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1. The main result

The Meat-axe is an algorithm often used to test whether a given group or algebra of matrices
over a finite field acts irreducibly on the underlying vector space, see [P,HR,NP2]. It uses random
selection to find a ‘good’ matrix, and if successful is able to determine whether the action is reducible
or irreducible. One definition of a ‘good’ matrix in this context is a cyclic matrix. (A matrix is cyclic
if its characteristic and minimal polynomials are equal.) The density of cyclic matrices in absolutely
irreducible groups and algebras is constrained by the following result of Neumann and the fourth
author [NP1, Theorem 4.1]. The probability Pd,q := Prob(X ∈ M(d,Fq) is non-cyclic) satisfies

q−3

1 + q−1
< Pd,q <

q−3

(1 − q−1)(1 − q−2)
for all d � 2 and q � 2. (1)

Thus 2q−3

3 � Pd,q � 8q−3

3 , so Pd,q = Ω(q−3) for d � 2. If d = 1, then P1,q = 0 because each 1×1 matrix
is cyclic. Bounds on the proportion of non-cyclic matrices in irreducible-but-not-absolutely-irreducible
matrix algebras are also available in [NP1].

This note shows that cyclic matrices are less dense in maximal reducible matrix algebras than
full matrix algebras, with density 1 − c(q)q−2 rather than 1 − c′(q)q−3 where c(q), c′(q) are bounded
functions. We do not know how to estimate the density δ of cyclic matrices in arbitrary non-maximal
reducible algebras. Since 0 � δ � 1, our lower bound q−2(1 + c1q−1) < δ is unhelpful if c1 < −q for
some choice of q. Similarly, our upper bound δ < q−2(1 + c2q−1) is unhelpful if c2 > q(q2 − 1). We go
to some effort to find helpful bounds for all values of q. While motivated by a complexity analysis of
the Meat-axe algorithm, we feel that this problem has broader interest.

A modification of Norton’s Irreducibility Test, called the Cyclic Irreducibility Test, was presented in
[NP2]. It was shown to be a Monte Carlo algorithm that proved irreducibility of a finite irreducible
matrix algebra A provided a cyclic pair was found, that is a pair (v, X) where X is a cyclic matrix
in A, and v is a cyclic vector for X . It was hoped that cyclic pairs in reducible matrix algebras, if
such exist, could be used to construct a proper A-invariant subspace. However, it was not known
which reducible algebras A might contain a sufficiently high proportion of cyclic matrices to make
this approach worth exploring. In this paper we prove that finite maximal reducible matrix algebras
do indeed have a plentiful supply of cyclic elements, with the proportion slightly less than that for
the full matrix algebra. A variant of the Cyclic Irreducibility Test is given in [B, p. 141].

Notation A. The following notation will be used throughout the paper.

F = Fq a finite field with q elements;
V = F n the F -space of 1 × n row vectors;
U a fixed r-dimensional subspace of V where 0 < r < n;
M(V ) = M(n, F ) = F n×n the F -algebra of all n × n matrices over F ;
GL(V ) the group of units of M(V ): isomorphic to the general linear group GL(n,q);

M(V )U the stabilizer in M(V ) of U : isomorphic to the algebra of matrices X =
(

A 0
C B

)
with A ∈

F r×r , B ∈ F (n−r)×(n−r) , and C ∈ F (n−r)×r ;
GL(V )U the group of units of M(V )U comprising all X with det(X)=det(A)det(B) �= 0.

Theorem 1. Suppose that 0 < r < n and U is an r-dimensional subspace of V := Fn
q . Then there exist constants

c1, c2 , independent of n, r,q, such that the probability that a uniformly distributed random matrix X ∈ M(V )U

is non-cyclic satisfies

q−2(1 + c1q−1) � Prob
(

X ∈ M(V )U is non-cyclic
)
� q−2(1 + c2q−1).

The constants c1 = − 4
3 and c2 = 35

3 suffice.
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Table 1
Proportions of cyclic matrices in M(V )U as dim(V ) → ∞.

dim U Proportion of cyclic matrices in M(V )U as dim(V ) → ∞
1 1 − q−2 − 2q−3 − q−4 + 2q−6 + 3q−7 + lower terms

2 1 − q−2 − 4q−3 − q−4 + 4q−5 + 5q−6 + 4q−7 + lower terms

3 1 − q−2 − 4q−3 − 3q−4 + 4q−5 + 11q−6 + 8q−7 + lower terms

4 1 − q−2 − 4q−3 − 3q−4 + 2q−5 + 11q−6 + 14q−7 + lower terms

5 1 − q−2 − 4q−3 − 3q−4 + 2q−5 + 9q−6 + 14q−7 + lower terms

6 1 − q−2 − 4q−3 − 3q−4 + 2q−5 + 9q−6 + 12q−7 + lower terms

7 1 − q−2 − 4q−3 − 3q−4 + 2q−5 + 9q−6 + 12q−7 + lower terms

Table 2
Proportions of cyclic matrices in GL(V )U as dim(V ) → ∞.

dim U Proportion of cyclic matrices in GL(V )U as dim(V ) → ∞
1 1 − q−2 − 2q−3 + q−5 + 3q−6 + q−7 + lower terms

2 1 − q−2 − 3q−3 + q−4 + 3q−5 + 4q−6 − 2q−7 + lower terms

3 1 − q−2 − 3q−3 + q−4 + 4q−5 + 4q−6 − 5q−7 + lower terms

4 1 − q−2 − 3q−3 + q−4 + 4q−5 + 4q−6 − 6q−7 + lower terms

5 1 − q−2 − 3q−3 + q−4 + 4q−5 + 4q−6 − 6q−7 + lower terms

6 1 − q−2 − 3q−3 + q−4 + 4q−5 + 4q−6 − 6q−7 + lower terms

7 1 − q−2 − 3q−3 + q−4 + 4q−5 + 4q−6 − 6q−7 + lower terms

Remark 2. (a) The lower bound in Theorem 1 is positive for all q � 2, and the upper bound is less
than 1 for all q > 2. With more care we may increase c1 and decrease c2. However, a new argument
is needed to give an upper bound less than 1 when q = 2 because the first term in (3) below is

q−2

(1−q−1)2 = 1 when q = 2.

(b) The bounds in Theorem 1 in the cases r = 1 and r = n −1 can be deduced from results in Jason
Fulman’s paper [F] since in these cases GL(V )U is an affine group. The first asymptotic estimate for
the probability in Theorem 1, for general values of r, was given as the main result in the PhD thesis
of the first author [B] where a probabilistic generating function was found for the proportion of cyclic
matrices in GL(V )U for a subspace U of fixed dimension r. The limiting proportions of cyclic matrices
in both GL(V )U and M(V )U , as dim(V ) → ∞, were proved to be power series in q−1 of the form
1 − q−2 + ∑

i�3 γiq−i . (In Tables 1 and 2 the ‘lower terms’ residual was not bounded by a function of
r and q in [B]. By contrast, bounding constants independent of r, n, q are explicit in the statement,
and proof, of Theorem 1.) Exact values for these limiting proportions can be determined from the
generating function for small values of r, and some sample results are given in Tables 1 and 2. These
results show that the γi depend mildly on the dimension r when i � 3. The expressions for r = 1,2
were deduced analytically, and those for 3 � r � 7 were obtained using Mathematica [W].

(c) Truncating the power series in Table 1 suggests (heuristically) that the probability in Theorem 1
‘ought’ to have the form q−2(1 + 4q−1). This is consistent with the constants given in Theorem 1 as
− 4

3 = c1 � 4 � c2 = 35
3 .

(d) The PhD thesis of the first author contains analogous results for the limiting proportions (as
dim(V ) → ∞) of cyclic matrices in maximal completely reducible matrix algebras [B, Theorems 5.2.8
and 5.3.5], see also the unpublished paper [BGP]. The limiting proportions of separable matrices in
maximal reducible matrix algebras are described in [B, Theorem 6.4.6].

Proof Strategy for Theorem 1. Since GL(V ) acts transitively on the set of r-dimensional subspaces
of V , the stabilizers of r-dimensional subspaces, being conjugate, all have the same cardinality. Thus
it suffices to consider the stabilizer M(V )U of the r-dimensional subspace U := 〈e1, . . . , er〉 where

ei denotes the ith row of the n ×n identity matrix In . Suppose that X =
(

A 0
)

∈ M(V )U is non-cyclic.

C B
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Exactly one of the following holds:

(i) A is non-cyclic, or
(ii) A is cyclic, and B is non-cyclic, or

(iii) A ∈ M(U ) and B ∈ M(V /U ) are cyclic, and X ∈ M(V )U is non-cyclic.

Denote by n1,n2,n3 the number of non-cyclic X ∈ M(V )U satisfying the pairwise mutually exclusive
cases (i), (ii), and (iii), respectively. The desired probability is π = π1 + π2 + π3 where πi := ni|M(V )U | ,

and |M(V )U | = qn2−nr+r2
.

The cases when r = 1 or n − 1 can be handled separately. Suppose 1 < r < n − 1. The probability
π1 that A is non-cyclic is Ω(q−3) by (1). Since the events ‘A is cyclic’ and ‘B is non-cyclic’ are
independent, the probability π2 is (1 − π1)Prob(B non-cyclic) = Ω(q−3). Explicit upper and lower
bounds may be determined by applying (1). The proof is complete once we prove that π3 = q−2(1 +
Ω(q−1)). This is achieved by constructing an upper bound for n3 in Section 2, and a lower bound
for n3 in Section 4. �

Bounds for the density of non-cyclic matrices in the group GL(V )U can be deduced from those
for the density in the algebra M(V )U . Dividing by |GL(V )U | instead of |M(V )U | is not problematic
since |GL(V )U | = |M(V )U |(1 + Ω(q−1)). An upper bound for non-cyclic matrices in M(V )U is also an
upper bound for non-cyclic matrices in GL(V )U as GL(V )U ⊆ M(V )U . A lower bound for non-cyclic
matrices in GL(V )U needs to be altered to ensure that only invertible non-cyclic matrices are counted.
This requires only minor modifications to Section 4. Since the Meat-axe is more commonly concerned
with algebras and not groups, we leave this modification to an interested reader.

2. The upper bound

Let U be an r-dimensional subspace of the vector space V = F n where 0 < r < n and F = Fq is the

field with q elements. Let M(V )U = {X ∈ M(V ) | U X ⊆ U } be the algebra of qr2−rn+n2
matrices that

normalize U . The goal of this section is to compute an upper bound for the number, n3, of matrices

X =
(

A 0
C B

)
∈ M(V )U for which U is a cyclic F [A]-module, V /U is a cyclic F [B]-module, and V is a

non-cyclic F [X]-module.

Notation B. As well as Notation A, the following notation will be used in the paper.

F [t] denotes the ring of polynomials with coefficients in F ;
X ∈ M(V ) denotes a matrix, and v ∈ V denotes a (row) vector;
F [X] is the subalgebra of M(V ) comprising all polynomials in X with coefficients in F ;
v F [X] = 〈v, v X, v X2, . . .〉 is the cyclic F [X]-submodule of V generated by v;
f ∈ Irr(d, F ) denotes a monic polynomial of degree d which is irreducible in F [t];
c X denotes the characteristic polynomial c X (t) = det(t In − X) of X ∈ M(n, F );
mX denotes the minimal polynomial of X ∈ M(n, F );
V ( f ) = {v ∈ V | v f (X) = 0} = ker f (X);

X =
(

A 0
C B

)
∈ M(V )U denotes a block matrix with A ∈ M(r, F ) and B ∈ M(n − r, F ) cyclic, C ∈

F (n−r)×r , and X non-cyclic;
ω(n,q) = ∏n

i=1(1 − q−i); note that |GL(n,q)| = qn2
ω(n,q);

C(a) the (row) companion matrix of a polynomial a(t) = tr + ∑r−1
i=0 aiti , see (5).

There exists a monic irreducible polynomial f ∈ Irr(d,q) with 1 � d � min(r,n − r) for which
V 0 := ker f (X) is a non-cyclic F [X]-module. The restriction, X0, of X to V 0 has minimal polynomial f .
Since U0 := V 0 ∩ U and (V 0 + U )/U ∼= V 0/U0 are cyclic F [X]-modules, it follows that X0 is conjugate
to the block diagonal matrix diag(C( f ), C( f )). The number of d-dimensional subspaces U0 of the
r-dimensional space U is given by the q-binomial coefficient
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[
r
d

]
:=

d−1∏
i=0

qr − qi

qd − qi
= qd(r−d)

d−1∏
i=0

1 − q−(r−i)

1 − q−(d−i)
= qd(r−d)ω(r,q)

ω(d,q)ω(r − d,q)
. (2)

It is well known that
[ r

d

] ∈ Z[q] is a polynomial in q over N, and deg(
[ r

d

]
) = d(r − d).

First, choose d in the range 1 � d � min(r,n − r), next choose a monic f ∈ Irr(d,q), then a
2d-dimensional subspace V 0 for which dim(V 0 ∩ U ) = dim((V 0 + U )/U ) = d, then choose a linear
transformation X0 on V 0 with minimal polynomial mX0 = f satisfying U0 X0 ⊆ U0, and finally choose
an extension X of X0 to V . The number of 4-tuples ( f , V 0, X0, X) overcounts the number n3 since
different f may give the same X . Moreover we shall overcount the number of 4-tuples.

In this paragraph the value of d satisfying 1 � d � min(r,n − r) is fixed. There are at most qd−q
d

choices for f if d � 2, and q choices if d = 1. How many choices are there for V 0? First, choose U0
in

[ r
d

]
ways, then choose U + V 0, or equivalently choose the d-dimensional subspace (U + V 0)/U

of the (n − r)-dimensional space V /U in
[ n−r

d

]
ways. Finally, choose a d-dimensional complement

V 0/U0 to the (r − d)-dimensional subspace U/U0 in (U + V 0)/U in qd(r−d) ways. Multiplying shows
that there are exactly

[ r
d

][ n−r
d

]
qd(r−d) choices for V 0. Since U0 X0 ⊆ U0 and X0 has minimal polyno-

mial mX0 = f , it is conjugate in GL(V 0)U0 to the 2 × 2 block diagonal matrix diag(C( f ), C( f )). The

centralizer in GL(V 0)U0 of X0 has order (qd −1)2qd = q3d(1−q−d)2, and the conjugacy class X
GL(V 0)U0
0

has cardinality

∣∣X
GL(V 0)U0
0

∣∣ = |GL(V 0)U0 |
|CGL(V 0)U0

(X0)| = q3d2
ω(d,q)2

q3d(1 − q−d)2
= q3(d2−d)ω(d,q)2

(1 − q−d)2
.

Specifying X0, can be viewed (after a change of basis) as specifying d of the top r rows, and d of the

bottom n − r rows of X =
(

A 0
C B

)
. The remaining rows can be completed in at most |M(V )U |q−(r+n)d

ways. This shows

n3 �
min(r,n−r)∑

d=1

∣∣Irr(d,q)
∣∣ ·

[
r
d

][
n − r

d

]
qd(r−d)

1
· q3(d2−d)ω(d,q)2

(1 − q−d)2
· |M(V )U |q−(r+n)d

1
.

Eq. (2) yields
[ r

d

]
� qd(r−d)

ω(d,q)
and

[ n−r
d

]
� qd(n−r−d)

ω(d,q)
. This, in turn, shows

n3 �
min(r,n−r)∑

d=1

∣∣Irr(d,q)
∣∣·qd(r−d)+d(n−r−d)+d(r−d)

ω(d,q)2
· q3(d2−d)ω(d,q)2

(1 − q−d)2
· |M(V )U |q−(r+n)d

1
.

Collecting powers of q gives q−3d . Cancelling ω(d,q)2, dividing by |M(V )U |, and using the inequality

| Irr(d,q)| � qd−q
d for d � 2 gives

n3

|M(V )U | �
q−2

(1 − q−1)2
+

min(r,n−r)∑
d=2

qd − q

d
· q−3d

(1 − q−d)2

<
q−2

(1 − q−1)2
+

∞∑ q−2d

d(1 − q−d)
. (3)
d=2
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The first term is q−2

(1−q−1)2 � q−2(1 + 6q−1), and the infinite sum is less than 8q−4

9 because 1
d(1−q−d)

�
1

2(1−2−2)
� 2

3 for d � 2, and
∑∞

d=2 q−2d = q−4

1−q−2 � 4q−4

3 . Hence

n3

|M(V )U | < q−2(1 + 6q−1) + 4q−3

9
� q−2

(
1 + 58q−1

9

)
.

3. Counting polynomials

The goal of this section is to prove a simple combinatorial result for polynomials over Fq . This
result will be used in Section 4 to prove a lower bound for n3. Morrison [M] proves that the density
of coprime pairs of polynomials of degree at most r over Fq is 1 − q−1 + q−2r−1 − q−2r−2. A simpler
answer exists if the degrees are precisely r.

Lemma 3. Let Mr denote the set of qr monic polynomials in Fq[t] of degree r.

(a) The number of coprime ordered pairs (a,b) in Mr ×Ms is qr+s(1 − q−1) when rs > 0, and qr+s when
rs = 0.

(b) Fix f ∈ Irr(d,q) and suppose 1 � d � min(r, s). Then the number of coprime pairs (a,b) in Mr × Ms

satisfying gcd( f ,ab) = 1 is at least qr+s(1 − q−1 − 2q−d + 2q−2d).

Proof. (a) Let c(r, s) denote the number of coprime ordered pairs (a,b) ∈ Mr × Ms . The cardinality
of Mr ×Ms , viz. |Mr | |Ms| = qr+s , can be determined in a different way.

An ordered pair (a,b) ∈Mr ×Ms has gcd(a,b) = d if and only if gcd( a
d , b

d ) = 1. If deg(d) = k, then

there are qk choices for d, and c(r − k, s − k) pairs ( a
d , b

d ). Thus

|Mr ×Ms| =
min(r,s)∑

k=0

|Mk|c(r − k, s − k), or qr+s =
min(r,s)∑

k=0

qkc(r − k, s − k).

Rearranging gives a recurrence relation c(r, s) = qr+s −∑min(r,s)
k=1 qkc(r −k, s −k) with initial conditions

c(r,0) = qr , c(0, s) = qs . Induction may be used to prove c(r, s) = qr+s(1 − q−1) holds when rs > 0.
(The sum in the recurrence telescopes to qr+s−1.) It is noteworthy that the probability c(r, s)/qr+s =
1 − q−1 is independent of both r and s.

(b) Assume f ∈ Irr(d,q) and 1 � d � min(r, s). We shall underestimate the number of coprime
ordered pairs (a,b) ∈Mr ×Ms for which gcd(ab, f ) = 1. By part (a) there are qr+s(1 − q−1) coprime
pairs (a,b) ∈ Mr × Ms . The number of a ∈ Mr divisible by f is qr−d , and the number of (a,b) ∈
Mr ×Ms with f | a and f | b is qr+s−2d . Hence qr+s−d − qr+s−2d ordered pairs (a,b) have f | a and
f � b. The same count holds for ordered pairs (a,b) with f � a and f | b. However, some of these
ordered pairs may not be coprime, and therefore qr+s(1 − q−1) − 2(qr+s−d − qr+s−2d) underestimates
the number of coprime (a,b) with gcd( f ,ab) = 1. Rearranging proves the result. �

A heuristic argument suggests that the matrices X =
(

A 0
C B

)
∈ M(V )U for which c A and cB are not

coprime, has density roughly q−1. An extra factor of q−1 arises when we insist that X is non-cyclic.
This is basically because there are q non-cyclic matrices in M(V )U when dim(V ) = 2 and dim(U ) = 1,
as C must be 0. A rigorous argument is given below.

4. The lower bound

Fix X =
(

A 0
C B

)
∈ M(V )U . Then V becomes an F [t]-module with v ∗ f (t) = v f (X) where the jux-

taposition v f (X) denotes vector-times-matrix multiplication. We also say that V is an F [X]-module,
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where F [X] is the subalgebra of M(V )U comprising all polynomials in X over F . In this section we
give a lower bound for n3 by underestimating the number of matrices X ∈ M(V )U which have a
unique non-cyclic primary submodule. For these matrices, U is a cyclic F [A]-module, V /U is a cyclic

F [B]-module, and V is a non-cyclic F [X]-module. That is, we are counting certain X =
(

A 0
C B

)
∈ M(V )U

for which c A = mA , cB = mB , and c X = c AcB �= mX .
Since U and V /U are cyclic, there exist vectors u ∈ U and v + U ∈ V /U , generating the respective

F [t]-modules. Consider the basis

u, u X, . . . , u Xr−1, v, v X, . . . , v Xn−r−1 (4)

for V . Then X is conjugate in GL(V )U to a matrix of the form
(

A′ 0
C ′ B ′

)
∈ M(V )U where

A′ =

⎛
⎜⎜⎝

0 1 0
. . .

0 0 1
−a0 −a1 · · · −ar−1

⎞
⎟⎟⎠ , B ′ =

⎛
⎜⎜⎝

0 1 0
. . .

0 0 1
−b0 −b1 · · · −bn−r−1

⎞
⎟⎟⎠ ,

C ′ =

⎛
⎜⎜⎝

0 0 · · · 0
...

...
...

0 0 · · · 0
c0 c1 · · · cr−1

⎞
⎟⎟⎠ . (5)

Set a := tr + ∑r−1
i=0 aiti = mA , b := tn−r + ∑n−r−1

i=0 biti = mB , and c := ∑r−1
i=0 citi . Then ua(X) = 0 and

vb(X) = uc(X) where deg(c) < deg(a). The matrices A′ and B ′ are called companion matrices of a
and b and are abbreviated C(a) and C(b), respectively.

We shall count non-cyclic matrices X for which a = f g , b = f h, f ∈ Irr(d,q), and gcd( f , gh) =
gcd(g,h) = 1. Note that V = V ( f ) ⊕ V (gh) where X is non-cyclic on V ( f ) := ker f (X), and cyclic
on V (gh) = V (g) ⊕ V (h). Such matrices X are conjugate in GL(V )U to the block diagonal matrix
X f ,g,h := diag(C(g), C( f ), C( f ), C(h)) for a uniquely determined triple ( f , g,h). This fact is needed to
establish a lower bound for n3. (Different choices for f give different X f ,g,h due to our assumption
that V ( f ) is the unique non-cyclic primary F [X]-submodule of V .) As X is conjugate in GL(V ) to
diag(C( f ) ⊕ C( f ), C(gh)), it follows that |CGL(V )U (X)| � q3d(1 − q−d)2(qn−2d − 1) because

CGL(V )U (X) � CGL(V )(X) ∼= CGL(V ( f ))
(
C( f ) ⊕ C( f )

) × CGL(V (gh))

(
C(gh)

)
.

First, choose d in the range 1 � d � min(r,n − r), next choose a monic f ∈ Irr(d,q), then choose
an ordered pair (g,h) satisfying gcd( f , gh) = gcd(g,h) = 1. By Lemma 3(b), there are at least

q(r−d)+(n−r−d)
(
1 − q−1 − 2q−d + 2q−2d) = qn−2d(1 − q−1 − 2q−d + 2q−2d)

ordered pairs (g,h). Summing over the relevant triples ( f , g,h) gives

n3 �
min(r,n−r)∑

d=1

∑
f ∈Irr(d,q)

∑
(g,h)

|GL(V )U |
|CGL(V )U (X f ,g,h)| .

But |GL(V )U | = |M(V )U |ω(r,q)ω(n − r,q) and |CGL(V )U (X)| � q3d(1 − q−d)2(qn−2d − 1) so

n3

|M(V )U | �
min(r,n−r)∑ ∣∣Irr(d,q)

∣∣ ω(r,q)ω(n − r,q)

q3d(1 − q−d)2(qn−2d − 1)
· qn−2d(1 − q−1 − 2q−d + 2q−2d).
d=1
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Euler’s pentagonal number theorem shows that ω(∞,q) > 1 − q−1 − q−2 + q−5. Therefore

n3

|M(V )U | �
min(r,n−r)∑

d=1

∣∣Irr(d,q)
∣∣q−3d(1 − q−1 − q−2 + q−5)2

(1 − q−d)2(1 − q−(n−2d))
· (1 − q−1 − 2q−d + 2q−2d). (6)

The number n3 depends on r. To emphasize this dependence we write n3(r). The automorphism
of M(V ) obtained by conjugating by ei ↔ en−i and then transposing, swaps the maximal reducible
algebras M(V )U (r) and M(V )U (n−r) . Hence n3(r) = n3(n − r). By swapping r and n − r, if necessary,
we shall assume that min(r,n − r) = r. It is convenient to give a sharper lower bound than (6) in the
case that r = 1. The calculation above has a = t − λ = f , g = 1, and b = f h where h(λ) �= 0. There
are precisely qn−2(1 − q−1) choices for h. (This is a sharper estimate than given above.) Hence when
r = 1, we have d = 1. Since | Irr(1,q)| = q and 1 − q−1 − q−2 + q−5 = (1 − q−1)(1 − q−2 − q−3 − q−4),
a sharper bound than (6) for n � 3 is

n3(1)

|M(V )U | �
q · q−3(1 − q−1 − q−2 + q−5)2qn−2(1 − q−1)

(1 − q−1)2(qn−2 − 1)

� q−2(1 − q−2 − q−3 − q−4)2(
1 − q−1). (7)

This bound also holds when n = 2 and r = 1, as a direct calculation shows that n3(1)
|M(V )U | = q−2 in this

case.
Henceforth assume that r � 2, and hence that n � 4. The summand in (6) with d = 1 is greater

than

q−2(1 − q−2 − q−3 − q−4)2(
1 − 3q−1 + 2q−2) � q−2(1 − 3q−1 + 4q−3). (8)

It follows from (6) and (8) that

n3(r)

|M(V )U | � q−2(1 − 3q−1 + 4q−3)� q−2(1 − 2q−1) (9)

holds for r � 2. However, the bound (9) when r � 2 is always smaller than the bound (7) when r = 1.
Thus (9) gives a uniform lower bound for all r satisfying 0 < r < n.

Proof of Theorem 1. Recall the notation ni and πi = ni|M(V )U | used in the ‘Proof Strategy’ in Sec-

tion 1. We shall prove q−2(1 + c1q−1) � π � q−2(1 + c2q−1), where π = π1 + π2 + π3 equals
Prob(X ∈ M(V )U is non-cyclic), and c1 = − 4

3 and c2 = 35
3 . As mentioned previously, we shall assume

that min(r,n − r) = r. If n = 2, then only the q scalar matrices of the q3 elements of M(V )U are

non-cyclic. Thus we have π = π3 = q−2 and the stated bounds q−2(1 − 4q−1

3 ) � q−2 � q−2(1 + 35q−1

3 )

clearly hold. Suppose now that n � 3. Consider the case when r = 1. Then the probability π1 that A

is non-cyclic is 0, and 2q−3

3 � π2 � 8q−3

3 by (1) because n − r � 2. We have shown in Section 2, and
above, that

q−2(1 − 2q−1)� π3 � q−2
(

1 + 58q−1

9

)
for n � 1. (10)

Adding π1 = 0 and 2q−3

3 � π2 � 8q−3

3 and q−2 − 2q−3 � π3 � q−2 + 58q−3

9 gives q−2(1 − 4q−1

3 ) � π �
q−2(1 + 82q−1

9 ) when r = 1.
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Now consider the case when 2 � r � n − r. Then 1
12 � 2q−3

3 � π1 � 8q−3

3 � 1
3 holds by (1). However,

π2 equals 1 − π1 times the probability that B is non-cyclic, and hence

4q−3

9
� (1 − π1)

2q−3

3
� π2 � (1 − π1)

8q−3

3
� 88q−3

36
.

Adding 2q−3

3 � π1 � 8q−3

3 and 4q−3

9 � π2 � 88q−3

36 to the bounds (10) for π3 gives

q−2
(

1 − 8q−1

9

)
� π1 + π2 + π3 � q−2

(
1 + 104q−1

9

)
for r � 2.

The constants c1 = − 4
3 and c2 = 35

3 suffice as − 4
3 < − 8

9 and 82
9 < 104

9 < 35
3 . �
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