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The generalization of Cohen and Glashow’s very special relativity to curved space–times is considered.
Gauging the SIM(2) symmetry does not, in general, provide the coupling to the gravitational background.
However, locally SIM(2) invariant Lagrangians can always be constructed. For space–times with SIM(2)

holonomy, they describe chiral fermions propagating freely as massive particles.
© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

Recently, Cohen and Glashow [1,2] proposed an interesting
origin of neutrino mass. Breaking Lorentz symmetry to a four-
parameter subgroup called SIM(2), the Dirac equation for a chi-
ral fermion may be augmented with a non-local term leading
to propagation as a massive particle. In this scheme, which they
called Very Special Relativity (VSR), the departure from Lorentz-
invariance implies the breaking of the discrete symmetries P ,
CP and T (but not CPT) suggesting a common origin for small
CP-violating effects and neutrino masses. As Cohen and Glashow
argued, VSR is consistent with current experimental bounds on
Lorentz symmetry breaking and, therefore, constitutes an interest-
ing modification of Standard Model physics.

In contrast to other approaches to Lorentz breaking, VSR is free
of spurions, i.e., it does not involve spontaneous symmetry break-
ing by non-zero expectation values of Lorentz tensors. This is a
consequence of the fact that SIM(2) does not possess invariant ten-
sors (except the scalar), which implies also that a local Lagrangian,
which breaks Lorentz symmetry while maintaining SIM(2), can-
not be constructed merely out of Lorentz tensors. Another feature
of SIM(2), which distinguishes it from its parent SO(3,1), is that
all its irreducible representations are one-dimensional, labelled by
spin along a preferred axis. Hence, VSR predicts (very small) mass
splittings in SO(3,1) matter multiplets [3]. SIM(2) supersymmetry
has been considered in [4,5].

An obvious question is whether and in which ways VSR can
be generalized to space–times, which are not Minkowski. Gibbons
et al. [6] searched for deformations of ISIM(2), i.e., SIM(2) plus
translations, analogous in spirit to the deformation of the Poincaré
to the de Sitter or anti-de Sitter algebras. They found that there is
such a deformation, but space–time would be described by a Fins-
lerian rather than Riemannian geometry. Alvarez and Vidal [7] con-
sidered implementations of SIM(2) in de Sitter space–time, moti-
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vated by the experimental finding of a small positive cosmological
constant. To do this, they wrote down a local Lagrangian with aux-
iliary fields, which reproduces the VSR dynamics of the neutrino
in Minkowski space–time, and replaced ordinary with covariant
derivatives. They did not verify, however, whether the Lagrangian
thus obtained is invariant under local SIM(2) transformations, as
one would expect for a gauging. In the present Letter, we intend
to follow up on this point. As will be discussed, the gauging of
SIM(2) does not lead, in general, to a consistent coupling to gravity.
However, in vacuum space–times with SIM(2) holonomy, matters
are similar to Minkowski space–time such that chiral neutrinos do
propagate as massive particles.

An outline of the rest of the Letter is as follows. In Sec-
tion 2, the VSR dynamics of neutrinos in Minkowski space–time
is reviewed, and SIM(2) invariant Lagrangians leading to the VSR
neutrino mass are given. In Section 3, the gauging of SIM(2) is
discussed. Specializing to space–times with SIM(2) holonomy, in
where the SIM(2) covariant derivate provides the complete cou-
pling to the gravitational background, the propagation of a chiral
fermion as a massive particle is derived. Finally, Section 4 contains
conclusions.

2. VSR in Minkowski space–time

Consider the Lorentz algebra SO(3,1) in the form

[Mab, Mcd] = ηad Mbc + ηbc Mad − ηac Mbd − ηbd Mac, (1)

with the metric ηab = diag(+−−−). In the vector representation,
the generators are (Mab)

c
d = 2δc[aηb]d . Throughout the Letter, Latin

indices will denote the components in the local Lorentz frame,
whereas Greek indices label the space–time coordinates. In this
section, the vierbein is fixed to ea

μ = δa
μ , but in the subsequent

section this will be lifted.
In a light cone basis of SO(3,1), defined by M±i = (M0i ±

M3i)/
√

2, M−+ = M03, the generators of SIM(2) are J = M12,
K = M−+ , Ti = M+i and satisfy the commutation relations
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[Ti, T j] = 0, [ J , Ti] = εi j T j, [K , Ti] = −Ti,

[K , J ] = 0. (2)

We shall write a general element of SIM(2) in the compact form

1

2
λab Mab = λ J + λ̃K + λi T i, (3)

where λ = λ12, λ̃ = λ−+ , λi = λ+i , remembering that λ−i = 0. The
essential property of SIM(2), as defined above, is that it leaves in-
variant the direction of the null vector nμ with components n+ = 1,
n− = ni = 0,

δnμ = λ̃nμ. (4)

The equation of motion for a chiral spinor containing the non-
local SIM(2) mass term is [2](

/∂ + m2

2

/n

n · ∂
)
νL = 0. (5)

The field νL propagates as a particle of mass m, as one can eas-
ily see by squaring the left-hand side of (5) to a Klein–Gordon
equation. The dynamics of (5) was obtained in [7] from a local
Lagrangian involving auxiliary fields, equivalent to the following,

L = i

2
ν̄L/∂νL + iχ̄Ln · ∂ψR + 1

2
m(χ̄L/nνL + ψ̄RνL) + c.c. (6)

For the sake of clarity, we have indicated the handedness of the
various spinor fields as subscripts. The fact that there is a local
Lagrangian is not in contradiction to what was said in the intro-
duction. Indeed, for obtaining SIM(2) invariance of (6) one must
pay the price that χL is not a Lorentz spinor, as one can see from
the global SIM(2) symmetries of (6),

δνL = 1

4
λabγabνL, δψR = 1

4
λabγabψR ,

δχL = 1

4
λabγabχL − λ̃χL, δnμ = λ̃nμ, (7)

where λab is defined by (3). The transformations of the conjugate
fields ν̄ , ψ̄ and χ̄ follow from (7).

There are other local Lagrangians involving auxiliary fields that
give rise to the equation of motion (5). For example,

L = i

2
ν̄L/∂νL + iχ̄Ln · ∂/nχL + mχ̄L/nνL + c.c. (8)

As we have n · ∂/n = 1
2 /n/∂/n, the auxiliary field χL appears in (8) only

in the combination /nχL . This suggests to consider νR = /nχL and
impose the constraint /nνR = 0 via a Lagrange multiplier, which is
described by the Lagrangian

L = i

2
ν̄/∂ν + 1

2
mν̄ν + λ̄R/nνR + c.c. (9)

In this form of the Lagrangian, the neutrino field starts off as a
Dirac spinor, ν = νL + νR , with the usual Dirac mass term, but
the right-handed component is constrained by the Lorentz break-
ing term. In the context of the Standard Model, one is naturally led
to ask why νR should be sterile in the weak interactions. A simi-
lar question arises also in the other local Lagrangians, (6) and (8),
where one may consider possible couplings of the auxiliary fields
χL and ψR to the weak interaction gauge fields. We shall not ad-
dress these questions in this Letter.

3. SIM(2) in curved space–times

From this point on, let us consider general vierbeins ea
μ with

zero torsion. Our aim is to generalize the actions given in the pre-
vious section such that, first, they are manifestly coordinate invari-
ant, and second, the symmetry transformations (7) are promoted
to local symmetries.
To start, let us make a little detour and review how space–time
symmetries are treated in the tetrad formalism. This helps us to
disentangle the space–time from the Lorentz-frame symmetries in
Minkowski space–time and to obtain a local SIM(2) frame symme-
try. A space–time symmetry is given by a Killing vector field ξμ

satisfying

Lξ gμν = ∇μξν + ∇νξμ = 0. (10)

To promote this symmetry to a symmetry of the vierbeins, one
combines the coordinate transformation x′μ = xμ + ξμ with a ro-
tation of the local Lorentz frame, such that

δξ ea
μ = −Lξ ea

μ + λ(ξ)a
beb

μ

= −[
ξν∇νea

μ + (∇μξν
)
ea
ν

] + λ(ξ)a
beb

μ = 0. (11)

Hence, one obtains

λ(ξ)ab = −(∇μξν)eμ
a eν

b − ξμωμab, (12)

where ωμab are the spin connections determined by the zero tor-
sion constraints Dμea

ν = ∇μea
ν + ωμ

a
beb

ν = 0.
The presence of the null vector field nμ (with frame compo-

nents n+ = 1, n− = ni = 0) breaks those space–time symmetries
which lead to non-zero matrix elements λ(ξ)−i and λ(ξ)−+ . For
example, for Minkowski space–time with a constant null vector,
considered in the previous section, the remaining symmetries are
Ti and J , which generate an E(2) subgroup of the Lorentz group,
whereas M−i and K are broken. This group can be enhanced to
SIM(2) containing Ti , J and K by postulating that the null vec-
tor is always given by nμ = eμ

+ . To achieve this, one modifies the
transformation law of the frame components na under K , giving
rise to the SIM(2) representation

Γ (n)(K )a
b = K a

b + δa
b, Γ (n)(Ti) = Ti, Γ (n)( J ) = J . (13)

It is straightforward to show that, in this representation, na is
SIM(2) invariant. At this point, the SO(3,1) of local Lorentz frame
rotations has been reduced to SIM(2), because the modified repre-
sentation Γ (n) is not contained in a representation of SO(3,1). It is
this symmetry, which we would like to gauge.

In contrast to the usual tetrad formalism, where space–time
tensors are invariant under frame rotations, nμ transforms non-
trivially under SIM(2),

δnμ = δeμ
+ = λ+aeμ

a = λ−+eμ
+ = λ̃nμ. (14)

Coupling nμ to a Lorentz spinor ν makes it necessary to intro-
duce an auxiliary field χ with an appropriate transformation law
such that (ν̄/nχ) is SIM(2)-invariant. One finds, as in (7),

δχ =
(

1

4
λabγab − λ̃

)
χ, (15)

implying the SIM(2) representation

Γ (χ)(K ) = 1

2
γ−+ − 1, Γ (χ)(Ti) = 1

2
γ+i,

Γ (χ)( J ) = 1

2
γ12, (16)

where the terms formed by the gamma matrices are inherited
from the spinor representation of SO(3,1).

A SIM(2) covariant derivative can be introduced as

D̃μ = ∇μ + ω̃μ
+iΓ (Ti) + ω̃μ

−+Γ (K ) + ω̃μ
12Γ ( J ), (17)

where Γ stands for the representation appropriate for the field the
derivative acts on. We have adorned the derivative and the gauge
fields with a tilde to distinguish them from the usual, SO(3,1)

covariant derivative and the spin connections, Dμ and ωμ
ab , re-

spectively. Indeed, one cannot, in general, identify ωμ
ab with ω̃μ

ab ,
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because they do not form a closed set under SIM(2) transforma-
tions. This can be seen, e.g., in the transformation of the spin
connection ωμ

−+ under SIM(2),

δωμ
−+ = −∂μλ̃ + λiωμ

−i . (18)

This involves ωμ
−i , for which there is no corresponding SIM(2)

transformation.
Hence, in general, the SIM(2) gauge fields do not provide the

coupling to gravity. However, for fields, which inherit their repre-
sentation from SO(3,1), we can use the SO(3,1) covariant deriva-
tive, which does provide the coupling to gravity. In the case of the
neutrino kinetic term, this is precisely what one wants to do, be-
cause the breaking of SO(3,1) should come only from terms in the
Lagrangian, which involve nμ . The unusual fields are nμ and χ ,
which transform in the representations (13) and (16), respectively,
but one easily realizes that the combinations /nχ and nμχ trans-
form under SIM(2) as SO(3,1) fields. Hence, the SO(3,1) covariant
derivative may act on these combinations. Using the fields ν , ψ

and χ , transforming under SIM(2) as in (7), one can write down
the following, locally SIM(2) invariant terms,

ν̄/Dν, ψ̄/Dψ, χ̄nμDμψ, χ̄/n/Dψ, χ̄/nDμnμχ, χ̄/n/D/nχ,

χ̄/nν, ψ̄ν, (19)

as well as their complex conjugates. Other SIM(2) invariant terms,
for example χ̄γ μνρnμ(∇νnρ)χ , are equivalent to these. As an
aside, we remark that the Lagrangian given in Eq. (12) of [7] is not
locally SIM(2) invariant, because the third term on the right-hand
side of that equation is not.

In what follows, we shall assume that ωμ
−i = 0, in which

case we can identify the SIM(2) gauge fields with the remaining
spin connections, and Dμ agrees with D̃μ when acting on Lorentz
fields,

ωμ
−i = 0: ω̃μ

ab = ωμ
ab, Dμ → D̃μ. (20)

We should interpret this assumption in the sense that we consider
those space–times, in which one can choose a Lorentz frame such
that (20) holds. This is not the generic case, since the six SO(3,1)

frame rotations do not suffice to eliminate the eight components
ωμ

−i . If, however, such a frame exists, then the condition (20) is
SIM(2) invariant.

The assumption (20) can be rephrased as SIM(2) holonomy. This
follows from the fact that the SIM(2) covariant derivative of nμ

vanishes implying that nμ is a recurrent null vector field,
(

D̃μnν
) = (∇μnν

) + ωμ
−+nν = 0. (21)

A corollary of (20) is

Rμν
−i = 0. (22)

For more information on space–times with SIM(2) holonomy, we
refer to [8] and references therein.

In the remainder, we shall consider the generalization of VSR to
space–times with SIM(2) holonomy, i.e., satisfying (20). In addition,
we assume the space–time to be a vacuum solution of Einstein’s
equations, possibly with a cosmological constant, such that Rμν =
Λgμν . The commutator of two SIM(2) covariant derivatives, which
will be used below, reflects the SIM(2) holonomy,

[D̃μ, D̃ν ] = [∇μ,∇ν ] + Rμν
−+Γ (K ) + Rμν

12Γ ( J )

+ Rμν
+iΓ (Ti). (23)

Let us consider the simplest Lagrangian, which is given by (9),
with ∂μ replaced by Dμ = D̃μ (as it acts on a Lorentz spinor),
L = i

2
ν̄/̃Dν + 1

2
mν̄ν + λ̄R/nνR + c.c. (24)

It gives rise to the equations of motion

i/̃DνL + mνR = 0, (25)

i/̃DνR + mνL + /nλR = 0, (26)

/nνR = 0. (27)

After multiplying (26) by /n and using (21) and (27), one obtains

νR = im

2nμ D̃μ

/nνL . (28)

Substituting (28) back into (26) and making use of /n/̃DνL = 0,
which follows from (25), yields

/nλR = i

nρ D̃ρ

γ μnν [D̃μ, D̃ν ]νR . (29)

As νR is a Lorentz spinor and satisfies γ+νR = /nνR = 0, (29) be-
comes

/nλR = i

2nρ D̃ρ

γ μnν
(

Rμν
12γ12 − Rμν

−+)
νR

= i

2nμ D̃μ

R+ jγ
jνR = 0. (30)

The last step follows from the vacuum property of the space–time
background. Finally, from (25), (26) and (30) easily follows(
/D/D + m2)νL = 0. (31)

4. Conclusions

In this Letter, the generalization of Cohen and Glashow’s Very
Special Relativity to curved space–times has been considered. In
general, gauging the SIM(2) symmetry, which leaves the preferred
null direction nμ invariant, does not provide the complete cou-
plings to the gravitational background. One can, however, construct
locally SIM(2) invariant Lagrangians from the terms listed in (19).
These terms make use of the standard SO(3,1) covariant derivative
and, therefore, do not derive from a standard gauging of SIM(2).
Moreover, for a general space–time and/or a generic null vec-
tor field nμ , such Lagrangians do not lead to freely propagating
chiral fermions. Instead, for space–times with SIM(2) holonomy,
the SO(3,1) covariant derivatives in the Lagrangians coincide with
SIM(2) covariant derivatives. In these cases, and if, in addition, the
space–time is a vacuum, the Lagrangians describe freely propagat-
ing massive chiral fermions, just as in Minkowski space–time. It
is essential here that the null vector field nμ is not generic, but
is such that its direction remains invariant under parallel trans-
port.
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