Difference of the Digital Sums of an Integer Base b and Its Prime Factors

WAYNE L. McDaniel

Department of Mathematics and Computer Science, University of Missouri, St. Louis, Missouri 63121

Communicated by H. Zassenhaus
Received February 25, 1987

Let p_1, \ldots, p_k be primes and $m = \prod_{i=1}^{k} p_i$ be an integer base b; $S(b, m)$ denotes the sum of digits function base b, and $S_d(b, m) = \sum_{i=1}^{k} S(b, p_i)$. If m is composite and c is defined by $S_d(b, m) - S(b, m) = c$, we shall say that m is an element of the set $I_b(c)$. We show that $I_b(c)$ is an infinite set for all integers c and all integers $b \geq 8$, and prove that, for $c \geq 0$, the values of $S(b, m)/S_d(b, m)$ are dense in the interval $[0, 1]$. This provides the answer, for an arbitrary base $b \geq 8$ and integer c, to a question posed by A. Wilansky about the set $I_{10}(0)$, the elements of which Wilansky termed "Smith" numbers.

1. INTRODUCTION

Let b be an integer ≥ 2. If m is an integer (base 10), the function

$$S(b, m) = m - \sum_{i=1}^{\infty} (b - 1)[m/b^i], \quad (1)$$

where $[]$ denotes the greatest integer function, is called the sum of digits function for the integer m base b [6]. If for some positive integer n, integers a_i, for $0 \leq i \leq n$, are known such that $0 \leq a_i < b$, and $m = \sum_{i=0}^{n} a_i b^i$, then $S(b, m)$ is, of course, simply $\sum_{i=0}^{n} a_i$.

The sum of digits function has been investigated by a number of authors and has been encountered in areas as diverse as topology, combinatorics, and probability theory. We refer the reader to Stolarsky's paper [10] for a list of over 60 references to relevant papers.

Possibly because the irregularities of the function $S(b, m)$ preclude the possibility of obtaining a "nice" analytic approximation, research efforts have been directed toward understanding the properties of the function

$$A(m) = \sum_{k < m} S(b, k).$$
Bush [1] obtained an asymptotic formula for $A(m)/m$ and Mirsky [7] showed that, in fact,

$$A(m) = [(b - 1)/2]m \cdot \log_b m + O(m).$$

An explicit formula for the error term is due, for $b = 2$, to Trollope [12], and, for $b > 2$, to Delange [2]. These formulas do not require a knowledge of the digits of m. An explicit formula for $A(m)$, for $b = 10$, requiring a knowledge of the digits of m, was published much earlier by d'Ocagne ([8], or see [3, p. 457]). During the last two decades, researchers have turned their attention to various generalizations of the sum of digits function (see [4, 5, 9, 10, 11]).

Recently, further interest in $S(b, m)$ has been generated by a question posed by A. Wilansky. Let $m = \prod_{i=1}^{k} p_i$, p_i prime, and $S_p(b, m) = \sum_{i=1}^{k} S(b, p_i)$. If m is composite and c is defined by $S_p(b, m) - S(b, m) = c$, we shall say that m is an element of the set $I_\lambda(c)$. Wilansky named the elements of $I_{10}(0)$ "Smith" numbers and asked whether $I_{10}(0)$ is infinite [13]. The question has focused attention on the relative size of $S(b, m)$ and $S_p(b, m)$.

Heuristically, one might expect that if m ranges over all positive integers, $S(b, m)$ and $S_p(b, m)$ will be, on the average, approximately equal: If m has k prime factors and q is the prime such that q^k is "closest" to m, the average value of $S(b, x)$, where x ranges over all nonnegative integers < m, i.e., of $A(m)/m$, will be approximately equal to the average value of $S(b, x)$, where x ranges over all nonnegative integers < q^k, i.e., of $A(q^k)/q^k$. Since $S_p(b, q^k) = k \cdot S_p(b, q) = k \cdot S(b, q)$, the relation

$$A(q^k)/q^k = [(b - 1)/2]k \cdot \log_b q + O(1) = k \cdot A(q)/q$$

lends some credence to the conjecture.

It is our purpose, in this paper, to examine the sets $I_\lambda(c)$. We shall show that for all integers c and all bases $b \geq 8$, $I_\lambda(c)$ is indeed infinite. We show, further, that if $c \geq 0$, the set of values of $S(b, m)/S_p(b, m)$, m an integer base b ($b \geq 8$), is dense in the interval $[0, 1]$. This latter result implies the existence, for $b - 1$ composite, of infinitely many integers m base b such that for $n_1/n_2 \leq 1$, $S(b, m) = (n_1/n_2) \cdot S_p(b, m)$.

2. PRELIMINARY OBSERVATIONS AND NOTATION

All our references to integers are to integers base b unless otherwise stated. We will, however, occasionally write $m_{(b)}$ to clarify that m is an integer base b. We shall write $S(m)$ and $S_p(m)$ for $S(b, m)$ and $S_p(b, m)$, respectively, and we denote the number of digits, $n + 1$, of $m = \sum_{i=0}^{n} a_i b^i$ by $N(m)$.
We observe that \(S_p(m) = S(m) \) if \(m \) is prime, and that
\[
S_p(m_1 m_2) = S_p(m_1) + S_p(m_2), \quad \text{if } m_1, m_2 > 1.
\]

It might be remarked that, in addition to Smith numbers, certain other integers may be distinguished according to their appearance in the sets \(I_b(c) \). Simple examples include the sets \(\{2M \mid M \text{ is a Mersenne prime} \} \), and \(\{F^2_m \mid F_m - 2^m + 1 \text{, a Fermat prime, } m \geq 1 \} \), each of whose elements are contained in \(I_2(1) \).

3. An Upper Bound on \(S_p(m) \)

Our approach in showing that \(I_b(c) \) is infinite involves obtaining, for a large class of integers \(m \) base \(b \) (actually, all integers when \(b-1 \) is composite), an upper bound on \(S_p(m) \) in terms of \(N(m) \), and then applying this bound to an infinite collection of integers \(m' \) for which \(S(m') \) can be obtained.

Let \(m = p_1 p_2 \cdots p_k \) be an integer base \(b \), \(b \geq 8 \), with \(p_1, \ldots, p_k \) primes not necessarily distinct; let \(B_i = N(p_i) - 1 \), for \(i = 1, 2, \ldots, k \), and \(B = B_1 + \cdots + B_k \). We observe that since an integer is congruent to its digit sum, modulo \(b-1 \), \((b-1) \mid S(p_i) \) only if \(p_i = b-1 \). Hence, if \(p_i = b-1 \),
\[
S(p_i) = b-1 = (b-1) N(p_i) = (b-1) B_i + (b-1),
\]
and, if \(p_i \neq b-1 \),
\[
S(p_i) \leq (b-1) N(p_i) - 1 = (b-1) B_i + (b-2).
\]
Accordingly, we partition the prime factors of \(m \) into \(b \) disjoint classes by means of the following: Let \(r_i \) be defined by
\[
S(p_i) = (b-1) B_i - r_i, \quad r_i \geq -(b-1). \tag{1}
\]
One class consists of those primes \(p_i \) for which \(r_i \) is positive and the other classes of those primes \(p_i \) for which \(r_i = j, -(b-1) \leq j \leq -1 \). (Note that \(r_i \neq 0 \) for any \(i \).)

Let \(n_j \) be the number of integers \(i \) \((1 \leq i \leq k) \) such that \(r_i = j \), \(- (b-1) \leq j \leq -1\), and let \(A = \{ r_i \mid r_i > 0, 1 \leq i \leq k \} \). In light of the discussion above, it should be noted that \(n_{b-1} \) is the number of times \(b-1 \) occurs as a factor of \(m \) if \(b-1 \) is prime, and is 0 if \(b-1 \) is composite.

We will need the following lemma which is readily proved using elementary calculus:

Lemma 1. If \(b \geq 8 \) and \(x \) is a real variable, the function \(f(x) = (b-1) \log_b x - x \) is positive for \(1 + \lfloor (b-1)/b \rfloor \leq x \leq b-2 \).
Theorem 1. If (i) $b - 1$ is composite, or (ii) $b - 1$ is prime and $n_{b-1} = 1$, then

$$S_p(m) \leq (b - 1) N(m) - \sum_A r_i.$$

Proof. We observe, first, that

$$S_p(m) = \sum_{i=1}^k S(p_i) = \sum_{i=1}^k [(b - 1) B_i - r_i]$$

$$= (b - 1) B + \sum_{j=1}^{b-1} jn_j - \sum_A r_i. \quad (2)$$

Now, for $-(b - 1) \leq r_i \leq -1$, $S(p_i) = (b - 1) B_i - r_i$ implies that $p_i \geq (-r_i + 1) b^{B_i - 1}$ if $B_i > 0$, and $p_i = -r_i b^{B_i}$ if $B_i = 0$. For our purposes, it is sufficient to use the estimates

$$p_i \geq -r_i b^{B_i}, \quad \text{for } -(b - 1) \leq r_i < -1$$

and

$$p_i \geq [-r_i + (b - 1)/b] b^{B_i}, \quad \text{for } r_i = -1.$$

For the remaining prime factors (i.e., those p_i for which $r_i > 0$), $p_i \geq b^{B_i}$. It follows that

$$m = p_1 p_2 \cdots p_k \geq [1 + (b - 1)/b]^{n_1} \cdot 2^{n_2} \cdot 3^{n_3} \cdots (b - 1)^{n_{b-1}} \cdot b^B.$$

Rewriting m as $a \cdot b^{N(m)-1}$, for some rational number $1 \leq a < b$, and taking logarithms, base b, we have

$$\log_b a + N(m) - 1 \geq n_1 \log_b [1 + (b - 1)/b] + \sum_{j=2}^{b-1} n_j \log_b j + B.$$

Multiplying by $b - 1$, applying Lemma 1, and rearranging the terms gives us

$$(b - 1) B + \sum_{j=1}^{b-2} jn_j < (b - 1) [N(m) - 1 + \log_b a - n_{b-1} \log_b (b - 1)]. \quad (3)$$

Substituting (3) in (2),

$$S_p(m) < (b - 1) [N(m) + (n_{b-1} - 1) + \log_b a - n_{b-1} \log_b (b - 1)] - \sum_A r_i.$$

We now assume either that $b - 1$ is composite, in which case $n_{b-1} = 0$, or
DIFFERENCE OF DIGITAL SUMS

that \(b - 1 \) is prime and \(n_{b-1} = 1 \). The theorem is clearly proved if \(n_{b-1} = 0 \), and
is immediate if \(n_{b-1} = 1 \) since \(a < b \) implies that \(\log_b a - \log_b(b - 1) \leq 0 \).

An example to illustrate that Theorem 1 does not hold for all bases less
than 8 is afforded by \(m = 2^9 = 512_{(10)} = 4022_{(5)} \). In base 5, \(S_p(m) = 33_{(5)} \),
but \((b - 1) N(m) = 4 \cdot 4 = 31_{(5)} \).

4. SOME ADDITIONAL PROPERTIES OF \(S_p(m) \) AND \(S(m) \)

We now obtain two results needed in proving the Main Theorem. We
assume in this section that \(b \geq 2 \).

Lemma 2. If \(m \) base \(b \) is a positive integer \(> 1 \), there exists an integer \(t \)
such that \(S_p(t) = m \).

Proof. If \(b = 2 \), let \(t = 10^n \). If \(b > 2 \), there exist integers \(q \) and \(r \) such
that \(m = 2^q + r, r = 0 \) or 1. If \(r = 0 \), let \(t = 2^q \). If \(r = 1 \), let \(t = 2^q \cdot 10^n \) if
\(b = 3 \), and let \(t = 2^{q-1} \cdot 3 \) if \(b \geq 4 \).

Corollary 1. There exists a finite set \(T \) of integers base \(b \) such that the
set \(U = \{ S_p(t) \mid t \in T \} \) is \(\{ b, 3, ..., S_p(b) + 1 \} \).

Lemma 3. Let \(n \) and \(t \) be positive integers such that \(t \leq b^n - 1 \). If \(v \) is a
nonnegative integer and \(m = t(b^n - 1) b^v \), then \(S(m) = (b - 1)n \).

Proof. Let \(t = \sum_{j=1}^n a_j b^j \), \(0 \leq a_j \leq b - 1 \), \(a_k > 0 \), \(a_r > 0 \), \(0 \leq k \leq r \). We
adopt the convention that \(\sum_{j=k+1}^{n} f(j) = 0 \) if \(k = r \). If, in the product

\[
(t(b^n - 1)) = a_k b^{n+k} + \sum_{j=k+1}^{r} a_j b^{n+j} - a_k b^k - \sum_{j=k+1}^{r} a_j b^j,
\]

we replace \(a_k b^{n+k} \) by

\[
(a_k - 1) b^{n+k} + \sum_{j=k+1}^{n+k-1} (b - 1) b^j + \sum_{j=k+1}^{r} (b - 1) b^j + b \cdot b^k,
\]

we obtain

\[
t(b^n - 1) b^v = \left[\sum_{j=k+1}^{r} a_j b^{n+j} + (a_k - 1) b^{n+k} + \sum_{j=k+1}^{n+k-1} (b - 1) b^j \right.
\]

\[
+ \sum_{j=k+1}^{r} (b - 1 - a_j) b^j + (b - a_k) b^k \] \cdot b^v.
\]

The coefficient of each power of \(b \) is a nonnegative integer less than \(b \), and
the digital sum \(S(m) \) is now readily seen to be \((b - 1)n \).
5. THE SET $I_b(c)$ AND THE VALUES OF $S(m)/S_p(m)$

Main Theorem. Let c be any integer base b, $b \geq 8$. The set $I_b(c)$ is infinite.

Proof. Let u be a positive integer such that $c \geq 2 - u$. By Bertrand’s Postulate, there exists a prime q such that $b < q < 2b - 2$. Let $n \equiv 0 \pmod{\varphi(q^u)}$ (φ is the Euler phi-function), $n \equiv 0 \pmod{(b - 1)}$ (this is possible, since $(b - 1 \nmid \varphi(q^u)$), and n be such that $b^n - 1$ exceeds the maximum element of T (recalling that T is finite). Let $M = b^n - 1$. The hypothesis of Theorem 1 is clearly satisfied: $(b - 1) \mid M$, but $(b - 1)^2 \nmid M$ since

$$M/(b - 1) = n \not\equiv 0 \pmod{(b - 1)}$$

(whether $b - 1$ is prime or not). Now, since $n \equiv 0 \pmod{\varphi(q^u)}$, q^u is a prime power factor of M. The inequality

$$b + 1 \leq q \leq 2b - 3 = b^1 + (b - 3)$$

implies that

$$2 \leq S(q) \leq 1 + (b - 3) = b - 2;$$

setting $q = p_i$ in (1), for $i = 1, 2, ..., u$, we have

$$r_i = (b - 1) \cdot B_i - S(p_i) \geq (b - 1) \cdot 1 - (b - 2) = 1.$$

Thus, by Theorem 1, $S_p(M) \leq (b - 1)n - u$. Let $h = (b - 1)n - S_p(M) \geq u$. Since $h + c \geq u + c \geq 2$, and since the set U of Corollary 1 is a complete residue system, modulo $S_p(b)$, there exists an integer $t \in T$ such that, for some nonnegative integer v,

$$S_p(t) = h + c - v \cdot S_p(b).$$

Let $m = tMb^v = t(b^n - 1) b^v$. Since $t < b^n - 1$, the hypothesis of Lemma 3 is satisfied and we have $S(m) = (b - 1)n$. Thus,

$$S_p(m) = S_p(t) + S_p(b^n - 1) + S_p(b^v)$$

$$= [h + c - v \cdot S_p(b)] + [(b - 1)n - h] + v \cdot S_p(b)$$

$$= (b - 1)n + c$$

$$= S(m) + c.$$

Therefore, $m \in I_b(c)$. Now, infinitely many choices for n exist and each
determines a unique \(m \), which is clearly composite since \(b^n - 1 \) is composite, so \(I_p(c) \) is infinite.

We now define \(\alpha(m) = \frac{S(m)}{S_p(m)} \), for \(m \) base \(b \) an integer \(> 1 \).

Theorem 2. The set \(D = \{ \alpha(m) \mid m \text{ base } b \text{ any integer } > 1 \} \cap [0, 1] \), \(b \geq 8 \), is dense in the interval \([0, 1] \).

Proof. Let \(0 < x < y < 1 \). Let \(q \) be a prime such that \(b < q < 2b - 2 \). There exists a rational number \(\frac{n_1}{n_2} \) between \(x \) and \(y \) such that \((b - 1) \frac{q - 1}{n_1} \leq y \). (If \(x \leq m_1/m_2 < m_3/m_4 \leq y \),

\[\frac{n_1}{n_2} = \frac{[(b - 1) m_1 m_4 + 1]}{[(b - 1) m_2 m_4]} \]

is between \(m_1/m_2 \) and \(m_3/m_4 \).) Let \(m \) be defined as in the Main Theorem with \(u = 1 \), \(n = (q - 1)n_1 \), and \(c = (b - 1)(q - 1)(n_2 - n_1) \). Then

\[\alpha(m) = \frac{S(m)}{S_p(m)} = \frac{S(m)}{[S(m) + c]} = \frac{n_1}{n_2}. \]

It follows that \(D \) is dense in \([0, 1] \).

Corollary 2. If \(b - 1 \) is composite, there exists an infinitude of integers \(m \) base \(b \) such that, for any positive rational number \(\frac{n_1}{n_2} \leq 1 \), \(S(m) = (n_1/n_2) S_p(m) \).

Proof. Let \(k \) be any positive integer and \(\frac{n_1}{n_2} \) be any rational number \(\leq 1 \). Since the restriction that \((b - 1) \frac{n}{k} \) is not necessary when \(b - 1 \) is composite, we obtain \(\alpha(m) = \frac{n_1}{n_2} \) by letting \(n = k(q - 1)n_1 \) and \(c = k(b - 1)(q - 1)(n_2 - n_1) \).

Acknowledgment

The author expresses his appreciation for the referee's helpful comments and suggestions.

References