 2.4 (i) that $\left((S-W) \cup\left(N_{G}(W) \cap A\right), A-\left(N_{G}(W) \cap A\right)\right) \in \mathscr{L}$, which implies the desired conclusion because $V(e) \subseteq S-W$.

Now let $(u, S, A) \in \mathscr{K}_{0}$, and let W be as in Claim 5.1. We let $\left(P_{u, S, A}, X_{u, S, A}\right)$ be a member of \mathscr{L}_{0} with $u \in P_{u, S, A}$ and $X_{u, S, A} \subseteq A-\left(N_{G}(W) \cap A\right)$ such that $X_{u, S, A}$ is minimal, i.e., there is no $(R, Z) \in \mathscr{L}_{0}$ with $(R, Z) \neq\left(P_{u, S, A}, X_{u, S, A}\right)$ such that $u \in R$ and $Z \subseteq X_{u, S, A}$. We remark that we do not require that there should exist an edge $e \in E_{\mathrm{n}}(G)$ with $u \in V(e) \subseteq P_{u, S, A}$. The following claim immediately follows from the definition of ($P_{u, S, A}, X_{u, S, A}$).

Claim 5.2. Let $(u, S, A) \in \mathscr{K}_{0}$. Let $z \in S-\{u\}-N_{\tilde{G}}(u)$ and suppose that $\left|N_{G}(z) \cap A\right|=1$. Then $z \notin P_{u, S, A}$.
Let again $(u, S, A) \in \mathscr{K}_{0}$, and let $(P, X)=\left(P_{u, S, A}, X_{u, S, A}\right)$ be as above. We define the type of (u, S, A) as follows: (u, S, A) is of type 1 if there exists a 4-contractible edge joining u and a vertex in $X ;(u, S, A)$ is of type 2 if it is not of type 1 and there exists a 4-contractible edge joining a vertex in $N_{G}(u) \cap X \cap V_{4}$ and a vertex in $N_{G}(u) \cap(P \cup X) \cap V_{4}$; (u, S, A) is type 3 if it is not of type 1 or 2 but there exists an edge joining a vertex in $N_{G}(u) \cap X \cap V_{4}$ and a vertex in $N_{G}(u) \cap(P \cup X) \cap V_{4} ;(u, S, A)$ is type 4 if it is not of type i for any $i=1,2,3$. We let \mathscr{K}_{i} denote the set of those members of \mathscr{K}_{0} which are the type $i(i=1,2,3,4)$. The following claim will be used implicitly throughout the rest of this paper.

Claim 5.3. Let $(u, S, A) \in \mathscr{K}_{0}-\mathscr{K}_{1}$. Then $\operatorname{deg}(u) \geqslant 5$.
Proof. Suppose that $\operatorname{deg}(u)=4$. Then by the definition of $\mathscr{K}_{0},\left|N_{G}(u) \cap A\right|=1$ and, if we write $N_{G}(u) \cap A=\{a\}$, then $u a \in E_{\mathrm{c}}(G)$. By Lemma 2.4 (ii), $a \in X$. Consequently $(u, S, A) \in \mathscr{K}_{1}$ by definition, which contradicts the assumption that $(u, S, A) \in \mathscr{K}_{0}-\mathscr{K}_{1}$.

We first define $\lambda(u, S, A)$. If $(u, S, A) \in \mathscr{K}_{1}$, let $\lambda(u, S, A)$ be a 4-contractible edge joining u and a vertex in X; if $(u, S, A) \in \mathscr{K}_{2}$, let $\lambda(u, S, A)$ be a 4-contractible edge joining a vertex in $N_{G}(u) \cap X \cap V_{4}$ and a vertex in $N_{G}(u) \cap(P \cup X) \cap V_{4}$; if $(u, S, A) \in \mathscr{K}_{3}$, let $\lambda(u, S, A)$ be an edge joining a vertex in $N_{G}(u) \cap X \cap V_{4}$ and a vertex in $N_{G}(u) \cap(P \cup X) \cap V_{4}$; if $(u, S, A) \in \mathscr{K}_{4}$, let $\lambda(u, S, A)=a b$ where a, b are as in Claim 3.5. The following claim follows from the definition of $\lambda(u, S, A)$.

Claim 5.4. Let $2 \leqslant i, j \leqslant 4$ with $i \neq j$, and let $\left(u_{1}, S_{1}, A_{1}\right) \in \mathscr{K}_{i}$ and $\left(u_{2}, S_{2}, A_{2}\right) \in \mathscr{K}_{j}$. Then $\lambda\left(u_{1}, S_{1}, A_{1}\right) \neq$ $\lambda\left(u_{2}, S_{2}, A_{2}\right)$.

Claim 5.5. Let $\left(u_{1}, S_{1}, A_{1}\right),\left(u_{2}, S_{2}, A_{2}\right) \in \mathscr{K}_{0}$ with $u_{1}=u_{2}$ and $\left(S_{1}, A_{1}\right) \neq\left(S_{2}, A_{2}\right)$. Then $\lambda\left(u_{1}, S_{1}, A_{1}\right) \neq$ $\lambda\left(u_{2}, S_{2}, A_{2}\right)$.

Proof. By Claim 4.3, $A_{1} \cap A_{2}=\emptyset$. Hence $X_{u_{1}, S_{1}, A_{1}} \cap X_{u_{2}, S_{2}, A_{2}} \subseteq A_{1} \cap A_{2}=\emptyset$. Since at least one of the endvertices of $\lambda\left(u_{j}, S_{j}, A_{j}\right)$ is in $X_{u_{j}, S_{j}, A_{j}}$, this implies $\lambda\left(u_{1}, S_{1}, A_{1}\right) \neq \lambda\left(u_{2}, S_{2}, A_{2}\right)$.

Claim 5.6. Let e be an edge joining two vertices of degree 4. Then there exist at most two members (u, S, A) of $\mathscr{K}_{2} \cup \mathscr{K}_{3}$ for which $\lambda(u, S, A)=e$.

Proof. Suppose that there exist three members $\left(u_{j}, S_{j}, A_{j}\right)(1 \leqslant j \leqslant 3)$ of $\mathscr{K}_{2} \cup \mathscr{K}_{3}$ such that $\lambda\left(u_{j}, S_{j}, A_{j}\right)=e$. By Claim 5.5, the u_{j} are all distinct. But this contradicts Lemma 2.5.

We now define $\alpha(u, S, A)$. If $(u, S, A) \in \mathscr{K}_{1}$, let $\alpha(u, S, A)=u$. Now assume $(u, S, A) \in \mathscr{K}_{2}$. In this case, we let $\alpha(u, S, A)$ be an endvertex of $\lambda(u, S, A)$. If $\lambda(u, S, A)$ has an endvertex in P and there is no $(w, R, Z) \in \mathscr{K}_{2}$ with $(w, R, Z) \neq(u, S, A)$ such that $\lambda(w, R, Z)=\lambda(u, S, A)$, then we let $\alpha(u, S, A)$ be the endvertex of $\lambda(u, S, A)$ in X. Next assume $(u, S, A) \in \mathscr{K}_{3}$. In this case, we let $\alpha(u, S, A)$ be an endvertex of $\lambda(u, S, A)$ which satisfies (ii) and (iii) of Claim 3.2. If there is no $(w, R, Z) \in \mathscr{K}_{3}$ with $(w, R, Z) \neq(u, S, A)$ such that $\lambda(w, R, Z)=\lambda(u, S, A)$, then we choose $\alpha(u, S, A)$ so that it also satisfies (i) of Claim 3.2. Finally if $(u, S, A) \in \mathscr{K}_{4}$, let $\alpha(u, S, A)=a$, where a is as in Claim 3.5. Note that if $\left(u_{1}, S_{1}, A_{1}\right),\left(u_{2}, S_{2}, A_{2}\right) \in \mathscr{K}_{3}$ with $\left(u_{1}, S_{1}, A_{1}\right) \neq\left(u_{2}, S_{2}, A_{2}\right)$ and $\lambda\left(u_{1}, S_{1}, A_{1}\right)=\lambda\left(u_{2}, S_{2}, A_{2}\right)$, then $u_{1} \neq u_{2}$ by Claim 5.5, and hence it follows from Lemmas 2.6 and 2.7 that both endvertices of $\lambda\left(u_{1}, S_{1}, A_{1}\right)$ satisfy (ii) and (iii) of Claim 3.2. Thus in view of Claim 5.6, we can define $\alpha(u, S, A)$ so that the following claim holds.

Claim 5.7. Let $\left(u_{1}, S_{1}, A_{1}\right),\left(u_{2}, S_{2}, A_{2}\right) \in \mathscr{K}_{2} \cup \mathscr{K}_{3}$ with $\left(u_{1}, S_{1}, A_{1}\right) \neq\left(u_{2}, S_{2}, A_{2}\right)$ and $\lambda\left(u_{1}, S_{1}, A_{1}\right)=\lambda\left(u_{2}, S_{2}, A_{2}\right)$. Then $\alpha\left(u_{1}, S_{1}, A_{1}\right) \neq \alpha\left(u_{2}, S_{2}, A_{2}\right)$.

Finally we define $\varphi(u, S, A)$. If $(u, S, A) \in \mathscr{K}_{1} \cup \mathscr{K}_{2}$, simply let $\varphi(u, S, A)=\lambda(u, S, A)$; if $(u, S, A) \in \mathscr{K}_{3}$, let $\varphi(u, S, A)$ be a 4-contractible edge incident with $\alpha(u, S, A)$, whose existence is guaranteed by Claim 3.3 (iii) or Lemma 2.7 (it is possible that the other endvertex of $\varphi(u, S, A)$ lies \bar{X}); if $(u, S, A) \in \mathscr{K}_{4}$, let $\varphi(u, S, A)=a x$, where a, x are as in Claim 3.6.

6. Properties of $\lambda(\boldsymbol{u}, \boldsymbol{S}, \boldsymbol{A})$

We continue with the notation of the preceding section. Our main concern is $\varphi(u, S, A)$ but, in this section, we consider $\lambda(u, S, A)$.

Claim 6.1. Let $(u, S, A),(v, T, B) \in \mathscr{K}_{0}-\mathscr{K}_{1}$ with $u=v$ and $(S, A) \neq(T, B)$. Then $\lambda(u, S, A)$ and $\lambda(v, T, B)$ do not share an endvertex of degree 4 .

Proof. Suppose that $\lambda(u, S, A)$ and $\lambda(v, T, B)$ share an endvertex a of degree 4. Let $(P, X)=\left(P_{u, S, A}, X_{u, S, A}\right)$. Then $a \in P \cup X \subseteq S \cup A$. Similarly $a \in T \cup B$. Hence $a \in(S \cup A) \cap(T \cup B) \subseteq S \cap T$ by Claim 4.3. Since $\operatorname{deg}(a)=4$ and $u \in N_{G}(a) \cap S \cap T,\left|N_{G}(a) \cap(A \cup B)\right| \leqslant 3$. Since $A \cap B=\emptyset$ by Claim 4.3, this together with Lemma 2.4 (ii) implies that we have $\left|N_{G}(a) \cap A\right|=1$ or $|N(a) \cap B|=1$. We may assume $\left|N_{G}(a) \cap A\right|=1$. On the other hand, since $u a$ is contained in a triangle, $a \notin N_{\tilde{G}}(u)$. But since $a \in(P \cup X) \cap S \subseteq P$, this contradicts Claim 5.2.

Claim 6.2. Let $(u, S, A),(v, T, B) \in \mathscr{K}_{4}$ with $(u, S, A) \neq(v, T, B)$. Then $\lambda(u, S, A) \neq \lambda(v, T, B)$.
Proof. Suppose that $\lambda(u, S, A)=\lambda(v, T, B)$. Let $(P, X)=\left(P_{u, S, A}, X_{u, S, A}\right)$, and let a, b, x, y be as in Claims 3.5 and 3.6. Then $\lambda(u, S, A)=\lambda(v, T, B)=a b$, and hence $v \in N_{G}(a) \cap N_{G}(b)$. In particular $v \in N_{G}(a)-\{b\}=\{u, x, y\}$. Since we get $x b \notin E(G)$ from $x \in \bar{X}$ and $b \in X, v \neq x$. We also have $v \neq u$ by Claim 5.5. Thus $v=y$, and hence $y, a \in P_{v, T, B}$. Consequently $y a \in E_{\mathrm{n}}(G)$, which contradicts Claim 3.6.

7. Properties of $\varphi(u, S, A)$

In this section, we complete the proof of Theorem 2 by showing that we have $(\varphi(u, S, A), \alpha(u, S, A)) \neq(\varphi(v, T, B)$, $\alpha(v, T, B))$ for any distinct members $(u, S, A),(v, T, B)$ of \mathscr{K}_{0}. The first two claims immediately from Claims 5.5 and 5.7, respectively.

Claim 7.1. Let $(u, S, A),(v, T, B) \in \mathscr{K}_{1}$ with $(u, S, A) \neq(v, T, B)$. Then $(\varphi(u, S, A), \alpha(u, S, A)) \neq(\varphi(v, T, B)$, $\alpha(v, T, B))$.

Claim 7.2. Let $(u, S, A),(v, T, B) \in \mathscr{K}_{2}$ with $(u, S, A) \neq(v, T, B)$. Then $(\varphi(u, S, A), \alpha(u, S, A)) \neq(\varphi(v, T, B)$, $\alpha(v, T, B))$.

Claim 7.3. Let $(u, S, A) \in \mathscr{K}_{2}$ and $(v, T, B) \in \mathscr{K}_{1}$, and suppose that $\varphi(u, S, A)=\varphi(v, T, B)$. Then $v \in P_{u, S, A}$, and there is no $(w, R, Z) \in \mathscr{K}_{2}$ with $(w, R, Z) \neq(u, S, A)$ such that $\varphi(w, R, Z)=\varphi(u, S, A)$.

Proof. Write $\varphi(u, S, A)=\varphi(v, T, B)=v b$. Also let $v z$ be an edge in $E(G) \cap E_{\mathrm{n}}(G)$ such that $v, z \in T$. Let $(P, X)=\left(P_{u, S, A}, X_{u, S, A}\right)$. Suppose that $v \in X$. Then since $v z \in E(G)$, we have $z \in P \cup X$, and hence $z \in(P \cup X) \cap T$. Since $\operatorname{deg}(v)=4$, it follows from the definition of \mathscr{K}_{0} that $N(v) \cap B=\{b\}$. Since $u \in N(v) \cap N(b)$, this implies $u \in T$, and hence $u \in P \cap T$. Thus by Lemmas 2.2 and 2.3, there exists a 4-cutset U with $U \supseteq(P \cup X) \cap T$ such that $G-U$ has a component H with $V(H) \subseteq X-(X \cap T) \subseteq X-\{v\}$. But then since $v \in X \cap T \subseteq U, z \in(P \cup X) \cap T \subseteq U$ and $v z \in \tilde{E}(G) \cap E_{\mathrm{n}}(G) \subseteq E_{\mathrm{n}}(\bar{G})-E_{\mathrm{tn}}(G), U$ is a nontrivial 4-cutset, which contradicts the minimality of X because $u \in P \cap T \subseteq U$ (see the remark made in the paragraph preceding Claim 5.2). Thus $v \in P$. Now suppose that there exists $(w, R, Z) \in \mathscr{K}_{2}$ with $(w, R, Z) \neq(u, S, A)$ such that $\varphi(w, R, Z)=\varphi(u, S, A)$. Then $w \neq u$ by Claim 5.5. Hence applying Lemma 2.6 with $a=v$, we see that $v \notin \tilde{V}$. But this contradicts the assumption that $(v, T, B) \in \mathscr{K}_{1}$. Thus there is no such (w, R, Z).

Claim 7.4. Let $(u, S, A) \in \mathscr{K}_{2}$ and $(v, T, B) \in \mathscr{K}_{1}$. Then $(\varphi(u, S, A), \alpha(u, S, A)) \neq(\varphi(v, T, B), \alpha(v, T, B))$.
Proof. We may assume $\varphi(u, S, A)=\varphi(v, T, B)$. Write $\varphi(u, S, A)=v b$. We have $\alpha(v, T, B)=v$ by definition. On the other hand, in view of Claim 7.3, $\alpha(u, S, A)=b$ by the choice of $\alpha(u, S, A)$ described in Section 5. Thus $\alpha(u, S, A) \neq \alpha(v, T, B)$.

Claim 7.5. Let $(u, S, A) \in \mathscr{K}_{3} \cup \mathscr{K}_{4}$ and $(v, T, B) \in \mathscr{K}_{1}$. Then $\alpha(u, S, A) \neq \alpha(v, T, B)$.
Proof. By Lemma 2.6, Claim 3.3 or Claim 3.6, $\alpha(u, S, A) \notin \tilde{V}$. On the other hand, $\alpha(v, T, B)=v \in \tilde{V}$. Thus $\alpha(u, S, A) \neq \alpha(v, T, B)$.

Claim 7.6. Let $(u, S, A) \in \mathscr{K}_{3} \cup \mathscr{K}_{4}$ and $(v, T, B) \in \mathscr{K}_{2}$. Then $\varphi(u, S, A) \neq \varphi(v, T, B)$.
Proof. Suppose that $\varphi(u, S, A)=\varphi(v, T, B)$. Write $\lambda(u, S, A)=a b$ with $\alpha(u, S, A)=a$. Then $\operatorname{deg}(a)=4$. Also write $\varphi(u, S, A)=\varphi(v, T, B)=a x$. Then $v \in N(a) \cap N(x)$. First assume that there exists $(w, R, Z) \in \mathscr{K}_{3}$ with $(w, R, Z) \neq$ (u, S, A) such that $\lambda(w, R, Z)=\lambda(u, S, A)$. Then $\operatorname{deg}(b)=4$. By Claim 5.5, $w \neq u$. Thus $N(a)=\{u, b, w, x\}$. Since $\operatorname{deg}(v) \geqslant 5$ and $\operatorname{deg}(b)=4, v \neq b$. Since $v \in N(a) \cap N(x) \subseteq N(a)-\{x\}$, this implies $v=u$ or w. On the other hand, $\operatorname{deg}(a)=4$ and a is a common endvertex of $\varphi(v, T, B)$ and $\lambda(u, S, A)=\lambda(w, R, Z)$. Since $\varphi(v, T, B)=\lambda(v, T, B)$, this contradicts Claim 6.1. Next assume that there is no such (w, R, Z). Write $N(a)=\{u, b, x, y\}$. If $(u, S, A) \in \mathscr{K}_{3}$, then $x y \notin E(G)$ by the choice of $\alpha(u, S, A)$; if $(u, S, A) \in \mathscr{K}_{4}$, then $x y \notin E(G)$ by Claim 3.6. Thus $x y \notin E(G)$, which implies $v \neq y$. Now if $(u, S, A) \in \mathscr{K}_{3}$, then $\operatorname{deg}(b)=4$; if $(u, S, A) \in \mathscr{K}_{4}$, then $x b \notin E(G)$ by Claim 3.6. In either case, $v \neq b$. Consequently, $v=u$, which again contradicts Claim 6.1.

Claim 7.7. Let $(u, S, A),(v, T, B) \in \mathscr{K}_{3}$ with $(u, S, A) \neq(v, T, B)$. Then $(\varphi(u, S, A), \alpha(u, S, A)) \neq(\varphi(v, T, B)$, $\alpha(v, T, B))$.

Proof. Suppose that $(\varphi(u, S, A), \alpha(u, S, A))=(\varphi(v, T, B), \alpha(v, T, B))$. Write $\lambda(u, S, A)=a b, \varphi(u, S, A)=\varphi(v, T, B)$ $=a x$, and $N(a)=\{u, b, x, y\}$. Then $\alpha(u, S, A)=\alpha(v, T, B)=a$, and $v \in N(a)-\{x\}$. Since deg $(a)=4$ and a is a common endvertex of $\lambda(u, S, A)$ and $\lambda(v, T, B), v \neq u$ by Claim 6.1. Since $\operatorname{deg}(b)=4, v \neq b$. Thus $v=y$, and hence $\lambda(v, T, B)=a u$ or $a b$. On the other hand, since $\operatorname{deg}(u) \geqslant 5, \lambda(v, T, B) \neq a u$. Consequently $\lambda(v, T, B)=a b$, which contradicts Claim 5.7.
We are now in a position to complete the proof of Theorem 2.
Let $(u, S, A),(v, T, B) \in \mathscr{K}_{0}$ with $(u, S, A) \neq(v, T, B)$. We aim at showing that $(\varphi(u, S, A), \alpha(u, S, A)) \neq$ $(\varphi(v, T, B), \alpha(v, T, B))$. By Claims 7.1, 7.2 and 7.4 through 7.6 , we may assume $(u, S, A),(v, T, B) \in \mathscr{K}_{3} \cup \mathscr{K}_{4}$. In view of Claim 7.7, we may also assume $(u, S, A) \in \mathscr{K}_{4}$. Suppose that $(\varphi(u, S, A), \alpha(u, S, A))=(\varphi(v, T, B)$, $\alpha(v, T, B))$. Let $(P, X)=\left(P_{u, S, A}, X_{u, S, A}\right)$ and let a, b, x, y be as in Claims 3.5 and 3.6. Also let $(Q, Y)=\left(P_{v, T, B}\right.$, $X_{v, T, B}$. Note that $N(a)=\{u, b, x, y\}$, and $v \in N(a)-\{x\}$. If $v=y$, then $y, a \in Q$, and hence $y a \in E_{\mathrm{n}}(G)$, which contradicts Claim 3.6. Thus $v \neq y$. We also have $v \neq u$ by Claim 6.1. Consequently $v=b$, which implies $\lambda(b, T, B)=a u$ or $a y$. Now suppose that $(b, T, B) \in \mathscr{K}_{3}$. Then both endvertices of $\lambda(b, T, B)$ have degree 4 . Hence $\lambda(b, T, B)=$ ay. But then $a y \in E_{\mathrm{n}}(G)$ by the definition of \mathscr{K}_{3}, which contradicts Claim 3.6. Thus ($\left.b, T, B\right) \in \mathscr{K}_{4}$. Applying Claim 3.6 to (Q, Y), we now obtain $b, a \in Q, x \in \bar{Y}$ and $y, u \in Y$, regardless of whether $\lambda(b, T, B)=a u$ or $a y$. In
particular, $x u \notin E(G)$. Set $U=(P \cap Q) \cup(P \cap Y) \cup(X \cap Q)$. Since $y \in X \cap Y$ and $x \in \bar{X} \cap \bar{Y}$, it follows from Lemma 2.3 that $(U, X \cap Y) \in \mathscr{L}$. Since $u \in P \cap Y \subseteq U$, it follows from the minimality of X that $(U, X \cap Y) \notin \mathscr{L}_{0}$, i.e., U is a trivial 4-cutset. Hence there exists $c \in V_{4}$ such that $N(c)=U$. Since $a, b, u \in U, c \in N(a)-\{b, u\}=\{x, y\}$. On the other hand, since $x u \notin E(G), c \neq x$. Consequently $c=y$, which implies $y \in N(u) \cap X \cap V_{4}$. But since $(u, S, A) \in \mathscr{K}_{4}$, this contradicts Claim 3.4. Thus $(\varphi(u, S, A), \alpha(u, S, A)) \neq(\varphi(v, T, B), \alpha(v, T, B))$, as desired. This completes the proof of Theorem 2.

8. Number of 4-contractible edges

In this section, we prove Corollary 3.
Let G be a 4-regular 4-connected graph. Let \mathscr{K}_{0} be as in Section 4. For $u \in \tilde{V}$, let $c(u)$ denote the number of those members (v, T, B) of \mathscr{K}_{0} for which $v=u$. By Claim 4.4, $c(u) \geqslant \operatorname{deg}_{\tilde{G}}(u)$ for each $u \in \tilde{V}$. Since $\left|E_{\mathrm{c}}(G)\right| \geqslant\left(\sum_{u \in \tilde{V}} c(u)\right) / 2$ by Theorem 2, this implies $\left|E_{\mathrm{c}}(G)\right| \geqslant\left(\sum_{u \in \tilde{V}} \operatorname{deg}_{\tilde{G}}(u)\right) / 2=\left|\tilde{E}(G) \cap E_{\mathrm{n}}(G)\right|$. Since we clearly have $\left|E_{\mathrm{c}}(G)\right| \geqslant\left|\tilde{E}(G)-E_{\mathrm{n}}(G)\right|$, we obtain $2\left|E_{\mathrm{c}}(G)\right| \geqslant\left|\tilde{E}(G) \cap E_{\mathrm{n}}(G)\right|+\left|\tilde{E}(G)-E_{\mathrm{n}}(G)\right|=|\tilde{E}(G)|$, as desired.

References

[1] K. Ando, Y. Egawa, Contractible edges in a 4-connected graph with vertices of degree greater than 4, submitted for publication.
[2] J. Cheriyan, R. Thurimella, Fast algorithms for k-shredders and k-node connectivity augmentation, Proceedings of the 28th Annual ACM Symposium on the Theory of Computation (STOC), 1996, pp. 37-46.
[3] M. Fontet, Graphes 4-essentials, CR. Acad. Sci. Paris 287 (1978) 289-290.
[4] T. Jordán, On the number of shredders, J. Graph Theory 31 (1999) 195-200.
[5] M. Kriesell, Average degree and contractibility, preprint.
[6] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6 (1982) 343-344.

[^0]: E-mail address: ando@ice.uec.ac.jp (K. Ando).

