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Bernstein’s classical theorem states that for a polynomial P of degree at most n,
max ,_;|P'(z)] < nmax,_,|P(z)l. We give related results for polynomials P

satisfying the conditions P'(0) = P"(0) = -+ = P ~1(0) = 0 and P(z) # 0 for
|z| < K, where K > 1. We give L? inequalities valid for 0 < p < ».  © 1998 Aca-
demic Press

1. INTRODUCTION AND HISTORY

Let &, be the linear space of all polynomials over the complex field of
degree less than or equal to n. For P € #,, define

1 con i0
Pl exp(zfo log| P(e )|d0),

1 2 » 1/p
’T i0
IPIl, (2wfo |P(e)] de) for0 < p < =,
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and

IPll.. = max|P(z)].
|z|=1

Notice that ||Pll, = Iimp%wllPllp and || Pl = IimprIIPIIP. Forl<p<
», |||, is @ norm (and therefore 2, is a normed linear space under || ||,).
However, for 0 < p < 1, - ||, does not satisfy the triangle inequality and is
therefore not a norm (this follows from Minkowski’s inequality—see [10]
for details).

Bernstein’s well known result relating the supremum norm of a polyno-
mial and its derivative states that if P €., then ||P'll.. < nl|Pll.. [2]. This
inequality reduces to equality if and only if P(z) = az" for some complex
constant «. Erdos conjectured and Lax proved [6]:

THEOREM 1.1. If P €%, and P(z) # 0 for |z| < 1, then
1P < 2P|
"Noe < =1 P|le.
2

Malik generalized Theorem 1.1 and proved [7]:

THEOREM 1.2. If P €%, and P(z) # 0 for |z| < K where K > 1, then

n
1+K

1Pl < I Pll...

Of course, Theorem 1.1 follows from Theorem 1.2 when K = 1. Chan
and Malik [3] introduced the class of polynomials of the form P(z) = a, +
Xy_,.a,z". We denote the linear space of all such polynomials as %, .

Notice that 2, , =.2,. Chan and Malik presented the following result [3]:
THEOREM 1.3. IfP €%, , and P(z) # 0 for |z| < K where K > 1, then

1Pl <

1Pl
1+K

Qazi, independently of Chan and Malik, presented the following result
which includes Theorem 1.3 [8]:

THEOREM 14. If P(z) =ay+ X)_,a,2" €2, , and P(z) #0 for
|z| < K where K > 1, then

n
1Pl <

1P1l--,
1+s,
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where

mla, |K™ ™ + nlay|

s =Km+1 .
0 nlayl + mla, |[K™*1

Since mla,,|K™ < nla,l, Theorem 1.4 implies Theorem 1.3 (see [8] for
details).

Zygmund [11] extended Bernstein’s result to L? norms. DeBruijn [4]
extended Theorem 1.1 to L? norms by showing:

THEOREM 15. IfP €%, and P(z) #+ 0 for |z| < 1, then for 1 <p <

1P 1P1l,.

Iy < —
i+,

Of course, Theorem 1.5 reduces to Theorem 1.1 with p = «. Rahman
and Schmeisser [9] proved that Theorem 1.5 in fact holds for 0 < p < o,
The purpose of this paper is to show that Theorems 1.3 and 1.4 can be
extended to L? inequalities where 0 < p < <.

2. STATEMENT OF RESULTS

Our main result is:

THEOREM 2.1. If P(z) =ay+ X!_,a,2" €%, , and P(z) #0 for

v=m=—v

|z| < K where K > 1, then for 0 < p < o

1P’ 1P,
p

) < ——F——
"7 s + 2l
where s, is as given in Theorem 1.4.

With p = o, Theorem 2.1 reduces to Theorem 1.4. As mentioned in
Section 1, we can deduce:

CorOLLARY 22. If PEZ,
then for 0 < p <

and P(z) # 0 for |z| < K where K > 1,

m

IP 1P,
)4

lp < ——
PR + 2

With p = oo, Corollary 2.2 reduces to Theorem 1.3.
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Of special interest, is the fact that Theorem 2.1 and Corollary 2.2 hold
for L? norms for all 1 < p < . In particular, we have:

CoroOLLARY 23. If P€Z, , and P(z) # 0 for |z| < K where K > 1,

then for 1 <p <

m

IP 1P,
14

l < —r—
PR + 2

With m = 1, Corollary 2.3 yields an L? version of Theorem 1.2. With
p = «, Corollary 2.3 reduces to Theorem 1.3. With m =1 and p = oo,
Corollary 2.3 reduces to Theorem 1.2. Finally, with m =1, p = o, and
K =1, Corollary 2.3 reduces to Theorem 1.1.

3. LEMMAS

We need the following lemmas for the proof of our theorem.

LEMMA 3.1. If the polynomial P(z) of degree n has no roots in the
circular domain C and if { € C then ({ —z)P'(z) + nP(z) # 0 forz € C.

Lemma 3.1 is due to Laguerre [5].

DerINITION 3.2. For y = (y,,...,7,) €C""!' and P(z) = X"_,c,z",
define

AyP(z) = ;0 v,€,2".

The operator A is said to be admissible if it preserves one of the
following properties:

(a) P(z) has all its zeros in {z € C:|z| < 1},
(b) P(z) has all its zeros in {z € C:|z| = 1}.

The proof of Lemma 3.3 was given by Arestov [1]:

LEMMA 3.3. Let ¢(x) = yy(log x) where i is a convex non-decreasing
function on R. Then for all P(z) € %, and each admissible operator A,

277 0 o (c(y.n e’
i (| A, P(e )|)d0§fo d(c(y.m)|P(e)]) do,

where c(y, n) = max(|y,l, l,D.
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Qazi proved [8]:

LEMMA 34. If P(z) =c, + X_, ¢, z" has no zeros in |z| <K, K> 1
then for |z| = 1

K"|P'(2)] <50l P'(2)| <]Q'(2)].

where Q(z) = z"P(1/Z) and s, is as defined in Theorem 1.4.

4. PROOF OF THEOREM 2.1

By Lemma 3.1 we have nP(z) — (z — {)P'(z) # 0 for |z| <1, (< 1.
Therefore, setting { = —ze ', a € R, the operator A defined by

AP(z) = (e"* + 1)zP'(z) — ne'*p(z2)
is admissible and so by Lemma 3.3 with ¢(x) = e?*,

4

dp(e'’ w A
() dOSn”/Z |P(ei®)[ a6
0

e 41
(e ) 79

— ine'*P(e'®)

[277
0

for p > 0. Then

D

de < n”f277|P(ei9) I do.
0

dpP(e'?) (dP(e'?)
+ e’
do de

- inP(eie)}

fZﬂ'
0

This gives

P
doda

dp(e'?) _(dP(e'?)
+efel 2
do de

- inp(e”)}

/277[277
0 0

< 27Tn”f0277|p(em) ’ do. (4.1)
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Now
- roa| dP(e'? dpP(e" Y
fz fz ( ) {¥ inP(e”’)} dfdo
0 deé
- dP (e’ "’ - (dP(e®) /do — inP(e®) \ [
=/2 —( ) fz 1+e'@ )/ - (e?) dadf
0 do 0 dP(e’ )/d@
2o dP(e) [ 2a|  |dP(e™®)/d6 — inP(e™) ”d »
“h a1, dP(e™) /do *
| ap(e' s 1 '(e?
- il DN e o &0) dado
0 d0 0 P’(e’ )
o P
2 dP(ele) 27 i »
2[0 — fo le + so/” dad®  bylLemma3.d  (4.2)

by the fact that |e’® + r| is an increasing function of r for r > 1. Thus

combining (4.1) and (4.2) we

dp(ei) |
do

Is

de)(fozw

see that

le’™ + sol” doz) < ZWnP/2#|P(ei0)|p do
0

from which the theorem follows for 0 < p < «. The result holds for p = 0
and p = « by letting p —» 0% and p — o, respectively.
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