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The structure of a finitely presented monomial algebra K [X]/K [I]
over a field K is described. Here X is a finitely generated free
monoid and I is a prime ideal of X that is finitely generated. As an
application, a new structural proof of the recent result of Bell and
Pekcagliyan [J. Bell, P. Pekcagliyan, Primitivity of finitely presented
monomial algebras, preprint, arXiv: 0712.0815v1] on the primitivity
of such algebras is presented, which yields a positive solution to
the trichotomy problem, raised by Bell and Smoktunowicz [J. Bell,
A. Smoktunowicz, The prime spectrum of algebras of quadratic
growth, J. Algebra 319 (2008) 414–431], in the finitely presented
case. Our approach is based on a new result on the form of prime
Rees factors of semigroups satisfying the ascending chain condition
on one-sided annihilators and on its refinement in the case of
finitely presented factors of the form X/I .

© 2008 Elsevier Inc. All rights reserved.

The main motivation for this paper is to study primitivity of algebras of the form R = K [X]/K [I]
for an ideal I of a finitely generated free monoid X . It is well known that the free algebra K [X]
is left and right primitive, see [10], Corollary 11.26. We know also that R is a prime ring if and
only if the Rees factor semigroup X/I is a prime semigroup, [11], Proposition 24.2. Surprisingly, one
can prove that such an algebra is either left and right primitive or it satisfies a polynomial identity,
provided that the ideal I is finitely generated, [2]. We present a new proof of this theorem. Our
approach is different than the one presented in [2], which is based on automaton algebras. We first
describe the structure of the underlying monoid X/I , see Theorem 2. It is based on a ‘matrix pattern’
associated to X/I . The key observation that makes such a description possible is that there are only
finitely many right (and left) annihilators of elements of X/I , viewed as a submonoid of K [X]/K [I].
Secondly, there are certain free submonoids of X canonically associated to X/I . It turns out that,
from this structural point of view, the only difference between the case where K [X]/K [I] is primitive
and the case where K [X]/K [I] satisfies a polynomial identity is that these free monoids are of rank
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one in the latter case. In order to prove the main theorem we start with a result on arbitrary prime
Rees factors of semigroups that satisfy certain finiteness conditions on annihilator ideals (Theorem 1),
much weaker than the finiteness of the set of all such ideals. This is an extension of certain very useful
results on prime Rees factors of cancellative semigroups satisfying some stronger finiteness conditions,
[8], Section 4.5, and seems to be of independent interest. It is worth mentioning that the recent
interest in monomial algebras, especially prime and primitive, stems from a study of various problems
concerning the Gelfand–Kirillov dimension, [3,14,15]. Notice also that an explicit characterization of
the radical of arbitrary monomial algebras was given in [4] and [1].

For the basic results on semigroups used in this paper we refer to [9]. Recall that, for given
nonempty sets Z , Y , a group G and a Y × Z matrix Q = (qyz) with entries in G ∪ {θ} (group G
with a zero element adjoined), the semigroup of matrix type M(G, Z , Y ; Q ) consists of all triples
(g, z, y) with g ∈ G, z ∈ Z , y ∈ Y , and the zero element 0, subject to the operation (g, z, y)(g′, z′, y′) =
(gqyz′ g′, z, y′) if qyz′ ∈ G and (g, z, y)(g′, z′, y′) = 0 if qyz′ = θ . We will use the same notation for
θ and 0, if unambiguous. If every row and every column of Q contains a nonzero element then
M(G, Z , Y ; Q ) is called a completely 0-simple semigroup, [9]. Such semigroups yield a fundamental
building block of semigroup theory. These are exactly semigroups (with zero) that have no nontrivial
ideals and have a primitive idempotent.

First, consider a semigroup T such that there exist sets Y , Z such that T can be presented as
a disjoint union T = ⋃

y∈Y ,z∈Z T zy ∪ {0} with all T zy nonempty and for every z, z′ ∈ Z , y, y′ ∈ Y ei-
ther T zy T z′ y′ ⊆ T zy′ or T zy T z′ y′ = 0. Assume also that T is a prime semigroup. Then we claim that
T zy T z′ y′ = 0 if and only if Txy T z′ y′ = 0 = T zy T z′u for every x ∈ Z , u ∈ Y . Indeed, suppose for exam-
ple that T zy T z′ y′ = 0 but Txy T z′ y′ �= 0. Then T zv Txy T z′ y′ ⊆ (T zy ∪ {0})T z′ y′ = 0 for every v ∈ Y . So
Txy T z′ y′ annihilates on the right the right ideal

⋃
v∈Y T zv ∪ {0} of T . Since T is prime, we must have

Txy T z′ y′ = 0. The second part of the claim is proved in a similar way.
Therefore, in this case we get a homomorphism f : T → M({1}, Z , Y ; Q ) onto the completely 0-

simple semigroup over the trivial group with the sandwich matrix Q defined by qyz = 1 if Txy T zu ⊆
Txu and qyz = 0 if Txy T zu = 0 (for all x ∈ Z , u ∈ Y ). In this case, we say that T is a semigroup with a
completely 0-simple pattern and the sets T zy, z ∈ Z , y ∈ Y , are called the components of T .

For a semigroup S with an ideal P we often identify the nonzero elements of the Rees factor S/P
with the elements of S not contained in P . If a ∈ S/P is nonzero, then we define rS/P (a) = {x ∈ S |
ax ∈ P }. This is a right ideal of S containing P and can be called the right annihilator of a in S/P .
Similarly, lS/P (a) stands for the left annihilator of a in S/P .

Our first result reads as follows.

Theorem 1. Let P be a prime ideal of a semigroup S. Assume that S satisfies the ascending chain condition on
right ideals of the form rS/P (x), x ∈ S \ P . Then S has an ideal J properly containing P such that J/P has a
completely 0-simple pattern.

Proof. Let

J = {a ∈ S | xay ∈ P , x, y ∈ S, implies xa ∈ P or ay ∈ P }.

Clearly P ⊆ J . Let a ∈ J and x, y, z ∈ S and assume that xzay ∈ P . Then xza ∈ P or ay ∈ P , because
a ∈ J . Hence xza ∈ P or zay ∈ P . So za ∈ J . This shows that J is a left ideal in S . A symmetric
argument allows us to show that J is an ideal of S .

If S \ P is a subsemigroup of S , then J = S and the assertion trivially follows. So assume that S/P
has nonzero zero divisors. Now J �= P because elements a ∈ S \ P with maximal r(a) = rS/P (a) are
in J . It is clear that J \ P coincides with the set of all elements a ∈ S \ P such that r(a) = r(xa) if
xa /∈ P , x ∈ S . Similarly, if we define l(b) = lS/P (b) for b ∈ S \ P , then J \ P consists of all b ∈ S \ P
such that l(b) = l(by) whenever by /∈ P , y ∈ S .

Let ρ be the relation on S defined by (a,b) ∈ ρ if either a = b or a,b ∈ J and r(a) = r(b) and
l(a) = l(b). We claim that ρ is a congruence on S . Clearly, this is an equivalence relation on S . So
suppose that a,b ∈ J are such that r(a) = r(b) and l(a) = l(b). Let x ∈ S be such that ax �= 0 in S/P .
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Then we also have bx �= 0. Hence l(ax) = l(a) = l(b) = l(bx). Moreover axy = 0 if and only if bxy = 0
for y ∈ S because r(b) = r(a). This means that (ax,bx) ∈ ρ . Similarly one shows that (xa, xb) ∈ ρ . It
follows that ρ is a congruence on S .

Suppose that for every a ∈ J/P we have a2 = 0. If x ∈ S then axax = 0 in S/P and the definition
of J implies that axa = 0. Then a(S/P )a = 0 and primeness of S/P implies that a = 0. Since a ∈ J/P
was arbitrary, we get that J = P , a contradiction. So, choose an element e ∈ J/P such that e2 �= 0.
Consider the set Y ⊆ S such that r(ey), y ∈ Y , are all distinct right annihilators of nonzero elements
of the form ex for x ∈ S/P . Similarly, choose a set Z ⊆ S such that l(ze), z ∈ Z , are all distinct left
annihilators of nonzero elements of the form xe for x ∈ S/P .

Let b ∈ J/P ,b �= 0. Then bxex′b �= 0 for some x, x′ ∈ S because S/P is prime. So l(b) = l(bxe)
and r(b) = r(ex′b). Hence l(b) = l(ze) and r(b) = r(ey) for some z ∈ Z and y ∈ Y . Then zeey �= 0 by
the definition of J and we get r(b) = r(ey) = r(zeey) and l(b) = l(ze) = l(zeey). So (b, zeey) ∈ ρ .
Clearly, all elements zeey, where y ∈ Y and z ∈ Z , are in different ρ-classes. Therefore we have a
decomposition J/P = ⋃

z∈Z ,y∈Y J zy ∪ {0}, where

J zy = {
b ∈ J \ P

∣∣ r(b) = r(ey), l(b) = l(ze)
}

are nonempty sets.
Suppose a ∈ J zy,b ∈ J z′ y′ are such that ab �= 0 in J/P . Also let c ∈ J xy . Then r(a) = r(c) = r(ey).

So cb �= 0. Since b, c ∈ J , we get r(cb) = r(b) = r(ey′) and l(cb) = l(c) = l(xe). Therefore cb ∈ J xy′ and
hence J xyb ⊆ J xy′ . Then, a symmetric argument allows us to prove that J xy J z′ y′′ ⊆ J xy′′ for every
y′′ ∈ Y .

It is now clear that ( J/P )/ρ ∼= M({1}, Z , Y ; Q ), a semigroup of matrix type over a trivial group
with the sandwich matrix Q = (qyz) defined by: qyz = 1 if J xy J zy′ ⊆ J xy′ and qyz = 0 if J xy J zy′ = 0
(these conditions do not depend on the choice of x ∈ X and y′ ∈ Y ). It is completely 0-simple because
J/P is a prime semigroup. This proves the assertion. �

The above theorem has the flavor of classical results on prime rings R satisfying certain finiteness
conditions (such as, for example, prime Goldie rings). Namely, a matrix structure is also associated
to any such ring R . Our main results, Theorem 2 and Theorem 4, heavily depend on a significant
improvement of Theorem 1 that is possible in the case of finitely presented monomial algebras.

Theorem 1 is an extension of the fact that certain prime homomorphic images of cancellative
semigroups are monomial semigroups over some groups, see [8], Section 4.5, or [13]. However, in
that case, a stronger finiteness condition has to be assumed on S , and as a result one shows that
the ideal J/P has a pattern determined by a Brandt semigroup and the components J zy of J/P such
that qyz �= 0 are cancellative subsemigroups of J/P . (A Brandt semigroup is a semigroup of the form
M({1}, Z , Z; Q ), where Z is a set and Q is the identity Z × Z -matrix.) Actually, J/P is an order in a
completely 0-simple inverse semigroup in the sense of [7].

One of our main motivating classes for the above result consists of a broad class of Rees factors
of free monoids. In this case, one can prove a stronger assertion on the factor J/P arising from
Theorem 1. By X we denote a finitely generated free monoid. If w ∈ X then |w| stands for the length
of w .

Theorem 2. Let I be a finitely generated ideal of X . Then X satisfies the ascending chain condition on right and
left ideals of the form rX/I (x), lX/I (x) for x ∈ X \ I . Moreover, assume that X/I is prime and J ,ρ are the ideal
of S = X and the congruence on J/P constructed for P = I as in Theorem 1. Then

(1) J contains the ideal J ′ of X consisting of all elements of length at least N = max{|wi |− 1 | i = 1, . . . ,m},
where w1, . . . , wm is a set of generators of the ideal I ,

(2) if J0 = ( J ′)2 ∪ I then J0/I embeds into a completely 0-simple semigroup with the same pattern as J/I ,
(3) the completely 0-simple semigroup ( J/I)/ρ is finite.

Proof. We may assume that w1, . . . , wm form a minimal set of generators of the ideal I . Let s ∈ X \ I .
Then s is a left zero divisor in X/I if and only if there exist w, t ∈ X such that s = wt, w �= 1 and
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wi = uw for some i and some u ∈ X, u �= 1. So lX/I (s) contains Xu, and actually lX/I (s) must be then
a union of principal left ideals of the form Xu, where u is a proper initial segment of some wi . So,
there are only finitely many left annihilator ideals in X/I . A symmetric argument applies to the right
annihilators. Therefore the first assertion follows.

Now, assume that I is a prime ideal of X . Then we get the ideal J = {w ∈ X | xwy ∈ I ,
x, y ∈ X , implies xw ∈ I or wy ∈ I} of X constructed in Theorem 1. Clearly, if the length of w is
at least |wi | − 1 for i = 1, . . . ,m, then w ∈ J . Hence, assertion (1) follows.

We will look more closely at the annihilators of elements in X/I . Let A be the set of all elements
a ∈ X such that wi ∈ aX and wi �= a for some i ∈ {1, . . . ,m}. Similarly, let B be the set of all elements
b ∈ X such that wi ∈ Xb and wi �= b for some i ∈ {1, . . . ,m}. Notice that A ∩ I = ∅ = B ∩ I by the
minimality of the chosen generating set of I . For every a ∈ A define the set

Ra = {
w ∈ J \ I

∣∣ w ∈ Xa, w /∈ Xa′ for every a′ ∈ A with |a′| > |a|}.

In particular, R1 = {w ∈ J \ I | wx /∈ I for every x ∈ X \ I}, the set of all elements in J/I that are not
left zero divisors in X/I . Define also

Lb = {
w ∈ J \ I

∣∣ w ∈ b X, w /∈ b′ X for every b′ ∈ B with |b′| > |b|}.

It is easy to see that elements of a given nonempty set Ra have the same right annihilators and
elements from different Ra,a ∈ A, have different right annihilators in X/I . Similarly, the nonempty
sets Lb,b ∈ B , correspond to all different left annihilators of nonzero elements of J/I . Let A0 = {a ∈ A |
Ra �= ∅} and B0 = {b ∈ B | Lb �= ∅}. Define Tba = Ra ∩ Lb . Since X/I is prime, it follows that Lb X Ra �⊆ I
for a ∈ A0,b ∈ B0. Clearly Lb X Ra ⊆ Tba and so Tba �= ∅. Hence, we get a disjoint union decomposition

J/I =
⋃

a∈A0,b∈B0

Tba ∪ {0}.

From the proof of Theorem 1 we know that this determines a completely 0-simple pattern on the
factor J/I . Consider the semigroup of matrix type M = M(X, B0, A0; Q ) with the sandwich matrix
Q = (qab) defined by qab = ab if ab /∈ I and qab = 0 otherwise. For every w ∈ Tba ∩ J0 we put φ(w) =
(u,b,a), where w = bua for some u ∈ X . If w ′ = b′u′a′ ∈ Tb′a′ ∩ J0 is such that w w ′ /∈ I then

φ(w w ′) = φ(buab′u′a′) = φ
(
b(uab′u′)a′) = (uab′u′,b,a′) = φ(w)φ(w ′).

On the other hand, if w w ′ ∈ I then we define φ(w w ′) = 0. In this case, some wi is a subword of
buab′u′a′ (but not of bua or b′u′a′). Then, by the definition of Ra , this occurrence of wi is contained
in the subword ab′u′a′ of buab′u′a′ . Similarly, by the definition of Lb′ , every occurrence of wi is con-
tained in the subword buab′ of buab′u′a′ . Therefore wi is a subword of ab′ . Hence ab′ ∈ I . Therefore
we also get φ(w)φ(w ′) = 0 = φ(w w ′) in this case. So φ : J0/I → M is a homomorphism. It is clear
that φ defines an embedding of J0/I into M .

Now, M ⊆ M ′ = M(G, B0, A0; Q ) where G is the free group generated by X . Since X/I is prime,
J0/I also is prime. Therefore the sandwich matrix Q has no zero rows or columns. Hence M ′ is a
completely 0-simple semigroup. Since J0/I intersects every H-class of M ′ , we get that J0/I has the
same completely 0-simple pattern as J/I . Finally, (3) follows because A0, B0 are finite sets. �

Notice that the semigroup J0/I constructed above is a uniform subsemigroup of M ′ =
M(G, B0, A0; Q ) in the sense of [12], Section 3.1. This means that J0/I intersects nontrivially every
H-class {(g,b,a) | g ∈ G} of M ′ .

Example 3. We determine the completely 0-simple pattern on an ideal of the prime semigroup X/P ,
where X = 〈x, y, z〉 is a free monoid of rank 3 and P = XxyzX ∪ X yzxX ∪ X zxy X .
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Proof. Suppose that w, v ∈ X \ P are such that w X v ⊆ P . We may assume that w, v �= 1. Let a be the
terminal letter in w and let b be the initial letter in v . Then wabv does not have any of xyz, yzx, zxy
as a subword, whence wabv /∈ P . This contradiction shows that P is indeed a prime ideal of X .

Let J = {w ∈ X | swt ∈ X, s, t ∈ X, implies sw ∈ P or wt ∈ P }, the ideal of X defined as in the
proof of Theorem 1. Then X \ J = {x, y, z,1}. Moreover e = x2 is a non-nilpotent in J/P . The right
ideals of the form r(ea),a ∈ X , are:

xy X = r(ez), yzX = r(ex), zxX = r(ey),

xX = r(eyyz), y X = r(exz), zX = r(exy).

The left ideals of the form l(be),b ∈ X , are:

Xxy = l(ze), X yz = l(xe), X zx = l(ye),

Xx = l(yzze), X y = l(zxe), X z = l(xye).

For u, v ∈ V = {x, y, z, xy, yz, zx} we define the sets

Su,v = {
w ∈ J \ P

∣∣ l(w) = l(u), r(w) = r(v)
}
.

Then it is easy to see that J/P = ⋃
u,v∈V Su,v ∪ {0}, a disjoint union of nonempty sets. Let

M({1},6,6; Q ) be the completely 0-simple semigroup over the trivial group, where the sandwich
matrix Q is defined by

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 0 1

1 1 0 1 1 0

0 1 1 0 1 1

1 1 0 1 1 1

0 1 1 1 1 1

1 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to see that there is a natural homomorphism J/P → M , where the matrix pattern on
J/P is determined by the following ordering of the set V indexing the rows and the columns:
x, y, z, xy, yz, zx. �

We note that a faithful irreducible left K [X]/K [P ]-module for X and P as in the above example
(actually, in a slightly more general class of examples) has been explicitly constructed in [6].

The following trichotomy conjecture was stated in [3]: if A is a prime finitely generated monomial
algebra, then A is either primitive or it satisfies a polynomial identity or it has a nonzero Jacobson
radical. In a recent paper, Bell and Pekcagliyan [2] show that the answer is positive for finitely pre-
sented monomial algebras and moreover that the third possibility can be dropped. As an application
of Theorem 2 we are able to give another, more structural, proof of this result.

Using the notation of Theorem 2, let T = J/I and let C be a cancellative component of T , so in
other words it is one of the sets Tba,b ∈ B0,a ∈ A0, such that Tba Tba ⊆ Tba . Say, C = Tdc . Then define

F = {
w ∈ Tda

∣∣ a ∈ A0, w2 /∈ I
}
.

In other words, F is the union of all Tda,a ∈ A0, that are subsemigroups of J . Let

F ′ = {w ∈ X | w F ⊆ F , F w ⊆ F }.
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Then F ′ is a submonoid of X and F is an ideal of F ′ . Moreover C ⊆ F . Let

F ′′ = {w ∈ X | w F ′ ∩ F ′ �= ∅, F ′w ∩ F ′ �= ∅}.

We claim that F ′′ = F ′ . Clearly, F ′ ⊆ F ′′ . So, assume that w ∈ X is such that w F ′ ∩ F ′ �= ∅ and F ′w ∩
F ′ �= ∅. Then ∅ �= w F ′ F ∩ F ′ F ⊆ w F ∩ F . Clearly, w F ∩ F is a right ideal in F . Since Tda Tda′ ⊆ Tda′
for every Tda, Tda′ contained in F , it follows that w F ∩ F intersects nontrivially every component Tda
of F .

Let y ∈ F . Say, y ∈ Tda . Then choose x ∈ Tda such that wx ∈ F . As shown in the proof of Theorem 1,
the relation ρ is a congruence on X . Therefore the element wy is in the same ρ-class as wx. This
means that wy ∈ F and hence w F ⊆ F . Similarly, one shows that F w ⊆ F . Therefore w ∈ F ′ and the
claim F ′′ = F ′ follows.

In view of a well known characterization of free submonoids of X , see [9], Proposition 5.2.2, this
implies that F ′ is a free submonoid of X .

Theorem 4. Let R = K [X]/K [I] for a prime ideal I of a finitely generated free monoid X. Assume that I is
a finitely generated ideal of X . Then R is left primitive and it is right primitive or R satisfies a polynomial
identity. Moreover, X has an ideal J0 such that X/ J0 is finite, I ⊆ J0 and J0/I embeds into a completely 0-
simple semigroup M(G, Z , Y ; Q ) over a free group G, for some finite sets Z and Y . If R satisfies a polynomial
identity then G is abelian and R is semiprimitive.

Proof. Let Tdc, F , F ′ be chosen as in the comment preceding the theorem. We know that F ′ is a free
monoid. Suppose first that it is not commutative. Then K [F ′] is a left (and right) primitive ring, see
[10], Corollary 11.26. Therefore also its ideal K [F ] is a left primitive ring.

Since the opposite algebra (K [X]/K [I])op also is monomial and finitely presented, it is enough to
prove that K [X]/K [I] is left primitive. Since I is a prime ideal of X , it is easy to see that K [X]/K [I]
is a prime ring, see [11], Proposition 24.2. We use the notation of the proof of Theorem 2. Then it is
enough to prove that the ideal K [ J0]/K [I] is a left primitive ring.

We know that J0/I = ⋃
b∈B0,a∈A0

(Tba ∩ J0) ∪ {0}, is a uniform subsemigroup in a completely
0-simple semigroup M(G, B0, A0; Q ). Write S = J0/I and Sba = Tba ∩ J0 for a ∈ A0,b ∈ B0. So
K [ J0]/K [I] = K0[S], the contracted semigroup algebra of J0/I .

Let Sd = ⋃
a∈A0

Sda ∪ {0}. So Sd is a right ideal of S and E ⊆ Sd consists of non-nilpotents in Sd .
Then E = F ∩ J0 is an ideal of F , whence K [E] is left primitive. Thus, there exists a left ideal L of K [E]
such that K [E]/L is a faithful irreducible K [E]-module. Moreover (Sd \ E)Sd = 0. Therefore N = E ∪ S E
is a left ideal of S and V = K0[N] = K [E]+ K0[S E] is a left ideal of K0[S] such that K0[S]L∩ K [Sd] ⊆ L.
Also V 0 = L + K0[S]L is a left ideal of K0[S]. Define W = V /V 0 and let W0 = {v ′ ∈ W | N v ′ = 0}. This
is a submodule of W . We claim that W /W0 is a faithful irreducible left K0[S]-module.

Since K [E] ∩ V 0 = L, it follows that K [E]/L embeds into W . So we identify it with a submodule
of W . Suppose that v ∈ K [E] is such that its image v ′ ∈ K [E]/L satisfies N v ′ = 0. Then E v ⊆ L. As
K [E]/L is irreducible as a K [E]-module, this implies that v ∈ L. Therefore v ′ = 0, which shows that
(K [E]/L) ∩ W0 = 0 and K [E]/L embeds into W /W0.

Suppose that the annihilator D of W /W0 in K0[S] is nonzero. Then D ∩ K [E]K0[S]K [E] �= 0 be-
cause K0[S] is a prime ring. Since we also know that (K [E]K0[S])K [E] ⊆ K0[Sd]K [E] ⊆ K [E], this
contradicts the fact that K [E]/L is a faithful K [E]-module. Therefore D = 0 and W /W0 is a faithful
K0[S]-module.

Let w ′ ∈ W \ W0 be the image of some w ∈ V . Then N w ′ �= 0 in W , whence E w ′ �= 0 by the
definition of N . This means that E w �⊆ V 0 = L + K0[S]L. However E w ⊆ E V ⊆ K [E]. Since K [E]/L
is an irreducible K [E]-module, we get that K [E]/L ⊆ K [E]w in W = V /V 0. Hence K0[S]w = W . It
follows that W /W0 is an irreducible K0[S]-module. This implies that K0[S] is left primitive.

It remains to consider the case where the free monoid F ′ is commutative. From Theorem 2 we
know that K [ J0]/K [I] has finite codimension in R . Also, as above, K [ J0]/K [I] embeds into K0[M],
where M = M(G, B0, A0; Q ) for a group G and for finite sets B0 and A0. However, in this case,
G can be assumed to be an infinite cyclic group because the cancellative component Sdc satisfies
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Sdc ⊆ E ⊆ F ′ , see [12], Proposition 3.1. Hence, it is well known and easy to check that K0[M] satisfies
a polynomial identity, [11], Lemma 5.3. Therefore R also is a PI-algebra. Then the Jacobson radical of
R is nilpotent, [5], whence R must be semiprimitive. This completes the proof of the theorem. �

The assertion of the theorem is no longer valid if the ideal I is not finitely generated. For example,
a finitely generated prime monomial algebra that is not semiprimitive, and has quadratic growth, was
constructed in [14].

Finally, we note that, in view of Theorem 1, some of the methods used in this paper can be
applied to a much wider class of finitely presented prime semigroups S than those of the form X/I ,
considered in Theorem 2. However, in this case, the non-null components of the matrix pattern on the
appropriate ideal J of S need not be even cancellative. For example, S could be a prime semigroup
(with zero) such that S \ {0} is a non-cancellative semigroup.
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