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limbs, Hox genes belonging to the paralogous groups 9–13 are expressed in three
distinct phases, which play key roles in the segmental patterning of limb skeletons. In teleost fishes, which
have a very different organization in their fin skeletons, it is not clear whether a similar patterning
mechanism is at work. To determine whether Hox genes are also expressed in several distinct phases during
teleost paired fin development, we re-analyzed the expression patterns of hox9–13 genes during
development of pectoral fins in zebrafish. We found that, similar to tetrapod Hox genes, expression of
hoxa/d genes in zebrafish pectoral fins occurs in three distinct phases, in which the most distal/third phase is
correlated with the development of the most distal structure of the fin, the fin blade. Like in tetrapods, hox
gene expression in zebrafish pectoral fins during the distal/third phase is dependent upon sonic hedgehog
signaling (hoxa and hoxd genes) and the presence of a long-range enhancer (hoxa genes), which indicates
that the regulatory mechanisms underlying tri-phasic expression of Hox genes have remained relatively
unchanged during evolution. Our results suggest that, although simpler in organization, teleost fins do have a
distal structure that might be considered comparable to the autopod region of limbs.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Among modern-day vertebrates, paired appendages (fins and
limbs) vary widely in their form and function (Fig. 1; Goodrich, 1930;
Coates and Cohn, 1998). According to the current interpretation of the
phylogeny, much of the differences among various types of vertebrate
paired appendages largely result from differential losses of skeletons
that were present in the common ancestor of jawed vertebrates (Fig.1;
Coates, 1994, 1995). In archetypal paired appendages, skeletal sup-
ports consisted of several large endoskeletal bones (pro-, meso-, and
metapterygium of Gegenbaur, 1878) lying at the base, which articulate
proximally with pectoral or pelvic girdles and distally with numerous
smaller bones supporting dermal fin rays. In the fins of most sharks
and primitive ray-finned fishes of today (Fig.1A), this basic pattern has
been retained with little modification, while in paired appendages of
the teleosts and tetrapods, which together comprise the vast majority
of modern-day vertebrate species, only portions of the ancestral
skeletons remain. In the paired fins of teleosts, skeletal supports now
consist mostly of the pro- and mesopterygial components of
endoskeletons plus the dermal fin rays (Fig. 1B), while in limbs of
tetrapods only the metapterygium and its distal branches can be seen
(Fig. 1C) (Coates, 1994).

In spite of the major differences in structure and function between
fins and limbs (Fig. 1), however, remarkably few differences have been
).
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found in the genetic regulation of their development (Sordino and
Duboule, 1996; Ruvinsky and Gibson-Brown, 2000). Genes such as
Tbx4/5, Fgf8/10, orWnt7a, which are known to play critical roles in the
initiation, growth, and patterning of tetrapod limbs (Capdevila and
Izpisúa-Belmonte, 2001; Logan, 2003), are expressed in comparable
spatiotemporal domains in teleost fins, and the analysis of relevant
zebrafishmutants has revealed thatmanyaspects of their functions are
also conserved during fin development (Grandel et al., 2000; Ruvinsky
et al., 2000; Garrity et al., 2002; Fischer et al., 2003; Norton et al., 2005).
Most notably, genes that are known to be involved in antero-posterior
patterning of fin/limbs such as Shh (Krauss et al., 1993; Riddle et al.,
1993), Han2 (Charité et al., 2000; Yelon et al., 2000), or Gli3 (Masuya et
al., 1997; Tyurina et al., 2005) also seem to have little difference in
expression or function, which indicates that mechanisms responsible
for the differences between fin and limb structures (Figs. 1B, C) may
reside in changes in patterning events lying more downstream. One
such possible change in developmental mechanisms has been
proposed to occur at the level of the regulation of Hox gene expression
during fin/limb development (Sordino et al., 1995).

Hox genes are a family of transcriptional regulator genes that are
involved in axial patterning of many structures in vertebrates (Kessel
and Gruss, 1991; Krumlauf, 1994; Burke et al., 1995; Deschamps et al.,
1999), including fins and limbs (Yokouichi et al., 1991; Sordino et al.,
1995; Nelson et al., 1996). In both fish and tetrapods, Hox genes
belonging to the paralogous groups 9–13 of Hox A and D clusters have
been shown to be expressed in nested domains along the antero-
posterior as well as proximo-distal axes of developing fins and limbs
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Fig. 1. Diversity in vertebrate appendicular skeletons. (A) Dogfish shark (Squalus
acanthias), a chondrichthyan. In most cartilaginous fishes, the bauplan of pectoral fins
consist of three large cartilages lying at the base of the fin which articulate proximally
with the pectoral girdle and distally with numerous smaller cartilages (“distal radials”)
supporting the fibrous fin rays known as ceratotrichia. (B) Zebrafish (Danio rerio), a
teleost. In most teleosts, the skeletons of paired appendages (“fins”) consist of five basal
bones and variable number of smaller, more distally-lying nodular bones (distal radials)
articulating with the segmented fin rays. (C) Mouse (Mus musculus), a tetrapod. In
tetrapods, paired appendages (“limbs”) are characterized by the presence of several
large, proximo-distally arranged series of endochondral bones which are organized into
the three major segments known as the stylopod (upper arm/leg), zeugopod (lower
arm/leg), and autopod (wrist/ankle and digits). In all panels anterior is to the top and
proximal is to the left. Only pectoral appendages are shown. Homology of pro- (blue),
meso- (green), and metapterygium (yellow) is based on Mabee (2000). A: after Shubin
and Alberch (1986). B: after Grandel and Schulte-Merker (1998). C: after Williams et al.
(2006). d.r.: distal radials. cer.: ceratotrichia. f.r.: fin rays. sty.: stylopod. zeu.: zeugopod.
aut.: autopod.
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(Sordino et al., 1995, 1996; Nelson et al., 1996), which, at least in
tetrapods, appears to be regulated in three spatio-temporally distinct
phases called the phases I, II, and III (Nelson et al., 1996; Shubin et al.,
1997). In teleosts such as zebrafish and medaka, however, a simpler
pattern of expression has been reported for Hox genes during
development of pectoral fins (Sordino et al., 1995, 1996; Takamatsu
et al., 2007). Notably, changes in expression similar to the ones asso-
ciated with the development of the most distal regions in tetrapod
limbs (i.e., phase III), have not been seen in the distal fin bud region
(Sordino et al., 1995, 1996; Takamatsu et al., 2007). These differences
have led to the idea that the proximal regions of tetrapod limbs
(corresponding to the stylopod and zeugopod: Fig. 1C) are patterned
by conservedmechanisms sharedwith teleost finswhile distal parts of
the limbs (autopod: Fig. 1C) are patterned by a novel mechanism
unique to tetrapods and therefore digits and associated distal wrist/
ankle bones could be considered evolutionary novelties (Shubin et al.,
1997; Wagner and Chiu, 2001).
These interpretations, however, have recently been criticized for
the lack of a proper phylogenetic perspective, ignoring the fact that
bones in teleost fins and tetrapod limbs have different evolutionary
origins (Fig. 1), and therefore may not be compared directly (Mabee,
2000). A more fundamental problem in these arguments, though, is
that much of these interpretations are based upon incomplete data
that may not represent the full dynamics of Hox gene expression in
teleost paired fins. There is now increasing evidence that the dev-
elopment of pectoral fins begins much earlier and involves more
complex morphogenetic processes than were thought at the time of
initial study of teleost hox gene expression (van Eeden et al., 1996;
Grandel and Schulte-Merker, 1998; Fischer et al., 2003). Furthermore,
recent revelations that teleosts as a group had undergone a whole
genome duplication event close to their evolutionary origin (Taylor et
al., 2001; Amores et al., 2004; Hurley et al., 2007) generated a list of
“missing” Hox genes that were not included in the original data
(Amores et al., 1998). It is therefore possible that large portions of the
dynamics of Hox gene expression during development of teleost
paired fins might still remain undocumented.

In this paper we present a more complete picture of the expression
dynamics of teleost Hox genes during development of paired
appendages using zebrafish pectoral fins as an illustrative model.
We show that detailed examination of hox gene expression during
zebrafish pectoral fin development reveals the presence of an
additional, distal phase of expression, which is similar but not iden-
tical to the late phase of Hox gene expression seen in the autopod
region of tetrapod limbs. We also show that, similar to tetrapods, this
late/distal phase of hox gene expression in zebrafish pectoral fins is
also dependent upon sonic hedgehog (shh) signaling, which in
tetrapods has been shown to be essential for proper patterning of
the autopod region (Chiang et al., 2001; Litingtung et al., 2002). Lastly,
we show that, in zebrafish, expression within the distal portion of
pectoral fins is not a feature unique to the posterior hox genes but is a
trait shared by genes neighboring the 5′ end of the hox cluster,
suggesting that, as in tetrapods, distal/late expression of hox genes in
zebrafish pectoral fins is likely to be due to the presence of a long-
range enhancer located 5′ to the hox cluster (Spitz et al., 2003;
Lehoczky et al., 2004). Our results demonstrate that contrary to the
prevailing notion in current literature (e.g., Coates, 1995; Sordino and
Duboule, 1996; Shubin et al., 1997; Wagner and Chiu, 2001; Freitas et
al., 2007) expression of Hox genes during teleost paired fin develop-
ment is quite similar to the expression in tetrapod limbs, indicating a
widespread conservation in genetic mechanisms controlling the
development of paired appendages among different vertebrates.

Materials and methods

Care and maintenance of fish

Embryos of wild-type zebrafish and zebrafish sonic you (syut4;
Schauerte et al., 1998) mutant were collected from pairwise matings
and maintained in embryo medium (Westerfield, 1993) at a low
density (about 60 embryos per 100 to 150 ml of medium). In order to
ensure a consistent staging of old (N24 hpf (hours post-fertilization))
embryos, temperature settings of the incubator were calibrated so
that development up to 24 hpf consistently occurred close to the
schedules described in Kimmel et al. (1995). We found that under this
condition development of pectoral fins occurred slightly slower than
the descriptions given in Kimmel et al. (1995), which might reflect
differences in growth conditions or differences in genetic background
of the fish.

Cloning of zebrafish hox genes and genes adjacent to the hox cluster

Posterior hoxa/d genes belonging to the paralogous groups 9–13
were cloned by PCR using nested primer sets designed to amplifymost
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or all of the coding sequences of the respective cDNA. The cDNA
sequences of the hox genes used in primer designs are currently
available in GenBank (see Amores et al., 1998 for details). Zebrafish
homologs of mouse genes lying 5′ to the Hox A and D clusters—Evx1,
Hibadh, and Tax1bp1 for Hox A (Lehoczky et al., 2004), and Evx2 and
Lnp for Hox D (Spitz et al., 2003)—were also cloned by PCR using
sequence information obtained from GenBank or through BLAST
searches on zebrafish genomic sequence. These had led to the
identification of two zebrafish homologs for each mouse gene except
for Evx1 and Evx2, which were represented by single homologs in
zebrafish genome. Linkage of these genes to a hox cluster was con-
firmed by available mapping data from zebrafish radiation hybrid
panels (e.g., LN54) or by a manual annotation of coding sequences
from large genomic clones encompassing the hox cluster and
neighboring regions. GenBank accession numbers for these genomic
clones are: CR382300 (hoxa13a, evx1), BX601646 (hibadh-a, tax1bp1-
a), AC107364 (hoxa13b, hibadh-b, tax1bp1-b), BX322661 (hoxd13a,
evx2), and BX546447 (lnp-b). Each member of the paralogous pair was
then labeled as either “-a” or “-b” depending on the designations given
to the neighboring hox cluster. The GenBank accession numbers for
these genes are: evx1 (AF305889), hibadh-a (BC078207), tax1bp1-a
(BX601646), hibadh-b (NM201160), tax1bp1-b (NM212664), evx2
(NM131232), lnp-a (AY423028), lnp-b (BC057494).

Whole mount in situ hybridization, immunohistochemistry, and
photography

Embryos were fixed in 4% paraformaldehyde at 4 °C for 3–4 days
before storage in methanol at −20 °C. Whole mount in situ hybrid-
ization was performed using protocols given in Harland (1991) and
Thisse et al. (1995). After in situ hybridization, some embryos were
processed further for the labeling of myotomes using a monoclonal
antibody against myosin (A4.1025, Developmental Studies Hybridoma
Bank). Staining of muscles was achieved by peroxidase reaction using
hydrogen peroxide and diamino benzidine as substrates following
instructions given in Vectastain ABC kit (Vector Laboratories). For
photography, embryos were mounted in 60% glycerol on a depression
slide with their left sides facing up at an appropriate angle.
Fig. 2. Expression of hoxa9a, hoxa11a, and hoxa13a during zebrafish pectoral fin developme
myogenic cells of the fin bud, whereas expression of hoxa13a (K–O) is seen exclusively wit
blade. Oblique dorsal (A–D, F–I), lateral (E, J, K–M), or dorsal (N, O) views with anterior to
stained for muscle myosin (brown staining in panels A–D, F–I) to show the position of m
myogenic cells (A, F), myogenic cells invading the fin bud proper (B, G), and lateral cluster
hpf: hours post fertilization.
Photographs were taken on Nikon D1 digital camera (Nikon corp.)
attached to a Zeiss Axioplan compound microscope equipped with
Normarski optics.

Cyclopamine treatment

Cyclopamine (Toronto Research Chemicals Inc.) was dissolved in
100% ethanol at 10mM concentration and kept in dark at 4 °C. Dilution
to the final concentration (50 µM) was made in embryo medium
containing 0.5% DMSO just before use. Treatments were done by
replacing normal embryo medium (containing 20 dechorionated
embryos each) with 1 ml of embryo medium containing cyclopamine.
Embryos were allowed to develop in dark in the presence of
cyclopamine until fixation at 48 hpf. Control embryos were treated
in the same way without cyclopamine.

Results

Expression of hoxa9a, a11a, and a13a during zebrafish pectoral fin
development

In zebrafish there are 12 posterior hox genes that are known to be
homologous to the posterior Hox A and D genes of tetrapods, with 3
genes located on hoxaa cluster (on chromosome 19), 4 on hoxab
cluster (on chromosome 16), and 5 on hoxda cluster (on chromosome
9) (Amores et al., 1998). Previously, expression patterns of some of the
posterior hox genes belonging to the hoxab and hoxda clusters had
been described in zebrafish fin bud (Sordino et al., 1995, 1996;
Neumann et al., 1999; Grandel et al., 2000), but expression patterns of
hoxaa cluster genes have not been reported. Here we show that in
zebrafish, posterior hox genes of the hoxaa cluster are expressed
within the muscles and distal mesenchyme cells during pectoral fin
development.

hoxa9a/a11a
Because expression of hoxa9a and hoxa11a are almost completely

identical to each other during most of the stages examined (Fig. 2),
expression of these genes will be described together. Expression of
nt. Expression of hoxa9a (A–E) and hoxa11a (F–J) is largely confined to the prospective
hin the distal mesenchyme cells that later give rise to the connective tissues of the fin
the left in all panels. Only left side is shown for each embryo. Some embryos are also
yotomes. Arrows in panels A/F, B/G, and D/I mark the expression within the nascent
of prospective pectoral fin muscle cells (D, I), respectively. ff: fin fold (later, fin blade).
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hoxa9a/a11a is first detected at 26 h post-fertilization (hpf) in a small
group of cells lying postero-medial to the fin bud, in an area slightly
anterior to the border between the third and fourth myotomes
(Figs. 2A, F, arrows). These cells are subsequently joined by additional
groups of hoxa9a/a11a-positive cells appearing more anteriorly and,
to a lesser extent, more posteriorly, eventually forming a continuous
stream of hoxa9a/a11a expression occupying a narrow zone centered
in an area lateral to the third myotome (not shown).

As the fin bud begins to form visibly, expression of hoxa9a/a11a
undergoes a further, dynamic change in distribution, first forming
several finger-like extensions coming out of the main body of ex-
pression (Figs. 2B, G, black arrows) which subsequently spread out at
an angle toward the lateral/outer edge of the fin bud (Figs. 2C, H).
These patterns are reminiscent of the behavior of myogenic precursor
cells of the pectoral fin bud, which in zebrafish are known to originate
from the neighboring paraxial mesoderm but migrate away antero-
laterally to populate the proximal portion of the growing fin bud (Neyt
et al., 2000).

By 30 hpf, expansion of hoxa9a/a11a expression within the
prospective fin bud area is nearly complete (Figs. 2C, H), and
hoxa9a/a11a expression begins to organize itself into a pair of clusters
that lie parallel to the long axis of the fin bud. This is more clearly seen
Fig. 3. Expression of hoxda cluster genes during pectoral fin development in zebrafish. Expres
which occurs at the beginning of fin bud morphogenesis, is characterized by a uniform exp
immediately follows phase I (and for hoxd10a (F), occurs simultaneously with phase I), is c
occupies successively smaller regions within the fin bud centered at the posterior margin (“ea
of these genes extend variably intomore anterior regions, thereby causing an appearance of t
fin bud mesenchyme cells, occurs last and is characterized by the posteriorly limited express
Hoxd13 in tetrapod limbs, expression of hoxd13a in zebrafish pectoral fins during this phase d
hoxd9a and hoxd10a in distal cells (E, J). Lateral (A–D, F–I, K–N, P–S, U–X) or dorsal (E, J, O, T, Y
and white arrows in panels O, T, Y show the anterior limits of expression within the proxim
in embryos at 36 hpf (Figs. 2D, I) at which time it is clear that hoxa9a/
a11a expression co-localizes with the progenitor cells of pectoral fin
muscles (compare withmyoD expression in Fig. 1b of Neyt et al., 2000;
also see Supplementary Figure 1). Expression of hoxa9a/a11a tends to
be stronger in the lateral cluster (Figs. 2D, I, arrows) compared to the
medial cluster, which often does not express hoxa9a.

After 36 hpf, the relative intensity of expression between hoxa9a
and hoxa11a begins to change, with hoxa11a expression becoming
much weaker than hoxa9a, which continues to increase its level of
expression within the pectoral fin muscle cells. By 48 hpf, differences
in level of expression become noticeable between the two genes (Figs.
2E, J). Interestingly, by this time expression of hoxa11a diverges from
that of hoxa9a since a small group of scattered cells in the distal fin
bud weakly express hoxa11a but not hoxa9a (Fig. 2J, arrow).
Expression of both genes within the fin muscle cells remains weakly
visible during later stages of development and eventually disappears
after 72 hpf (not shown).

hoxa13a
In contrast to hoxa9a and hoxa11a, hoxa13a is not expressed in the

progenitor cells of pectoral fin muscles. Instead, expression of hoxa13a
is noted within the distal fin bud mesenchyme cells in a pattern
sion of hoxda genes occurs in three phases during pectoral fin bud development. Phase I,
ression of hoxd9a within the early fin bud mesenchyme (A, F, K, P, U). Phase II, which
haracterized by a sequential activation of hoxd10–13a gene expression, each of which
rly” phase II: B, G, L, Q, V). During later stages (“late” phase II) distal expression domains
he distal bending of the expression (C, H, M, R,W). Phase III, which is limited to the distal
ion of hoxd11–13a genes within the most distal group of cells (O, T, Y). Note that, unlike
oes not cover the entire distal fin bud region. During phase III, no expression is seen for
) views with anterior to the left in all panels. Only left pectoral fin buds are shown. Black
al and distal mesenchyme cells, respectively. hpf: hours post fertilization.
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similar to the one reported for the tetrapod Hoxa13 gene (Nelson et al.,
1996). Expression of hoxa13a begins weakly at 36 hpf in the distal
posterior portion of the fin bud mesenchyme under the surface
ectoderm in a weak posterior-to-anterior gradient (Fig. 2K). Subse-
quently, expression within this region expands and becomes up-
regulated, so that by 42 hpf a much stronger expression of hoxa13a
can be seen postero-distally in a crescent-shaped domain (Fig. 2L).
Expression of hoxa13a remains distal and within the fin bud proper
(Fig. 2M) up until 60 hpf when it co-localizes with the distal
mesenchyme cells (as defined in Grandel and Schulte-Merker, 1998)
migrating into the fin fold (Fig. 2N). During later stages, expression
gradually recedes towards the distal edge of the fin and eventually is
seen to be contained in a thin layer of cells within the proximal
portion of the fin blade (Fig. 2O). Expression of hoxa13a continues
weakly within the distal mesenchyme cells up until 6 days of
development, although after 4 days hoxa13a expression within the
fin blade becomes practically undetectable.

Examination and re-interpretation of the expression of posterior hox
genes during pectoral fin development in zebrafish: early expression
(phase I and phase II)

Studies of Hox genes in tetrapods have indicated that expression of
Hox genes during limb development is regulated in three distinct
phases (Nelson et al., 1996). Previously, it was reported that hox gene
expression during development of zebrafish pectoral fins lacks a
pattern that resembles the most distally occurring third phase of
expression in tetrapod limbs (Sordino et al., 1995). This interpretation,
however, was based upon data that did not include expression of
posterior hoxaa genes as well as hoxd9a. To determine whether an
additional phase of regulation of hox gene expressions could be found,
we re-investigated the expression patterns of posterior hox genes
during zebrafish pectoral fin development using the full complement
of posterior hoxa/d genes except for hoxa9a/a11a, which are expressed
almost exclusively in the muscle cells (Figs. 2A–J).

Similar to tetrapod limbs, we found that, in zebrafish, the onset of
pectoral fin bud morphogenesis (24 hpf) is marked by a uniform
expression of the 3′-most posterior hoxd gene—hoxd9a—within the fin
Fig. 4. Early expression of hoxab cluster genes in zebrafish pectoral fins. Expression of hoxa
myotome) and subsequently spreads toward the posterior, eventually encompassing the ent
the initial expression is confined to the myogenic mesenchyme cells (E–G, I–K). For these gen
posterior cells (phase II expression) roughly overlying the medial group of myogenic cells (H,
in the medial cluster of prospective pectoral fin muscle cells (compare Figs. 4H, L with Figs
counter-stained for muscle myosin (brown) to show the position of myotomes. hpf: hours p
bud mesenchyme (Fig. 3A). Expression of hoxa genes also begins at
this stage, although, unlike hoxd genes, the initial expression of the 3′-
most posterior hoxa gene—hoxa9b—is limited to a small group of
mesenchyme cells within the anterior fin field (Fig. 4A). During
subsequent hours, however, hoxa9b expression gradually expands
to more posterior regions (Fig. 4B), which eventually encompasses
almost all of the fin bud mesenchyme cells by 30 hpf (Figs. 4C, 5A). In
tetrapods, uniform expression of several 3′-most posterior Hox A/D
genes during early stages of limb development (Hoxa9, d9 and d10 in
chickens (Nelson et al., 1996) and Hoxd9 in mouse (Tarchini and
Duboule, 2006) constitutes phase I expression (Nelson et al., 1996).
This indicates that, at least with respect of the Hox D cluster genes, the
earliest part of the regulatory mechanism controlling Hox gene
expression is likely to be similar between fins and limbs.

As development progresses, genes from more 5′ parts of the hoxa/
d clusters begin to show expression. hoxd10a begins its expression
simultaneously with hoxd9a at 24 hpf (Fig. 3F), which is followed by
hoxd11a, hoxa10b, and hoxa11b at 25 hpf (Figs. 3K, 4E, 4I), and then by
hoxd12a, hoxd13a, and hoxa13b about one hour later (data not shown).
Interestingly, the onset and subsequent unfolding of expression
domains seem to be regulated differently for genes of the hoxa and
hoxd clusters, and therefore they will be described separately.

For hoxd cluster genes, the initial expression of more 5′ genes—
hoxd11a, d12a, and d13a—is limited to the posterior part of the
incipient fin bud (Fig. 3K and data not shown). During subsequent
hours, expression of these genes variably expands into more anterior
regions (Figs. 3K, L and data not shown). By 30 hpf, combined ex-
pression domains of hoxd genes roughly form a nested concentric
series centered at the posterior margin of the fin bud, with hoxd9a
occupying the largest area, followed by hoxd10a, d11a, d12a, and d13a
occupying successively smaller areas (Figs. 3B, G, L, Q, V). This pattern
is reminiscent of the early phase II expression of posterior HoxD genes
of tetrapods (as seen in stage 19 chicken (Nelson et al., 1996) or E10.0
mouse (Tarchini and Duboule, 2006) embryos), indicating that like the
phase I regulation, the early phase II regulation of Hox D genes is also
likely to be conserved between fins and limbs.

In zebrafish pectoral fins, the phase II regulation of hoxd genes
seems to be in effect up until 36 hpf, by which time expression
9b starts within the mesenchyme cells of anterior fin field (lying lateral to the second
ire fin bud mesenchyme by 30 hpf (A–C: phase I expression). For hoxa10b and hoxa11b,
es, expressionwithin the chondrogenic mesenchyme cells begins around 30 hpf in distal
L: arrows). In dorsal views, this creates a misleading impression of enhanced expression
. 2D, I). Oblique dorsal views with anterior to the left in all panels. Each embryo is also
ost fertilization.



Fig. 5. Late expression of hoxab cluster genes during zebrafish pectoral fin development. Similar to hoxda genes, expression of hoxab genes occurs in three distinct phases during
pectoral fin bud development. Phase I, which gradually occurs during early stages of fin bud morphogenesis, is characterized by a uniform expression of hoxa9bwithin the early fin
bud mesenchyme (A). Phase II expression begins with the onset of hoxa10/11/13b expression within the distal posterior fin bud mesenchyme just underneath the surface ectoderm
(E, I, M), which establishes nested domains of expression for hoxa9–11b genes during later stages (B, F, J, C, G, K). Note that, for hoxa13b (N, O), colinearity is not observed, even though
its expression is otherwise similar to the phase II expressions of hoxa10b/a11b during the same period. Phase III, which is limited to the distal fin bud mesenchyme cells, occurs last
and is characterized by the expression of hoxa11b and hoxa13b genes within distal cells (L, P: arrows). During phase III, little expression is seen for hoxa9b and hoxa10b genes in the
same region (D, H: arrows). Lateral (A–C, E–G, I–K, M–O) or dorsal (D, H, L, P) views with anterior to the left. Only left pectoral fin buds are shown. Arrowheads in panels B, C, F, G, J, K,
N, and O show the anterior limits of expression within the chondrogenic mesenchyme cells which at these stages are flanked on both sides by myogenic cells which tend to show
weaker expression. Small dots in panels D and H represent the outermost extent of the distal mesenchyme cells. hpf: hours post fertilization.

225D. Ahn, R.K. Ho / Developmental Biology 322 (2008) 220–233
domains of several hoxd genes have diverged between proximal and
distal regions of the fin bud (Figs. 3C, H, M), although the colinear
nature of the expression of these genes can still be seen in their
anterior-most domain of expression (late phase II: Figs. 3C, H, M, R,
W). Interestingly, similar to the corresponding tetrapod genes during
late phase II expression (as seen in stage 23 chicken (Nelson et al.,
1996) or E10.5 mouse (Tarchini and Duboule, 2006) embryos), for
hoxd9a, d10a, and d11a, this distal expression also variably covers
anterior regions of the fin bud (Figs. 3C, H, M), which, in prior studies,
was reported to be devoid of the expression of any of these genes
(Sordino et al., 1995).

Compared to the hoxd genes, however, the interpretation is not as
straightforward for hoxa genes. Unlike hoxd genes, which initiate their
expression within the fin bud proper and therefore (at least initially)
only in the prospective chondrogenic mesenchyme cells (Figs. 3A, F, K,
P, U), hoxa genes are often seen to begin their expression within the
prospective myogenic cells and thus outside of the fin bud (Figs. 4E, I).
Specifically, expression of hoxa10b and hoxa11b begins within the
myogenic mesenchyme cells at their birth (Figs. 4E, I), and remains
restricted to the prospective muscle cells until 30 hpf (Figs. 4F, G, J, K).
From 30 hpf on, expression of hoxa10b and hoxa11b genes is also seen
in prospective chondrogenic mesenchyme cells, which is initially
limited to small groups of cells immediately underneath the posterior
fin bud ectoderm (Fig. 5E, I, arrows) but later expands to include more
proximal cells as well.

Curiously, the other two posterior hox genes within the hoxab
cluster—hoxa9b and hoxa13b—show the opposite pattern, initiating
their expression within the prospective chondrogenic cells (Fig. 4A
and data not shown), and do not incorporate muscle cells into their
expression domains until much later. As a consequence, unlike hoxd
genes, expression domains of hoxa genes do not stabilize until fin bud
development is well under way. Nevertheless, by 36 hpf (and more
clearly at 48 hpf; compare the positions of arrowheads in Figs. 5C, G,
K), nested domains of expression similar to the ones seen for hoxd
genes during late phase II could be recognized for hoxa9b, hoxa10b,
and hoxa11b genes in the prospective chondrogenic mesenchyme cells
(Figs. 5B, F, J, arrowheads). This indicates that like Hox A genes in
tetrapods (Nelson et al., 1996), hoxab genes in teleosts are also subject
to a phase II-like regulation during fin development.

Examination and re-interpretation of the expression of posterior hox
genes during pectoral fin development in zebrafish: late expression
(phase III)

By 36 hpf, developmental processes producing embryonic fin buds
come to an end and the transformation of fin buds into larval pectoral
fins is about to begin. This event is marked by the onset of expression
of hoxa13a, which is the last hox gene to be expressed within the fin
bud (Fig. 2K). Expression of other hox genes also begins to change,
most notably for hoxd9a and hoxd10a. Up to 36 hpf, expression of
these two genes was present throughout the fin bud except for a small
group of cells at the anterior proximal corner (Figs. 3A–C, F–H). By
48 hpf, however, expression of hoxd9a and hoxd10a disappears in the
most distal group of cells and expression in the center of the fin bud
becomes weak, thereby leaving large patches of hoxd9a/d10a expres-
sion only in the middle segment of the fin (Figs. 3D, I). Intriguingly,
such lack of hoxd9a/d10a expression in this distal fin bud region is
closely mirrored by a strong expression of hoxa13a in the same area
(Fig. 2M). In tetrapods, distal limb mesenchyme cells that express
Hoxa13 but not Hoxd9 are known to develop into the autopod (Nelson
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et al., 1996), suggesting that this distal zone of hoxa13a-expressing
cells within the fin bud has the genetic profile partly similar to the
autopod region of tetrapod limb bud.

Since the phase III expression of Hox genes within the tetrapod
limbs, particularly that of Hox D genes, is known to characterize the
development of the autopod (Nelson et al., 1996), we investigated
whether a similar phase of expression could also be found for
zebrafish hoxd genes in this distal autopod-like region. In the
forelimbs of mouse and chicken, phase III expression begins at stage
22/23 (chicken) or E10.5 (mouse) with the onset of Hoxd10–13
expression within the posterior distal corner of the limb bud (Nelson
et al., 1996; Tarchini and Duboule, 2006). Initially, these expressions
are fully masked by the overlapping late phase II expressions of the
same genes which by this stage also have expanded intomore anterior
regions of the limb bud (Nelson et al., 1996; Tarchini and Duboule,
2006). However, as the limbs grow out distally, these two domains
begin to separate from each other such that by stage 26/27 (chicken)
or E11.5–12.0 (mouse), a spatially distinct set of Hoxd10–13 expression
develops within the distal limb bud, in which Hoxd13 has the widest
domain of expression covering the entire distal autopod while
Hoxd10–12 share a common expression domain that is more poster-
iorly restricted (Nelson et al., 1996; Tarchini and Duboule, 2006).

We found that similar to tetrapod Hoxd10–13 during late phase II–
early phase III (stage 23–25 chicken wings (Nelson et al., 1996) or
E10.5 mouse forelimbs (Tarchini and Duboule, 2006)), the zebrafish
hoxd11–13a genes show variable degrees of expansion toward the
anterior in their distal domains of expression by 36 hpf (Figs. 3M, R,
W). Like tetrapods, colinearity of expression is observed within these
distal domains, although by 48 hpf most of the differences in
expression have disappeared (Figs. 3N, S, X). By 60 hpf, expression
of hoxd11–13a genes in the distal fin bud region occupies approxi-
mately the posterior half of the distal mesenchyme cells (compare
with hoxa13a expression in Fig. 2N) in which they also share a
common anterior limit of expression (Figs. 3O, T, Y, white arrows).
Unlike tetrapod genes, however, in zebrafish hoxd11–13a, these distal
domains of expression remain continuous with more proximal
expression and hoxd13a expression remains posteriorly restricted in
the distal fin bud region (Figs. 3O, T, Y). This indicates that, as shown
previously (Sordino et al., 1995), hoxd11–13a genes in zebrafish do not
show expression patterns fully compatible with those seen in tetrapod
Hoxd10–13 genes during development of the limb autopod regions.

Nevertheless, despite apparent continuity of expression for
zebrafish hoxd11–13a genes between proximal and distal regions of
the fin bud, the two regions still seem to be subject to separate
regulations. This is most clearly seen in hoxd11a (Fig. 3O) which,
unlike hoxd12a and hoxd13a (Figs. 3T, Y), transiently shows a
divergence in expression domains between proximal (Figs. 3O, T, Y,
black arrows) and distal (Fig. 3O, T, Y, white arrows) groups of cells.
Furthermore, although hoxd13a expression does not cover the entire
distal fin bud region (Fig. 3Y), hoxd11a and hoxd12a do share common
anterior limits of expression in distal regions (Figs. 3O, T). This
indicates that these genes might be regulated similarly to their
tetrapod counterparts. Therefore, although not exactly alike, hoxd11–
13a genes of zebrafish still show some similarities to tetrapod
Hoxd10–13 genes with respect to their distal/late expression and
thus may also utilize a distinct control in distal region that is separate
from phases I and II regulations of more proximal regions.

In zebrafish, such differential regulation between proximal and
distal domains of expression does not appear to be limited to hoxd
cluster genes, since genes from the hoxa cluster also show a similar
pattern of divergence in expression. Similar to hoxd9a/d10a, expres-
sion of hoxa10b, and to a lesser extent hoxa9b, begins to diminish in
distal fin bud regions at 48 hpf (Figs. 5C, G, arrows), which by 60 hpf
show little or no expression of these genes (Figs. 5D, H, arrows). This is
in contrast to the behavior of hoxa11b and hoxa13b, which maintain
relatively high levels of expression in all distal cells (Figs. 5L, P, arrows)
and thus are quite similar to hoxa13a in this regard (compare with Fig.
2N). Interestingly, the combined outcome of such differential expres-
sion of posterior hoxab genes is a generation of a distinct distal
domain of expression characterized by the presence of hoxa13b and
hoxa11b and the absence of hoxa10b and hoxa9b transcripts (Fig. 5D,
H, L, P, arrows). This is highly reminiscent of the Hox A expression
within the autopod region of tetrapod limbs which is also character-
ized by differential expression such as the presence of Hoxa13 but not
Hoxa11 or Hoxa10 transcripts (see the expression of these genes in
stage 28 chicken wings (Nelson et al., 1996)). Therefore, at least for
hoxa genes the distal domains of expression are regulated in much
the same way as the phase III expression of tetrapod Hox A genes,
indicating that, unlike the case of hoxd genes, the phase III expression
of hoxa genes in zebrafish is likely to be governed by a mechanism
fully conserved between fins and limbs.

Regulation of the distal expression of hox genes during development of
pectoral fins: role of sonic hedgehog (shh) signaling

One important characteristic of the phase III Hox expression during
tetrapod limb development is its reliance on Shh signaling (Nelson et
al., 1996; Chiang et al., 2001; Zákány et al., 2004). In tetrapods, while
Hox gene expression during earlier phases can initiate independently
of Shh signaling (but is maintained at higher levels in the presence of
Shh), the expression of Hox A and D genes during phase III is known
to be absolutely dependent upon Shh signaling (Ros et al., 1996; Chiang
et al., 2001). In zebrafish, the effect of the loss of shh signaling on the
expression of hox genes during pectoral fin development was
previously examined by Neumann et al. (1999) but to date their results
have not been analyzed in terms of the influence on the individual
phases of hox gene expression. We found that, in zebrafish embryos
lacking shh function—zebrafish sonic you mutants (syut4: Schauerte et
al., 1998), development of pectoral fins does not progress further than
the 30 hpf-like stage (data not shown), thereby making it unlikely that
shh−/− fin budswill ever showa phase III hox expressionwhich normally
begins at 36 hpf with the onset of hoxa13a expression (see above).

Consistent with this, in shh−/− (or syut4/syut4) embryos, hoxd genes
failed to show any expression characteristic of the late phase II
(anterior deflection of distal expression from which distinct late
expression domains arise postero-distally: Figs. 3C, H, M, R, W) and
later, although, like the Hox D genes in tetrapods, the phase I as well as
most of the early phase II expressions occurred normally (not shown;
also see Fig. 1 of Neumann et al., 1999). For hoxa genes, the conse-
quences were even more severe. As expected, no hoxa13a expression
was ever seen in shh−/− fin buds (not shown) but surprisingly, except
for hoxa9b, hoxa genes also failed to show an expression within the
prospective chondrogenic mesenchyme cells (not shown). This
indicates that in addition to phase III, phase II expression also failed
to be initiated for posterior hoxa genes in the absence of shh function.
Expression within the prospective myogenic cells, on the other hand,
was initiated normally and progressed to a 30 hpf-like stage (data not
shown) but during later stages this often failed to undergo proper
organization into lateral and medial clusters, thereby leaving a single
malformed cluster or, in some cases, several small disorganized
clusters of hoxa-positive cells in the proximal part of the mutant fin
bud (not shown; also see Fig. 2 of Neumann et al., 1999).

In order to circumvent the problem of early developmental arrest
in shh−/− pectoral fin buds, we took advantage of the availability of
cyclopamine, a plant alkaloid known to inhibit hedgehog signaling
(Incardona et al., 1998). Treatment of wild-type embryos with 50 µM
cyclopamine beginning at 36 hpf resulted in no gross abnormality in
development of these fish, although they tend to show abnormal
pooling of blood in their brains (data not shown). However, when
examined for the expression of hox genes at 48 hpf these fish were
found to completely lack hoxa13a expression as well as most of
the distal expression of hoxd11–13a genes in their pectoral fins (Figs.



Fig. 6. Effect of cyclopamine treatment on hox gene expression in the pectoral fin bud.
(A, C, E, G) Control embryos showing normal expression of hox genes. (B, D, F, H)
Embryos treated with 50 µM cyclopamine for 12 h from 36 hpf. Note the complete
absence of hox gene expression within the distal mesenchyme cells in cyclopamine-
treated embryos. Lateral views of the left pectoral fins with anterior to the left in all
panels. All embryos are approximately at 48 hpf. hpf: hours post fertilization.
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6A–H). This indicates that, as shown in tetrapods, initiation and/or
maintenance of the distal (hoxd11–13a) or phase III (hoxa13a) ex-
pression of hox genes are also dependent upon the presence of shh
signaling in teleosts.

Regulation of the distal expression of hox genes during development of
pectoral fins: coordination by a prospective long-range enhancer
element

Another and perhaps more important feature of the phase III
expression of Hox genes in tetrapod limbs is its regulation via a
distinct enhancer element. In mouse, distal limb expression of both
Hoxa13 (Lehoczky et al., 2004) and Hoxd10–13 (Hérault et al., 1999;
Kmita et al., 2002; Spitz et al., 2003; Tarchini and Duboule, 2006) is
known to be controlled by a nearby regulatory element located
outside of the Hox cluster. This element, which seems to be able to
influence the expression of several Hox genes at a great distance (Spitz
et al., 2003), also directs the expression of genes neighboring the Hox
A and D clusters to the autopod region (Spitz et al., 2003; Lehoczky et
al., 2004). Similar, highly conserved blocks of non-coding sequences
have also been found in corresponding regions of the pufferfish (Fugu
rubripes) genome (Spitz et al., 2003; Lehoczky et al., 2004), although in
transgenic mice, these fish sequences failed to show any phase III
enhancer-like activities (Spitz et al., 2003). To determine whether the
hox genes in zebrafish are also subject to a similar regulatory control,
we examined the expression of genes whose murine homologs are
known to be located outside of the Hox cluster but are expressed in
the autopod region due to the regulatory influence of nearby phase III
(digit/autopod) enhancers.

We found that the two genes adjacent to the hoxaa cluster—evx1
and hibadh-a—are also expressed in distal fin mesenchyme cells at
48 hpf in a pattern similar to hoxa13a (Fig. 7A). High level expression
in the distal mesenchyme cells is also occasionally seen for tax1bp1-a
(not shown), the next 5′ gene on the chromosome, although in the
majority of specimens (95%) expression is not detected above the
background level within the fin bud mesenchyme (Fig. 7A). These
results suggest that, similar to the mouse Hoxa13 (Lehoczky et al.,
2004), expression of hoxa13a in zebrafish is also likely to be controlled
by a long-range enhancer element.

A similar conclusion could also be reached for the regulation of the
distal expression of hoxa13b, although the evidence here is not as
strong. Like hoxa13b, the two genes 5′ to the hoxab cluster—hibadh-b
and tax1bp1-b—are expressed at relatively high levels throughout fin
budmesenchyme, including the distal-most group of cells (Fig. 7B). This
suggests that similar to the genes from the corresponding genomic
region containing the hoxaa cluster, genes surrounding the 5′ end of the
hoxab cluster might also be subject to a co-regulation by a long-range
enhancer. However, unlike hoxa13a, evx1, hibadh-a, and also possibly
tax1bp1-a, there is little distinction between the proximal and distal
expression of these genes within fins, and therefore at present it is
difficult to determine whether there is indeed a separate regulation
homologous to the phase III regulation of tetrapod Hox A genes
governing their distal expression. Further studies involving the
identification of distinct regulatory elements within the promoter
regions of these genes might help to resolve this issue.

In contrast to the genes of hoxaa and also possibly hoxab clusters,
posterior hox genes of hoxda cluster do not seem to be subject to a
long-range control similar to the phase III regulation of tetrapodHox D
genes in limbs (Figs. 3O, T, Y; also see Sordino et al., 1995). The two
genes adjacent to the hoxda cluster, evx2 and lnp-a, which in mouse
are known to be expressed within the limb autopod region in a very
Hox-like manner due to the influence of a nearby long-range enhancer
(Spitz et al., 2003), either fails to be expressed across the entire distal
mesenchyme cells (evx2) or is expressed at low levels throughout
undifferentiated mesenchyme including the distal regions of the fins
(lnp-a) (Fig. 7C). This pattern suggests that a functional phase III
enhancer associated with the hoxda cluster could be present in teleost
genome 5′ to lnp-a (Spitz et al., 2003), but if present its regulatory
influence does not extend beyond lnp-a. Therefore, none of the genes
in hoxda cluster is likely subject to the type of long-range regulation
governing the phase III/autopod expression of Hox D genes in tetrapod
limbs. In spite of this, however, similarity of late distal expression
between hoxd11-13a and evx2 genes (Figs. 3N, S, X; Fig. 7C) is still
highly suggestive of the coordination of their distal expression within
the fin bud.

Therefore, in conclusion, among the zebrafish hox genes showing
expression in distal mesenchyme cells during pectoral fin develop-
ment, only genes from hoxaa and possibly also hoxab clusters seem to
be regulated by a long-range enhancer that is functionally similar (and
likely homologous) to the phase III/autopod enhancer of tetrapods.
This indicates that, in zebrafish pectoral fins, a distal phase of hox gene
expression that could be considered a true phase III expression is
represented by at most four hox genes lying close to the 5′ ends of the
hoxaa and hoxab clusters, namely hoxa11a and hoxa13a, and possibly
also hoxa11b and hoxa13b.

Discussion

Hox genes and evolution of paired appendages in vertebrates

In this study, we found that taken as a whole, patterning of
zebrafish pectoral fins by Hox genes is much more similar to the
patterning of forelimbs of the mouse and chicken thanwas previously
thought. Like in tetrapods, expression of hox genes during develop-
ment of pectoral fins occurs in three distinct phases (see Fig. 8), and
other aspects of hox gene expression such as the split expression
between prospective myogenic and chondrogenic mesenchyme cells



Fig. 7. Expression of the genes neighboring the hoxa and hoxd clusters during zebrafish pectoral fin development. (A) Expression of the genes near the 5′ end of the hoxaa cluster. For
evx1 and hibadh-a, strong expression is clearly seen within the distal region of the fin bud in a pattern similar to hoxa13a. For tax1bp1-a, little expression is seen except for a small
subset of specimens (about 5%; not shown), which show an elevated level of expression in the distal region of the fin in a pattern similar to hoxa13a. (B) Expression of the genes near
the 5′ end of the hoxab cluster. Similar to hoxa13b, both hibadh-b and tax1bp1-b are expressed in both proximal and distal regions of the fin bud. (C) Expression of the genes near the
5′ end of the hoxda cluster. For evx2, expression in distal regions is confined to the posterior, which is similar to its 3′ neighbor, hoxd13a. For lnp-a, low level expression is seen
throughout the fin bud mesenchyme. Lateral views of left pectoral fin buds with anterior to the left in all panels. All embryos are at 48 hpf. Strong proximal staining of hibadh-a (A)
and hibadh-b (B) within the fin bud represents expression within the myogenic cells. The diagram below each set of photographs represents arrangement of genes on the zebrafish
genome and the direction of transcription for each gene. Distances between genes are not drawn in scale. For all genes except lnp-a, linkages and precise syntenic relationships are
independently confirmed by examining large genomic clones covering the corresponding region. For lnp-a, synteny is presumed based upon its map position in radiation hybrid
panels (ZFIN database) and the relative direction of transcription is tentative. chr: chromosome.
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in hoxa genes during early stages (hoxa9a, a10b, a11a, and a11b in
zebrafish (this work) and Hoxa10 and Hoxa11 in mouse (Haack and
Gruss, 1993)) as well as a lack of distal expression in 3′-lying posterior
hoxa/d genes during late stages (hoxa9b, a10b, d9a, and d10a in
zebrafish (this work) and Hoxa10, a11, and d9 in chicken (Nelson et al.,
1996)) also appears to be the same.

Most significant still is our finding that contrary to the prevailing
notion in current literature (e.g., Coates, 1995; Sordino and Duboule
,1996; Shubin et al., 1997; Wagner and Chiu, 2001; Davis et al., 2007;
Freitas et al., 2007; Johanson et al., 2007) zebrafish does seem to have
a distinct distal phase of Hox gene expression similar to the phase III
expression of Hox genes in tetrapod limbs. This distal phase, which
shows the greatest similarity to its tetrapod counterparts with respect
to the genes of hoxa clusters, appears to be regulated by the same
molecular processes governing the phase III expression of Hox genes
in tetrapod limbs such as shh signaling (hoxa and hoxd genes) and
long-range enhancer elements (hoxa genes) (Figs. 6, 7). Similarly, like
its counterparts in tetrapods, this distal expression seems to be
involved in the formation and patterning of the most distal part of the
fin, the fin blade. Viewed in a phylogenetic context, this indicates that
the tri-phasic expression of Hox genes must already have been in
place in the common ancestor of teleosts and tetrapods, which must
also have been using the regulated expression of Hox genes to pattern
its paired appendages.

Consistent with this, recent studies on the expression of Hox genes
during the development of paddlefish (Davis et al., 2007) and catshark
(Freitas et al., 2007) pectoral fins have demonstrated that the tri-
phasic expression of Hox genes—at least for Hox D cluster genes—is
already operational in the paired appendages of both the primitive
ray-finned fishes and the cartilaginous fishes. In addition, fossil ray-
finned fishes and lobe-finned fishes often had structurally complex
paired appendages (Shubin, 1995; Coates, 2003; Friedman et al.,
2007), which indicates that the patterning mechanisms regulating
development of paired appendages must have been already fairly
advanced by the time the first group of bony fishes appeared in late
Silurian sea. Indeed, it has been suggested that the regulatory
mechanisms governing the tri-phasic expression of Hox genes is
likely to be highly ancient in origin, possibly predating even the origin
of paired appendages themselves (Lehoczky et al., 2004; Freitas et al.,
2006). If such is the case, then the use of the tri-phasic expression of
Hox genes in patterning of paired appendages must be nearly
universal among jawed vertebrates.



Fig. 8. Summary of the Hox gene expression in fins and limbs. (A) Expression of chicken Hoxa genes during forelimb (wing) development. (B) Expression of chicken Hoxd genes during
forelimb (wing) development. (C) Expression of zebrafish hoxa genes during pectoral fin development. (D) Expression of zebrafish hoxd genes during pectoral fin development. Each
panel shows schematic diagrams representing expression domains of variousHox genes during each phase of regulation. Green: phase I expression. Note that, unlikeHoxa9 in forelimb
of chickens, the phase I expression of hoxa9b in zebrafish pectoral fins becomes established gradually rather than all at once. Turquoise: early phase II expression of Hox D genes. Blue:
late phase II expression ofHoxD genes and phase II expression ofHoxA genes. Note the similarity in pattern between phase II expression ofHoxA genes and the late phase II expression
ofHoxD genes. Red: phase III expression. Purple: phase III-like distal expression of zebrafish hoxda genes which shows only partial similarities to the phase III expression ofHoxd genes
of tetrapods but is likely to be an independent phase. Data for chickenHox genes are taken from Nelson et al. (1996). For panels A and B, dorsal views of right wing buds in all drawings
with anterior to the left. For panels C and D, lateral (phases I and II) or dorsal (phase III and phase III-like) views of left pectoral fin buds with anterior to the left.
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In spite of the high-level conservation of the tri-phasic expression
ofHox genes during development of paired appendages in vertebrates,
however, it is also clear that the tri-phasic expression had occasionally
undergone regressive changes during evolution. This is most clearly
seen in the simplicity of late distal expression of hoxd genes in zebra-
fish pectoral fins (Fig. 3) compared to the complex distal expression of
homologous genes in the pectoral fins of more primitive fishes (Davis
et al., 2007; Freitas et al., 2007) as well as in the limbs of tetrapods
(Nelson et al., 1996; Tarchini and Duboule, 2006) (Fig. 8). It has been
suggested that the relative simplicity in the structure of teleost paired
fins compared to the complexity of structures in paired appendages of
many other vertebrates (Fig. 1) might be causally linked to the
complete absence of the phase III expression ofHoxD genes in teleosts
(Sordino and Duboule, 1996; Shubin et al., 1997; Davis et al., 2007; but
also see Mabee, 2000).

Our results indicate that the actual evolutionary change in phase III
regulation of teleost hoxd genes was not as extreme as previously
thought. Nevertheless, teleost hoxd genes still lack important
regulatory features such as reverse colinearity in their distal domains
of expression (Fig. 8), which suggests that during evolution teleosts
must have lost at least some of the regulatory mechanisms necessary
for the complete phase III expression of hoxd genes in their paired fins
(Fig. 7). Perhaps a better approach to the issue of possible causal
connection between structural complexity of paired appendages and
complexity of underlying regulatorymechanismsmight be to examine
the expression of Hox genes in several distantly related vertebrate
species, each of which had undergone an independent but significant
alteration in the structure of its paired appendages during evolution
(e.g., some lizards (Wiens and Slingluff, 2001), dolphins (Richardson
and Oelschläger, 2002), and lungfishes (Friedman et al., 2007)). Such
tests might even help us to determine what the precise patterning
roles are for the individual phases of Hox gene expressions during
development of vertebrate paired appendages (see below).

Hox genes and development of paired appendages in vertebrates

Our results also suggest that, given the potentially universal use of
the tri-phasic expression of Hox genes in the patterning of paired
appendages (Lehoczky et al., 2004), many of the current hypotheses
on the potential roles of Hox genes in the development of paired
appendages may need to be re-evaluated. Presently, due to the
predominance of tetrapod models in the study of Hox gene functions,
most hypotheses on the roles of Hox genes in appendage development
(or evolution) are based on the assumption that they are involved in
the construction of a fundamentally limb-like structure. For example,
one of the most commonly held assumptions on the role of tri-phasic
expression of Hox genes in development is that successive deploy-
ment of individual phases during development of limbs represents the
sequential specification of each of the three segments of the limbs
(Yokouichi et al., 1991; Nelson et al., 1996; Shubin et al., 1997).
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Likewise, the nested expression domains formed by five posterior Hox
D genes during late phase II was once viewed as morphogenetic codes
for the specification of the five digit types present in most limbs
(Tabin, 1992; but also see Graham, 1994). More recently, the ante-
riorward deflection of the distal domains of expression of Hox D genes
during late phase II was interpreted as a molecular representation of
the hypothetical bending of the metapterygial axis (Coates, 1995; but
also see Cohn et al., 2002).

Our observation that in zebrafish pectoral fins, the structure of
which does not readily conform to the morphological norm of tetra-
pod limbs (Figs. 1B, C), Hox genes are still expressed in a very limb-like
fashion (Fig. 8) indicates that the apparently close correspondence
between features of Hox gene expressions and the structure of
tetrapod limbs is likely to be a coincidence and the actual roles of the
Hox genes in fin/limb development might be more general, possibly
defining only the most fundamental aspects of the fin/limb structures
that are shared by all paired appendages such as the asymmetry in
internal structures (Friedman et al., 2007). Consistent with this, recent
studies on the function of Hox A and D cluster genes in mouse have
shown that, in limbs, the early expression (phases I and II) of Hox
genes has a previously unrecognized role of limiting Shh expressions
to the posterior of the early limb bud (Zákány et al., 2004), which is
essential for the proper establishment of the asymmetry in limb
structures as well as the subsequent initiation of distal outgrowth of
the limbs (Kmita et al., 2005; Tarchini et al., 2006). We predict that,
given the generic and versatile nature of Hox gene functions in
development (Greer et al., 2000), more of such basic patterning roles
will likely emerge for Hox genes in the development of fins and limbs.

Expression of Hox genes in fins vs limbs: change in long-range
regulations?

In spite of the high-level conservation in the tri-phasic expression
patterns of Hox genes between fins and limbs, subtle differences were
also evident between zebrafish and tetrapod Hox clusters in the
operation of the underlying regulatory mechanisms. This was most
clearly seen in the aberrant behavior of the Evx2 gene, which is located
just 5′ to the Hox D/hoxda clusters and is known to be expressed very
similarly to its closest neighbor, Hoxd13/hoxd13a (Fig. 7C; Dollé et al.,
1994; Sordino et al., 1996). However, in mouse, Evx2 is expressed
relatively late in limb development and only in the autopod (i.e.,
subject only to the phase III regulation) (Tarchini and Duboule, 2006),
while in zebrafish evx2 begins its expression shortly after hoxd13a and
in a domain similar to hoxd13a (Fig. 7C and data not shown). This
indicates that in zebrafish, evx2 is subject to a phase II regulation
which is not seen in mouse.

Such changes in regulation, however, may not have been limited to
the Hox D cluster. hoxa11a, a gene lying just 3′ to hoxa13a, also shows
an evx2-style change in developmental regulation by showing a phase
III expression (Fig. 2J) while its tetrapod homolog, Hoxa11, shows only
phase II expression (Nelson et al., 1996; Post and Innis,1999). Likewise,
earlier onset of expression and more proximally expanded expression
domains of hoxa13b compared to its paralog hoxa13a (Figs. 7A, B)
seem to indicate the presence of a phase II-like regulation in addition
to the phase III regulation, although, compared to hoxa9–11b, the
anterior limit of expression is not colinear for hoxa13b (Figs. 5B, F, J, N).
Lastly, the complete lack of even the phase I and phase II expressions
of zebrafish hoxa9a and hoxa11a in fins is in stark contrast to the
behavior of their paralogs hoxa9b and hoxa11b as well as their mouse
homologs Hoxa9 and Hoxa11, both of which show phase I (a9 and a9b)
and phase II (a9, a9b, a11, and a11b) expressions during fin/limb
development (Nelson et al., 1996; this study).

Considering these, it appears likely that during evolution, the two
long-range enhancers located near the Hox A and D clusters, each of
which is responsible for the onset of early/proximal (phases I and II)
and late/distal (phase III) expression of Hox and nearby genes (Spitz et
al., 2003; Lehoczky et al., 2004; Zákány et al., 2004; Tarchini and
Duboule, 2006), had undergone changes in regulatory activities such
that homologous genes in teleosts and tetrapods have fallen into
different regulatory sub-domains (or “regulatory landscapes” sensu
Spitz et al., 2003) in each group of animals. Perhaps for a mechanism
as indispensable in development of paired appendages as the tri-
phasic expression of Hox genes (Pöpperl et al., 2000; Kmita et al.,
2005), a small-scale change in regulatory parameters might have been
one of the few (and possibly the only) viable way of introducing
evolutionary variations in patterning processes while maintaining the
overall integrity of the system. Such subtle modifications in regulation
might also have been instrumental in maintaining the overall
expression patterns of Hox genes while at the same time allowing
generation of morphological differences during divergence between
fins and limbs.

Hox genes and origin of digits: an alternative view

Our results also suggest that the transition from fins to limbs during
the evolution of tetrapods (reviewed in Shubin, 1995; Vorobyeva and
Hinchliffe, 1996; Wagner and Chiu, 2001; Coates et al., 2002) might
have taken a somewhat different course than is presently thought.
Evolution of tetrapod limbs from sarcopterygian fins involved a series of
modifications in internal structures, the most important of which being
the acquisition of digits (Wagner and Chiu, 2001; Coates et al., 2002).
Digits are the most distal set of limb skeletal elements consisting of
several spool-shaped bones articulated in a proximo-distal direction
(Coates et al., 2002), which have organizational as well as develop-
mental features that are distinct from the bones of more proximal
regions (Shubin and Alberch, 1986; Shubin et al., 1997; Wagner and
Chiu, 2001; Coates et al., 2002; Johanson et al., 2007).

Previously, digits have been variously interpreted as either
modified radials of sarcopterygian fins or an entirely new entity that
does not have a corresponding structure in the fins of tetrapods'
sarcopterygian relatives (reviewed in Shubin and Alberch, 1986;
Coates, 1994; Shubin, 1995; Laurin, 2006). More recently, evolutionary
origin of digits has also been explored in the context of comparative
gene expression studies (Sordino et al., 1995; Sordino and Duboule,
1996;Wagner and Chiu, 2001;Metscher et al., 2005; Davis et al., 2007;
Freitas et al., 2007; Johanson et al., 2007), which demonstrated that at
least with respect to the Hox D genes a distinct late phase of
expression similar to the phase III expression associated with the
development of digits in tetrapod limbs (Nelson et al., 1996; Tarchini
and Duboule, 2006) can be delineated in the fins of a diverse array of
fish species such as paddlefish (Davis et al., 2007), catshark (Freitas et
al., 2007), and lungfish (Johanson et al., 2007). Interestingly, in cases of
paddlefish and lungfish, such phase III-like expression of Hox D genes
appears late in development and in close association with the
chondrogenesis of fin radials (Davis et al., 2007; Johanson et al.,
2007), suggesting that digits and fin radials might share a common
patterning mechanism. These observations are also consistent with
the notion of homology between digits and radials, which has become
an increasingly preferred view among paleontologists studying the
evolution of early tetrapods (e.g., Shubin et al., 2006; Friedman et al.,
2007; but also see Ahlberg and Clack, 2006 and Laurin, 2006).

In spite of these recent advances, however, it might still be
premature to conclude digits as homologues of fin radials, since
current models fail to take into consideration the possible roles of Hox
A cluster genes, even though these genes have been shown to be at
least as important as Hox D genes in the formation and patterning of
digits (Zákány et al., 1997, Kmita et al., 2005). Here we show that,
based on our data, an entirely different scenario can be constructed for
the evolution of digits, if we consider the expression patterns of Hox A
genes. We notice that one of the key characters separating tetrapods
from sarcopterygian fishes is the complete absence of fin rays (Fig. 9),
and by inference, the entire distal fin blades in their paired



Fig. 9. A developmental scenario for the evolutionary origin of digits. The fin–limb transition in the fossil record involved loss of fin rays and acquisition of digits, which in phylogeny
falls roughly between Tiktaalik, the most tetrapod-like fossil sarcopterygian fish known to date (Shubin et al., 2006), and Acanthostega, the most primitive “limbed” tetrapod (Coates
and Clack, 1990). Both animals probably showed phase III expression of Hox A genes (red) in their paired appendages during early stages of development, which they used to earmark
a distinct group of distal cells under the apical ectodermal ridge (AER). In Tiktaalik as well as other sarcopterygian fishes such as Eusthenopteron, these cells probably migrated into the
fin fold, which derives from the distal outgrowth of the AER, thus giving rise to the connective tissues of the fin blade, including its skeletal support, the fin rays (red). In tetrapods
such as primitive Acanthostega and more modern Ophiacodon (a mammal-like reptile), which did not have fin rays and thus probably did not develop fin folds in its limbs, these cells
remained within the limb proper, thereby contributing to the generation of the most distal set of skeletal elements of the limbs, the digits (red). Only pectoral appendages are shown.
In each diagram of fin/limb buds, red represents only those cells that later give rise to the fin rays and associated structures (Eusthenopteron and Tiktaalik) or digits (Acanthostega and
Ophiacodon). Eusthenopteron: after Shubin (2002); Tiktaalik: after Shubin et al. (2006); Acanthostega: after Coates (1991); Ophiacodon: after Williston (1925).
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appendages (Coates et al., 2002). In zebrafish and other teleosts, cells
populating the distal fin blades derive from the distal-most group of
cells within the fin bud (“distal mesenchyme cells”; Grandel and
Schulte-Merker, 1998) which in zebrafish express hoxa13a during
development (Fig. 2N). These cells then become motile and migrate
into the fin fold during late embryogenesis (Wood and Thorogood,
1984; Grandel and Schulte-Merker, 1998) and eventually differentiate
into the connective tissues of the fin blade, including its skeletal
support, the fin rays (Grandel and Schulte-Merker, 1998).

If similar processes were responsible for the development of fin
blades in fossil sarcopterygian fishes, then the evolutionary loss of fin
blades in the appendages of tetrapods' ancestors would have
generated a group of “spare” cells that could have been used for
building a new structure such as digits. These new cells would
certainly have occupied the most distal portion of the fin bud from the
beginning and would already have exhibited a phase III expression of
at least Hox A cluster genes, thereby starting their new roles in
development in an already autopod-like configuration (Fig. 9, top
half). Furthermore, due to their origin, these cells would have been
predisposed to develop into a series of parallel structures emanating
from the distal ends of the ancestral endoskeleton (as most structures
within the fin bladewould be), thereby precipitating the development
of new terminal structures in a very digit-like configuration (Fig. 9,
bottom half; compare the spatial arrangement of fin rays in Eusthe-
nopteron with digits of Acanthostega).

Viewed in this way, evolution of digits probably did not require a
significant modification of the expression or function of Hox genes
(contra. Sordino and Duboule, 1996 and Wagner and Chiu, 2001: also
see Davis et al., 2007 and Freitas et al., 2007). More likely, the phase III
expression of Hox A genes as well as the distinct cell–cell interactions
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within the distal fin regions would have been sufficient to provide
enough developmental background for the evolution of digits by
producing a group of cells that have distinct developmental potentials,
which in the fins of tetrapods' ancestors might have included the
formation of fin rays and associated tissues (blood vessels, nerves, etc)
within the fin blade.

By inference, our model predicts that the digits and fin rays would
share the embryonic origin of skeletogenic mesenchyme cells. At
present, however, it is usually hypothesized that unlike digits, which
are usually considered to be derivatives of the mesoderm, fin rays of
paired fins are derivatives of the neural crest, an ectodermal structure
(Smith and Hall, 1990). These views, however, still remain hypothe-
tical, having yet to be subject to a rigorous experimental testing (see
discussions in Smith et al., 1994). If, as our model indicates, digits and
fin rays share not only the phase III expression of Hox A genes but also
the embryonic origins of constituent cells, then it is possible that
either there is a neural crest contribution to the developing limb buds
or the fin rays of paired fins actually derive from the mesoderm rather
than the neural crest (see review by Witten and Huysseune, 2007 on
this subject).

Our model, of course, also assumes that the development of paired
fins in teleost fishes accurately represents the development of paired
fins in sarcopterygian fishes. At present, however, little information is
available for either the behavior of mesenchyme cells or the
expression patterns of Hox A genes during development of paired
fins in most sarcopterygian fishes. Nevertheless, limited studies of
Polyodon spathula, a primitive ray-finned fish that still has metapter-
ygium in its paired fins (Mabee, 2000), indicate that the expression of
Hoxa11 and Hoxa13 genes in such fins is essentially identical to that of
zebrafish hoxa11b and hoxa13b genes at least during early stages
(Metscher et al., 2005; Davis et al., 2007). Furthermore, a brief
histological study of the development of pectoral fins in at least one
sarcopterygian fish, the Australian lungfish Neoceratodus, seems to
indicate that the differentiation between proximal and distal
mesenchyme cells may also occur in the fins of sarcopterygian fishes
(Vorobyeva and Hinchliffe, 1996).

Such similarities in gene expression and behavior of cells may be
indicative of an extensive conservation of molecular and cellular
mechanisms regulating the development of paired appendages not
just between teleosts and tetrapods but also between ray-finned and
lobe-finned fishes in general. It is even possible that such mechanisms
might have evolved much earlier, possibly even before the origin of
paired appendages (Freitas et al., 2006). At present, however, even less
is known about the developmental mechanisms underlying the origin
of paired appendages (Coates and Cohn, 1998; Ruvinsky and Gibson-
Brown, 2000). In this regard, further studies comparing expression
patterns of Hox genes in more basal groups of vertebrates such as
jawless fishes (e.g., Freitas et al., 2006) would be instructive in
determining the precise roles played by Hox genes in the origin and
diversification of paired appendages in vertebrates, which might have
been instrumental in their becoming one of the most dominant
groups of modern-day animals.
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