A Bernstein Type L^{p} Inequality for a Certain Class of Polynomials

R obert G ardner*
Department of Mathematics. East Tennessee State Universitv. Johnson Citv.

metadata, citation and similar papers at core.ac.uk

and

A my W eems

Department of Mathematics, University of Colorado, Boulder, Colorado 80309-0395
Submitted by Robert A. Gustafson
Received O ctober 21, 1996

Bernstein's classical theorem states that for a polynomial P of degree at most n, $\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)|$. We give related results for polynomials P satisfying the conditions $P^{\prime}(0)=P^{\prime \prime}(0)=\cdots=P^{(m-1)}(0)=0$ and $P(z) \neq 0$ for $|z|<K$, where $K \geq 1$. We give L^{p} inequalities valid for $0 \leq p \leq \infty$. © 1998 Aca demic Press

1. INTRODUCTION AND HISTORY

Let \mathscr{P}_{n} be the linear space of all polynomials over the complex field of degree less than or equal to n. For $P \in \mathscr{P}_{n}$, define

$$
\begin{aligned}
& \|P\|_{0}=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(e^{i \theta}\right)\right| d \theta\right), \\
& \|P\|_{p}=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right)^{1 / p} \quad \text { for } 0<p<\infty,
\end{aligned}
$$

*E-mail: gardnerr@etsuarts.etsu.edu.
and

$$
\|P\|_{\infty}=\max _{|z|=1}|P(z)|
$$

N otice that $\|P\|_{0}=\lim _{p \rightarrow 0^{+}}\|P\|_{p}$ and $\|P\|_{\infty}=\lim _{p \rightarrow \infty}\|P\|_{p}$. For $1 \leq p \leq$ $\infty,\|\cdot\|_{p}$ is a norm (and therefore \mathscr{P}_{n} is a normed linear space under $\|\cdot\|_{p}$). H owever, for $0 \leq p<1,\|\cdot\|_{p}$ does not satisfy the triangle inequality and is therefore not a norm (this follows from M inkowski's inequality-see [10] for details).

Bernstein's well known result relating the supremum norm of a polynomial and its derivative states that if $P \in \mathscr{P}_{n}$ then $\left\|P^{\prime}\right\|_{\infty} \leq n\|P\|_{\infty}$ [2]. This inequality reduces to equality if and only if $P(z)=\alpha z^{n}$ for some complex constant α. E rdös conjectured and Lax proved [6]:

Theorem 1.1. If $P \in \mathscr{P}_{n}$ and $P(z) \neq 0$ for $|z|<1$, then

$$
\left\|P^{\prime}\right\|_{\infty} \leq \frac{n}{2}\|P\|_{\infty}
$$

M alik generalized Theorem 1.1 and proved [7]:
Theorem 1.2. If $P \in \mathscr{P}_{n}$ and $P(z) \neq 0$ for $|z|<K$ where $K \geq 1$, then

$$
\left\|P^{\prime}\right\|_{\infty} \leq \frac{n}{1+K}\|P\|_{\infty}
$$

Of course, Theorem 1.1 follows from Theorem 1.2 when $K=1$. Chan and M alik [3] introduced the class of polynomials of the form $P(z)=a_{0}+$ $\sum_{v=m}^{n} a_{v} z^{v}$. We denote the linear space of all such polynomials as $\mathscr{P}_{n, m}$. N otice that $\mathscr{P}_{n, 1}=\mathscr{P}_{n}$. Chan and M alik presented the following result [3]:

Theorem 1.3. If $P \in \mathscr{P}_{n, m}$ and $P(z) \neq 0$ for $|z|<K$ where $K \geq 1$, then

$$
\left\|P^{\prime}\right\|_{\infty} \leq \frac{n}{1+K^{m}}\|P\|_{\infty}
$$

Q azi, independently of Chan and Malik, presented the following result which includes Theorem 1.3 [8]:

THEOREM 1.4. If $P(z)=a_{0}+\sum_{v=m}^{n} a_{v} z^{v} \in \mathscr{P}_{n, m}$ and $P(z) \neq 0$ for $|z|<K$ where $K \geq 1$, then

$$
\left\|P^{\prime}\right\|_{\infty} \leq \frac{n}{1+s_{0}}\|P\|_{\infty}
$$

where

$$
s_{0}=K^{m+1}\left(\frac{m\left|a_{m}\right| K^{m-1}+n\left|a_{0}\right|}{n\left|a_{0}\right|+m\left|a_{m}\right| K^{m+1}}\right) .
$$

Since $m\left|a_{m}\right| K^{m} \leq n\left|a_{0}\right|$, Theorem 1.4 implies Theorem 1.3 (see [8] for details).

Zygmund [11] extended Bernstein's result to L^{p} norms. DeBruijn [4] extended Theorem 1.1 to L^{p} norms by showing:

Theorem 1.5. If $P \in \mathscr{P}_{n}$ and $P(z) \neq 0$ for $|z|<1$, then for $1 \leq p \leq \infty$

$$
\left\|P^{\prime}\right\|_{p} \leq \frac{n}{\|1+z\|_{p}}\|P\|_{p}
$$

Of course, Theorem 1.5 reduces to Theorem 1.1 with $p=\infty$. Rahman and Schmeisser [9] proved that Theorem 1.5 in fact holds for $0 \leq p \leq \infty$. The purpose of this paper is to show that Theorems 1.3 and 1.4 can be extended to L^{p} inequalities where $0 \leq p \leq \infty$.

2. STATEMENT OF RESULTS

O ur main result is:
Theorem 2.1. If $P(z)=a_{0}+\sum_{v=m}^{n} a_{v} z^{v} \in \mathscr{P}_{n, m}$ and $P(z) \neq 0$ for $|z|<K$ where $K \geq 1$, then for $0 \leq p \leq \infty$

$$
\left\|P^{\prime}\right\|_{p} \leq \frac{n}{\left\|s_{0}+z\right\|_{p}}\|P\|_{p}
$$

where s_{0} is as given in Theorem 1.4.
With $p=\infty$, Theorem 2.1 reduces to Theorem 1.4. As mentioned in Section 1, we can deduce:

Corollary 2.2. If $P \in \mathscr{P}_{n, m}$ and $P(z) \neq 0$ for $|z|<K$ where $K \geq 1$, then for $0 \leq p \leq \infty$

$$
\left\|P^{\prime}\right\|_{p} \leq \frac{n}{\left\|K^{m}+z\right\|_{p}}\|P\|_{p}
$$

W ith $p=\infty$, Corollary 2.2 reduces to Theorem 1.3.

Of special interest, is the fact that Theorem 2.1 and Corollary 2.2 hold for L^{p} norms for all $1 \leq p \leq \infty$. In particular, we have:

Corollary 2.3. If $P \in \mathscr{P}_{n, m}$ and $P(z) \neq 0$ for $|z|<K$ where $K \geq 1$, then for $1 \leq p \leq \infty$

$$
\left\|P^{\prime}\right\|_{p} \leq \frac{n}{\left\|K^{m}+z\right\|_{p}}\|P\|_{p}
$$

With $m=1$, Corollary 2.3 yields an L^{p} version of Theorem 1.2. With $p=\infty$, Corollary 2.3 reduces to Theorem 1.3. With $m=1$ and $p=\infty$, Corollary 2.3 reduces to Theorem 1.2. Finally, with $m=1, p=\infty$, and $K=1$, Corollary 2.3 reduces to Theorem 1.1.

3. LEMMAS

We need the following lemmas for the proof of our theorem.
Lemma 3.1. If the polynomial $P(z)$ of degree n has no roots in the circular domain C and if $\zeta \in C$ then $(\zeta-z) P^{\prime}(z)+n P(z) \neq 0$ for $z \in C$.

Lemma 3.1 is due to Laguerre [5].
Definition 3.2. For $\gamma=\left(\gamma_{0}, \ldots, \gamma_{n}\right) \in \mathbf{C}^{n+1}$ and $P(z)=\sum_{v=0}^{n} c_{v} z^{v}$, define

$$
\Lambda_{\gamma} P(z)=\sum_{v=0}^{n} \gamma_{v} c_{v} z^{v}
$$

The operator Λ_{γ} is said to be admissible if it preserves one of the following properties:
(a) $P(z)$ has all its zeros in $\{z \in \mathbf{C}:|z| \leq 1\}$,
(b) $P(z)$ has all its zeros in $\{z \in \mathbf{C}:|z| \geq 1\}$.

The proof of Lemma 3.3 was given by A restov [1]:
Lemma 3.3. Let $\phi(x)=\psi(\log x)$ where ψ is a convex non-decreasing function on \mathbf{R}. Then for all $P(z) \in \mathscr{P}_{n}$ and each admissible operator Λ_{γ}

$$
\int_{0}^{2 \pi} \phi\left(\left|\Lambda_{\gamma} P\left(e^{i \theta}\right)\right|\right) d \theta \leq \int_{0}^{2 \pi} \phi\left(c(\gamma, n)\left|P\left(e^{i \theta}\right)\right|\right) d \theta
$$

where $c(\gamma, n)=\max \left(\left|\gamma_{0}\right|, \mid \gamma_{n}\right)$.

Q azi proved [8]:
Lemma 3.4. If $P(z)=c_{0}+\sum_{v=m}^{n} c_{v} z^{v}$ has no zeros in $|z|<K, K \geq 1$ then for $|z|=1$

$$
K^{m}\left|P^{\prime}(z)\right| \leq s_{0}\left|P^{\prime}(z)\right| \leq\left|Q^{\prime}(z)\right|,
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$ and s_{0} is as defined in Theorem 1.4.

4. PROOF OF THEOREM 2.1

By Lemma 3.1 we have $n P(z)-(z-\zeta) P^{\prime}(z) \neq 0$ for $|z| \leq 1, \zeta \leq 1$. Therefore, setting $\zeta=-z e^{-i \alpha}, \alpha \in \mathbf{R}$, the operator Λ defined by

$$
\Lambda P(z)=\left(e^{i \alpha}+1\right) z P^{\prime}(z)-n e^{i \alpha} p(z)
$$

is admissible and so by Lemma 3.3 with $\psi(x)=e^{p x}$,

$$
\int_{0}^{2 \pi}\left|\left(e^{i \alpha}+1\right) \frac{d P\left(e^{i \theta}\right)}{d \theta}-i n e^{i \alpha} P\left(e^{i \alpha}\right)\right|^{p} d \theta \leq n^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
$$

for $p>0$. Then

$$
\left.\int_{0}^{2 \pi}\left|\frac{d P\left(e^{i \theta}\right)}{d \theta}+e^{i \alpha}\left\{\frac{d P\left(e^{i \theta}\right)}{d \theta}-\operatorname{in} P\left(e^{i \theta}\right)\right\}\right|\right|^{p} d \theta \leq n^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta .
$$

This gives

$$
\begin{align*}
& \int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|\frac{d P\left(e^{i \theta}\right)}{d \theta}+e^{i \alpha}\left\{\frac{d P\left(e^{i \theta}\right)}{d \theta}-\operatorname{inp}\left(e^{i \theta}\right)\right\}\right| d \theta d \alpha \\
& \quad \leq 2 \pi n^{p} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{p} d \theta \tag{4.1}
\end{align*}
$$

N ow

$$
\begin{align*}
\int_{0}^{2 \pi} & \left.\int_{0}^{2 \pi} \left\lvert\, \frac{d P\left(e^{i \theta}\right)}{d \theta}+e^{i \alpha}\left\{\frac{d P\left(e^{i \theta}\right)}{d \theta}-\operatorname{inP(e^{i\theta })}\right)\right.\right\}\left.\right|^{p} d \theta d \alpha \\
& =\int_{0}^{2 \pi}\left|\frac{d P\left(e^{i \theta}\right)}{d \theta}\right|_{0}^{p} \int_{0}^{2 \pi}\left|1+e^{i \alpha}\left\{\frac{d P\left(e^{i \theta}\right) / d \theta-\operatorname{inP}\left(e^{i \theta}\right)}{d P\left(e^{i \theta}\right) / d \theta}\right\}\right|^{p} d \alpha d \theta \\
& =\int_{0}^{2 \pi}\left|\frac{d P\left(e^{i \theta}\right)}{d \theta}\right|_{0}^{p}\left|e^{2 \pi}+\left|\frac{d P\left(e^{i \theta}\right) / d \theta-i n P\left(e^{i \theta}\right)}{d P\left(e^{i \theta}\right) / d \theta}\right|\right|^{p} d \alpha d \theta \\
& =\int_{0}^{2 \pi}\left|\frac{d P\left(e^{i \theta}\right)}{d \theta}\right|_{0}^{p}\left|\int^{2 \pi}\right| e^{i \alpha}+\left.\left|\frac{Q^{\prime}\left(e^{i \theta}\right)}{P^{\prime}\left(e^{i \theta}\right)}\right|\right|^{p} d \alpha d \theta \\
& \geq \int_{0}^{2 \pi}\left|\frac{d P\left(e^{i \theta}\right)}{d \theta}\right|_{0}^{p} \int_{0}^{2 \pi}\left|e^{i \alpha}+s_{0}\right|^{p} d \alpha d \theta \quad \text { by Lemma 3.4 } \tag{4.2}
\end{align*}
$$

by the fact that $\left|e^{i \alpha}+r\right|$ is an increasing function of r for $r \geq 1$. Thus combining (4.1) and (4.2) we see that

$$
\left(\int_{0}^{2 \pi}\left|\frac{d P\left(e^{i \alpha}\right)}{d \theta}\right|^{p} d \theta\right)\left(\int_{0}^{2 \pi}\left|e^{i \alpha}+s_{0}\right|^{p} d \alpha\right) \leq 2 \pi n^{p} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
$$

from which the theorem follows for $0<p<\infty$. The result holds for $p=0$ and $p=\infty$ by letting $p \rightarrow 0^{+}$and $p \rightarrow \infty$, respectively.

REFERENCES

1. V. A restov, On integral inequalities for trigonometric polynomials and their derivatives, Math. USSR-Izv. 18 (1982), 1-17.
2. S. Bernstein, "Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle," Collection Borel, Paris, 1926.
3. T. Chan and M. Malik, On Erdös-Lax theorem, Proc. Indian Acad. Sci. 92 (1983), 191-193.
4. N. DeBruijn, Inequalities concerning polynomials in the complex domain, Nederl. Akad. Wetensch. Proc. 50, (1947), 1265-1272.
5. E. Laguerre, "O euvres," Vol. 1; Nouvelles Ann. Math. 17, No. 2 (1878).
6. P. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944), 509-513.
7. M. M alik, On the derivative of a polynomial, J. London Math. Soc. 1, No. 2 (1969), 57-60.
8. M. Q azi, On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), 337-343.
9. Q. R ahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory 53 (1988), 26-32.
10. H. R oyden, "Real A nalysis," 3rd ed., M acmillan Co., New Y ork, 1988.
11. A. Zygmund, "Trigonometric Series," 2nd rev. ed., V ols. I, II, Cambridge Univ. Press, Cambridge, UK, 1959.
