
OsteoArthritis and Cartilage (2006) 14, 1196e1202

ª 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.joca.2006.05.006

International
Cartilage
Repair
Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Prediction of collagen orientation in articular cartilage by a collagen
remodeling algorithm
W. Wilson Ph.D.y, N. J. B. Driesseny, C. C. van Donkelaar Ph.D.y* and K. Ito M.D. Sc.D.yz
yDepartment of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
zAO Research Institute, Davos, Switzerland

Summary

Objective: Tissue engineering is a promising method to treat damaged cartilage. So far it has not been possible to create tissue-engineered
cartilage with an appropriate structural organization. It is envisaged that cartilage tissue engineering will significantly benefit from knowledge of
how the collagen fiber orientation is directed by mechanical conditions. The goal of the present study is to evaluate whether a collagen
remodeling algorithm based on mechanical loading can be corroborated by the collagen orientation in healthy cartilage.

Methods: According to the remodeling algorithm, collagen fibrils align with a preferred fibril direction, situated between the positive principal
strain directions. The remodeling algorithm was implemented in an axisymmetric finite element model of the knee joint. Loading as a result of
typical daily activities was represented in three different phases: rest, standing and gait.

Results: In the center of the tibial plateau the collagen fibrils run perpendicular to the subchondral bone. Just below the articular surface they
bend over to merge with the articular surface. Halfway between the center and the periphery, the collagen fibrils bend over earlier, resulting in
a thicker superficial and transitional zones. Near the periphery fibrils in the deep zone run perpendicular to the articular surface and slowly
bend over to angles of �45( and þ45( with the articular surface.

Conclusion: The collagen structure as predicted with the collagen remodeling algorithm corresponds very well with the collagen structure in
healthy knee joints. This remodeling algorithm is therefore considered to be a valuable tool for developing loading protocols for tissue
engineering of articular cartilage.
ª 2006 OsteoArthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Tissue engineering is a promising method to treat local
cartilage damage resulting from such diseases as osteoar-
thritis. Successful articular cartilage replacement would be
substantially enhanced if the implant had the functional
load-bearing properties of the native tissue1e6. These prop-
erties depend primarily on the quality, content and organiza-
tion of the extracellular matrix, i.e., on the proteoglycans
responsible for the swelling characteristics, and the colla-
gen network, which reinforces the tissue. It is generally be-
lieved that the matrix is optimized to fulfill the load-bearing
capacities, and that its structure is determined by the very
same local physical loads which it must support.

Tissue engineering activities take advantage of the
knowledge that mechanical loads can stimulate cells to syn-
thesize matrix7,8. With such stimuli, it is possible to create
tissue-engineered cartilage with sufficient proteoglycan
content, but not to obtain sufficient amounts of collagen
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with an appropriate structural organization9e12. As a result,
the dynamic compressive properties and especially the
tensile properties of tissue-engineered cartilage are inferior
to native tissue. This is currently one of the most important
limiting factors in bringing tissue-engineered constructs
further toward clinical application.

To enhance the mechanical properties of in vitro tissue-
engineered cartilage, the structural organization of the colla-
gen network needs further attention. In the deep zone of
articular cartilage the collagen fibrils are orientated in the
direction perpendicular to the underlying subchondral
bone. In the transitional zone they bend over to merge
with the articular surface13e15. It is hypothesized that this
particular anisotropic organization is the consequence of
the mechanical conditions as experienced by the chondro-
cytes, which adapt their environmental extracellular matrix
accordingly. However, the rules by which the spatial organi-
zation of collagen fibers is related to mechanical and chem-
ical stimuli are poorly understood. This makes it difficult to
incorporate elements in tissue engineering strategies that
stimulate engineered cartilage to develop the desired aniso-
tropic organization. Two major drawbacks to experimentally
unravel the mechanical conditions that lead to tissue anisot-
ropy are that the synthesis of collagen is a slow process,
and that it is currently impossible to directly visualize forma-
tion of a collagen type II network. Hence, numerical
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evaluation of possible regulation algorithms which relate
collagen fiber orientation to mechanical conditions could
enhance production of tissue-engineered cartilage with
appropriate functional properties.

Driessen and colleagues16e18 recently proposed a mathe-
matical theory for mechanically induced collagen fiber
remodeling in the aortic heart valve, where collagen type I
fibers reorient along the largest principal strain direction in
the tissue (as opposed to changes in collagen composition).
Based on analysis of bi-axially loaded tissues, this theory
was later modified such that fibers align with preferred
directions that are between the principal tensile strain direc-
tions, depending on the magnitude of the principal tensile
strains19. It was shown that the typical helical collagen
architecture in blood vessels can only be explained with
the latter hypothesis19. These findings are currently applied
to enhance the mechanical properties of tissue-engineered
heart valves20.

Articular cartilage has a different function and composi-
tion, and therefore different mechanical properties than car-
diovascular tissues. For example the main collagen type in
articular cartilage is type II; in cardiovascular tissues type I.
Apart from differences in external loading, cartilage is also
loaded by internal swelling pressures. It is therefore ques-
tionable whether the collagen remodeling theory of Dries-
sen et al.19,21 also applies to cartilage. However, there are
indications that collagen fibers are aligned with tensile
strains in cartilage, at least at its surface. Benninghoff13

showed a causal relationship between the patterns of split
lines and tensile stresses which arise at the surface of a
homogeneous, elastic body when uniformly loaded. Similar
findings were later reported for the glenoid cavity of the
shoulder22.

The goal of the present study is to evaluate whether the
remodeling algorithm of Driessen et al.19,21 is consistent
with the collagen orientations observed in native articular
cartilage.

Methods

COLLAGEN REMODELING ALGORITHM

In the study of Driessen et al.19,21 it is proposed that
collagen fibrils align with a preferred fibril direction. These
preferred fibril directions e!p are situated between the pos-
itive principal strain directions [Fig. 1(a)], and given by
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Fig. 1. (a) The preferred fibril directions e!p are situated in between
the positive principal strain directions e!1 and e!2. (b) The fibril di-
rection with respect to the undeformed configuration e!f;0;old is
rotated toward the preferred fiber direction e!p over an angle dq

to result in the new fibril direction e!f;0.
where e!i is the i th principal strain direction, and the gi is
a function of the i th principal strain (3i) as

gi ¼ 3i for 3i > 0
gi ¼ 0 for 3i � 0

: ð2Þ

Hence, only the positive principal strains (3i> 0) are used
for the fibril remodeling. Note that for one positive principal
strain, Eq. (1) results in only one preferred fibril direction,
while for two and three positive principal strains, Eq. (1) re-
sults in two and four preferred fibril directions, respectively.
The collagen fibrils reorient toward the preferred fibril direc-
tions with an angular velocity, dq/dt,
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where a is the angle between the fibril direction in the unde-
formed situation e!f;0 and the preferred fibril direction e!p

[Fig. 1(b)], and k is a positive constant that determines the
rate of reorientation. The fibrils are rotated around the rota-
tion axis
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After updating the fibril direction the new strains in the tis-
sue are computed and the new preferred fibril directions are
determined. This process is repeated until homeostasis is
achieved. Homeostasis is assumed when the difference be-
tween each fibril and its preferred fibril direction is less then
1( (a< 1(). For further details about the implementation the
reader is referred to Driessen et al.17.

In Driessen et al.19,21 e!i was determined from the left
CauchyeGreen deformation tensor B. Hence, the fibril
reorientation was first determined in the deformed state.
As the fibrils were assumed to reorient with respect to
the undeformed state, the fibril orientations had to be
transformed back to the undeformed state. To directly
asses the new fibril orientation in the undeformed state 3i

and e!i were determined from the right CauchyeGreen
deformation tensor C. In this case the principal strain
directions e!i, and thereby the preferred fibril directions
e!p, were defined in the undeformed state. In case of
local nearly-equi-biaxial loading conditions, the two
principal strain directions cannot be determined unambigu-
ously. Hence, in these cases the fibrils were not
remodeled.

MATERIAL MODEL

The deformation of articular cartilage as a result of load-
ing is highly dependent on its time dependent behavior and
internal swelling pressures. The remodeling algorithm was
therefore implemented in our composition-based fibril-rein-
forced swelling model23, which includes both these fea-
tures. In the model articular cartilage was assumed as
biphasic, consisting of a porous solid matrix saturated
with water. The porous solid matrix consisted of a swelling
non-fibrillar part which contains mainly proteoglycans and
a fibrillar part representing the collagen network. The total
tissue stress was given by23,24

stot ¼�mfIþ ns;0
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where mf is the water chemical potential, I the unit tensor,
Dp the osmotic pressure gradient, ns,0 the initial solid vol-
ume (in the unloaded and non-swollen state), snf the stress
in the non-fibrillar matrix, si

f the fibril stress, e!i

f the fibril
direction, rc

i the volume fraction of the collagen fibrils with
respect to the total solid volume, ncoll the total collagen frac-
tion (sum of all rc

i ) and i detonates the number of the fibril
compartment23,24.

Due to deformation of the tissue the fibril directions
change. The new fibril directions as functions of deforma-
tion were computed as

e
!
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F � e
!

f;0��F � e
!

f;0

�� ð6Þ

where F is the deformation gradient tensor and e!f;0 the
initial fibril orientation. The fibrils were assumed to be
non-linear and viscoelastic. As discussed in Wilson
et al.25, the fibril structure was implemented as two primary
and seven secondary fibril directions. As the primary fibrils
represent the predominant fibril directions, and the second-
ary fibrils a random fibril network that stays present during
life, only the primary fibrils were allowed to remodel. To
determine the preferred fibril direction, a was determined
for each fibril with respect to its individual preferred direc-
tion. The fibril that is closest to a preferred fibril direction
is reoriented toward that preferred direction; the other fibril
is reoriented toward the other preferred fibril direction.

For the non-fibrillar matrix, a compressible Neo-Hookean
model was used of which the compressibility was depen-
dent on the solid fraction24. As part of the water that is pres-
ent in cartilaginous tissues is trapped within the collagen
fibrils, the osmotic swelling pressures were based on the
amount of fixed charges in the extra-fibrillar fluid23,24,26.
All material parameters were assumed to be constant
over the height of the tissue. Hence, all depth-dependent
behavior in the model was the direct consequence of the
composition (fluid fraction, collagen fraction, fixed charge
density) and the structure (collagen orientation) of the
tissue. The composition and mechanical properties used
were the same as in Wilson et al.23,24.

MESH AND BOUNDARY CONDITION

The remodeling law and the composition-based fibril-
reinforced swelling model were implemented in an axisym-
metric finite element model of the knee joint in ABAQUS
v6.5 (Hibbitt, Karlsson & Sorensen, Inc., Pawtucket, RI,
USA). The mesh (Fig. 2) was based on the mesh previously
used in Wilson et al.27. The cartilage was loaded through
a rigid impermeable flat platen. Initially there was a small

Fig. 2. Axisymmetric finite element model of a tibial plateau. The ra-
dius (r) is 16.5 mm and height (h) is 2.4 mm. The model was loaded
with a force F via a rigid impermeable flat platen which is forced to
remain horizontal. In each integration point the initial fibrils’ direc-
tions were orientated at þ45( and �45( with the horizontal axis.
gap between the indenter and the cartilage of 60 mm. The
contact between the indenter and the cartilage was as-
sumed to be frictionless. Free fluid flow was only allowed
at the parts of the articular surface that were not in contact
with the platen. The bottom plane was confined in all direc-
tions and the symmetry axis was confined in radial
direction. In each integration point the initial fibrils’ direc-
tions were orientated at þ45( and �45( with the horizontal
axis. As the model was axisymmetric, remodeling was
limited to the xey-plane.

Due to different activities during a single day, articular
cartilage experiences different loads. Each of these activi-
ties results in distinct deformation of articular cartilage.
Each different loading condition is bound to contribute to
the final collagen orientation. Based on Morlock et al.28,
these loading conditions can be divided into three groups:
rest, standing and walking (Table I).

During rest and stance, the joint was assumed to be
loaded with a constant load and during gait with a repetitive
cyclic load. Rest was assumed to take place during periods
of 1� 104 s and stance during 900 s. Based on these
assumptions the loading protocol consisted of six steps:

(1) free swelling;
(2) load is ramped up to 37.5 N in 1 s (rest);
(3) load of 37.5 N is held constant for 1� 104 s (rest);
(4) load is ramped up to 162.5 N in 1 s (stance);
(5) load of 162.5 N is held constant for 900 s (stance);

and
(6) load is ramped up to 568.75 N in 1 s (gait).

As the contribution of these different activities to the final
collagen structure is not known, two approaches were
analyzed. In these approaches only strain-states in steps
3, 5 and 6 were taken into consideration for collagen
remodeling.

(1) The averaged cartilage deformation during a day was
used for remodeling of the collagen fibrils, where the
preferred fibril direction was computed from the
following time averaged right CauchyeGreen defor-
mation tensor:

Cmean ¼
Xtot steps

j¼1

"
nj

ttot;j

Xtot inc

i¼1

Ci Dti

#
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(2) The time average of the maximal deformations during
each activity was used for remodeling of the collagen
fibrils, where the preferred fibril direction was
computed from the following averaged right
CauchyeGreen deformation tensor:

Cmax ¼
Xtot steps

j¼1

�
njCmax;j

�
: ð8Þ

Table I
Daily activities together with their average joint load (per knee com-
partment), and the time fraction this load is applied during a day

(the joint loads are for a bodyweight of 65 kg)

Activity Load (N) Fraction of a day (nstep)

Rest 37.5 0.73
Stance 162.5 0.19
Gait 568.75 0.08
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where Dti is the time step of the ith increment, Ci the right
CauchyeGreen deformation tensor of the ith increment,
Cmax,step the right CauchyeGreen deformation tensor that
corresponds with the maximal deformation during step j, ttot,j

the total time during step j, and nj the weight factor for each
activity (Table I).

Results

The resulting collagen orientations of the two remodeling
approaches [Eqs. (7) and (8)] were almost identical (Fig. 3).
There are distinct changes in collagen orientation when
moving from the center of the joint toward the periphery.
In the center of the tibial plateau the collagen fibrils start
perpendicular to the subchondral bone and do not change
orientation until just below the articular surface, where
they bend over to merge with the articular surface. In this
region the fibrils bend over toward both the center and the
periphery of the joint. Halfway between the center and pe-
riphery the collagen fibrils start bending over earlier, result-
ing in thicker superficial and transitional zones. From about
two-thirds of the radius of the tibial plateau the fibrils are no
longer exactly perpendicular to the cement line in the deep
zones. In the transition zone the fibrils preferentially bend
over toward the periphery of the joint. This occurs more
toward the center of the joint in the maximal averaged
approach [Eq. (8)]. In the deep zone near the joint periph-
ery, the fibrils run perpendicular to the articular surface
rather than perpendicular to the subchondral bone, and
slowly bend over to angles of �45( and þ45( with the ar-
ticular surface.

Discussion

This study demonstrates that the collagen remodeling
algorithm of Driessen et al.19,21, which was developed for
collagen type I remodeling in cardiovascular tissues, can
explain the collagen orientation in articular cartilage, where
the loading conditions are essentially different. At the center
of the joint the predicted collagen structure corresponds
well with the classic arcade model of Benninghoff13. In
this part of the joint the superficial and transitional zones
are relatively thin. Together they represent approximately
12.5% of the total cartilage thickness. Toward the periphery
this increases to approximately 50% of the total cartilage
thickness. These findings correspond to the scanning elec-
tron microscope (SEM) measurements of Clark14,15,29

(Fig. 4). In the studies of Clark14,15 it was also found that
the fibrils near the periphery start perpendicular to the artic-
ular surface and then directly bend over to merge with the
articular surface (Fig. 4). Our model also predicts that the
collagen fibrils near the periphery start perpendicular to
Fig. 3. Collagen structure in tibial cartilage as predicted with the collagen remodeling algorithm. Time averaged deformation (top) [Eq. (7)], time
average of maximal deformation during each activity (bottom) [Eq. (8)]. The vectors represent the fibril directions in each integration point. The

radius (r) is 16.5 mm and height (h) is 2.4 mm.
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Fig. 4. Compilation of SEM data by Clark8. (a) SEM picture of the center of a human medial tibial plateau (bar¼ 1000 mm), (b) SEM picture of
the periphery of a human medial tibial plateau (bar¼ 1000 mm), (c) schematic illustration of collagen fibril orientation across the tibial plateau

(adapted from Clark8).
the articular surface, but bend over to angles of �45( and
þ45( with the articular surface. This discrepancy between
model and experiment near the surface may be due to
the uncertain, and therefore simplified, loading conditions
that were used in this region of the model. Many authors
have hypothesized that the fibrils bend over in multiple
directions13,14,30,31. This was in agreement with the model
results for center and periphery of the joint; but in between,
the model predicted, the fibrils only bend over toward the
periphery.

Several results of the model were unexpected. To test the
robustness of the algorithm, several simulations were
started with different initial collagen orientations, which all
resulted in the same final structure. The simulations did
not always converge to a situation in which all fibril orienta-
tions were within 1( of their corresponding preferred fibril
directions in all regions. This is caused by local nearly-
equi-biaxial loading conditions due to which two principal
strains are equal. Although the fibrils were not remodeled
in these points, this might have led to local instabilities
around these points. All these instabilities occurred in the
transitional zone of the cartilage, which is known to be
less organized than the other zones32e35. In the deep
zone, and in the region normally covered by the meniscus,
the two primary fibril directions coincide. This indicates that
there is uniaxial loading in these regions.

There are several limitations to this model, all related to
applied loading conditions and geometry. First, the use of
a 3D-model of the whole knee joint, including the micro-
structure of the articular cartilage, would have been better,
but would require too much computational time. Hence, in
this study an axisymmetric model was used. In the current
study the subchondral bone was assumed rigid. As the sub-
chondral bone is approximately 1000 times as stiff as the
overlying cartilage, we believe the subchondral bone can
be assumed rigid compared to the articular cartilage. Fur-
thermore, as the required compositional and structural prop-
erties of the meniscus and the femoral condyle are currently
not available, the tibial plateau was loaded through a rigid
platen. These simplified geometric properties may explain
some mismatches between the predicted structure and
the findings of Clark14,15. Second, the loads during rest
and stance were applied as static ones and the loads during
gait were represented by a single ramp function. This is
obviously a simplification of the actual loading conditions
experienced during a day. Two averaging techniques
were used to determine the average deformation of the
cartilage [Eqs. (7) and (8)]. These resulted in identical final
collagen configurations. This suggests that the remodeling
theory is not very sensitive to the duration and the fre-
quency of the applied loading conditions. However, it has
been shown experimentally that for the production of pro-
teoglycans and collagen dynamic loading conditions are
required36e38. It is unknown whether dynamic loading is
also required for collagen fibril orientation. For the develop-
ment of a loading protocol for tissue engineering of articular
cartilage a dynamic component may be necessary. Third,
as the differences in composition of cartilage over the joint
are not available in the literature, it was taken to be uniform.
As there is a strong interaction between the local tissue
composition and its mechanical behavior, in the future the
addition of collagen and proteoglycan content remodeling
algorithms might be beneficial. Together the simplified ge-
ometry, loading conditions and composition may have led
to some inaccuracies in the predicted collagen structure.
However, it’s difficult to predict what the exact influence of
these simplifications has been.

Despite simplifications in geometry, composition and
loading conditions, the predicted collagen structure corre-
sponds well with experimental findings. We therefore
believe that, as in cardiovascular tissues, the collagen
remodeling algorithm is also valid for articular cartilage.
Hence, the presented remodeling theory can be a valuable
tool for the development of loading protocols for tissue en-
gineering of articular cartilage. As the numerical model is
only based on composition and structure of the tissue23,24,
compositional and structural changes can directly be imple-
mented into the model. Hence, the model can be used for
samples with different compositions, and by updating the
composition of the model the changes required for the load-
ing protocol can be determined. This algorithm may also be
applied to study diseases as well as treatments. During os-
teoarthritis the collagen structure in articular cartilage
changes39,40. These changes are most prominent in the
transitional and superficial zones39. The cause of these
changes is currently unknown. Hence, we believe that the
collagen remodeling theory as presented in this study can
be a valuable tool to further improve tissue engineering of
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articular cartilage, as well as understanding disease
mechanisms.

To the best of our knowledge this is the first collagen re-
modeling theory that has been used for articular cartilage.
The current remodeling model is a phenomenological one.
It is currently unknown what the mechanisms for collagen
remodeling in articular cartilage may be. In fibrous tissues,
fibril-forming collagens are synthesized as soluble pro-col-
lagens, which self-assemble after enzymatic cleavage.
The molecules are transported in intracellular vesicles41e43

to be discharged in deep cytoplasmic recesses that extend
to the short axis of the fibroblasts, as confirmed by stacks of
SEM images44. Since fibroblasts align with the direction of
principal strain, as confirmed in vitro in a uni-axially loaded
three-dimensional collagen lattice45,46, it is assumed that
collagen is formed in the directions of maximal strains.
These fibrils can be over 2 mm long, and extend into the
matrix in the direction in which the cells are aligned. A sim-
ilar mechanism could modulate articular cartilage.

In conclusion, the collagen structure as predicted with the
collagen remodeling algorithm corresponds very well with
experimental findings. We therefore believe that, next to
cardiovascular tissues, the collagen remodeling algorithm
is also valid for articular cartilage. The remodeling algorithm
is therefore envisaged to be a valuable tool for the develop-
ment of improved loading protocols for tissue engineering of
articular cartilage, and the understanding of structural adap-
tation in the collagen network during osteoarthritis.
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