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Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm,
endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most
of the interactions between family members that determine the fate of the cell occur at the membranes of intra-
cellular organelles. It has become evident that interactions with membranes play an active role in the regulation
of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the
Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of
the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how
the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.

© 2014 Published by Elsevier B.V.

1. Introduction: mitochondria, endoplasmic reticulum and apoptosis

The homeostasis of multi-cellular organisms is maintained by highly
regulated mechanisms that ensure cells multiply in the correct context
and are removed by programmed cell death when they pose a threat
to the organism or are no longer needed. Apoptosis is a common type
of programmed cell death which plays a fundamental role in eradicating
old, excess, or dysfunctional cells [1]. Dysregulated apoptosis is at the
heart of the pathophysiology of a wide variety of diseases: insufficient
apoptosis leads to cancer and autoimmunity while hyperactive apopto-
sis is associated with neurodegenerative diseases such as Alzheimer's,
Parkinson's and Huntington's [2].

Apoptosis can be triggered from signals both extrinsic and intrinsic
to the cell [1]. The extrinsic pathway is activated by extracellular
death ligands, like tumor necrosis factor-o (TNF-a¢) binding their cog-
nate death receptors; the intrinsic pathway is initiated by a wide variety
of intracellular stressors (DNA damage, premature mitotic arrest, the
unfolded protein response, etc.) that ultimately lead to the mechanical
permeabilization of the mitochondrial outer membrane (MOM) [3-7].
Disruption of the MOM results in the release of apoptogenic factors
such as cytochrome ¢ and SMAC from the inter-membrane space
(IMS) to the cytosol [8,9], which in turn activates the downstream
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“executioner” caspases that proteolytically cleave a wide variety of in-
tracellular substrates thereby disrupting cellular physiology. Cleavage
of a subset of these caspase targets in a coordinated fashion produces
the phenotypic changes characteristic of an apoptotic cell [10].

The Bcl-2 family of proteins regulates both intrinsic and extrinsic
pathways but is most intimately involved with the intrinsic pathway
where they regulate Mitochondria Outer Membrane Permeabilization
(MOMP) via a series of protein-protein and protein-membrane interac-
tions [11,12]. Members in the Bcl-2 family are defined by the presence
of one or more of the four conserved motifs known as Bcl-2 homology
(BH) regions (termed BH1-4) [13,14]. The function of individual family
members is largely determined by the specific combination of BH re-
gions. The anti-apoptotic proteins (e.g. Bcl-2, Bcl-w, Bcl-XL, Mcl-1 and
A1) contain all four BH regions whereas the pro-apoptotic proteins are
comprised of the pore-forming multi-BH domain proteins (e.g. Bax,
Bak, Bok) that contain BH regions 1-3 and a modified version of region
4 and the BH3 proteins (e.g. Bid, Bim, Bad, Bmf, Bik, Puma, Noxa, Hrk,
Blk, Nip3, bNip3, Mule etc.) that are structurally distant from each
other, sharing only the BH3 region [15]. During intrinsic apoptosis,
BH3 proteins cause Bax/Bak to oligomerize within and permeabilize
the MOM, whereas the anti-apoptotic family members inhibit this pro-
cess at multiple steps [16,17].

Aside from the well-founded focus on mitochondrial dysfunction in
apoptosis, other intracellular organelles are also involved with regulat-
ing cell death. The endoplasmic reticulum (ER) is a large and continuous
membranous network that extends throughout the cytoplasm that
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functions primarily in protein production and transportation [18], calci-
um (Ca? ™) homeostasis, lipid and membrane biosynthesis and serves as
both donor membrane and the initiating locus for autophagy. The dis-
ruption of ER function has been implicated in the pathophysiology of
many cell-death related diseases [19-22]. The ER is both functionally
and physically linked to mitochondria with implications for mitochon-
drial apoptosis [23]. The existence of ER Mitochondria-Associated Mem-
branes (MAMs) was first detected by electron microscopy in 1960s [24]
and velocity sedimentation experiments where ER components co-
purified with mitochondria [25]. Furthermore MAM may be involved
in regulating mitochondrial dynamics such as fission and fusion [26,27].

There are also distinct signals that regulate cell survival that unique-
ly arise from the ER. For example, ER stress will trigger a signaling
pathway called unfolded protein response (UPR) which, aside from its
primary function of slowing down protein translation and enhancing
protein folding, can also promote cell death via both mitochondria-
dependent and -independent pathways [19-21,27,28]. Several Bcl-2
family proteins are located at the ER membrane where they regulate
cell death and autophagy such as Bcl-2, Bik, and Beclin-1 [29-31]. The
death signals transmitted from the ER to mitochondria include both
transcriptional up-regulation, and post-translational modification
and activation of BH3 family members such as Bim, Puma and Noxa
[32-34] as well as regulation of Ca® ™ efflux via Bap31 and inositol-3-
phosphate receptors [35]. Calcium efflux from the ER to the cytosol
can result in an accumulation of Ca?* in the mitochondrial matrix
which triggers the opening of the mitochondrial Permeabilization
Transition Pore (PTP) resulting in the permeabilization of the MOM
and subsequent cell death [35-37].

Given the important roles mitochondria and ER play in cell survival
and that Bcl-2 family proteins are targeted to these membranes, we
will review the development of explanatory models for how these pro-
teins regulate apoptosis emphasizing recent findings about how mem-
brane binding modulates the structure and function of these proteins,
and in turn how the Bcl-2 family regulates the dynamics and the integ-
rity of these organelles.

2. Models of the mechanism of action of the Bcl-2 family
2.1. Initial models: rheostat, direct activation and de-repression

As the number of Bcl-2 family members increased beyond the
original founding member, Bcl-2, the models explaining the functional
significance of binding interactions increased as well (Fig. 1). The dis-
covery of the second Bcl-2 family protein, Bax, in 1993, generated the
first “Rheostat” model of Bcl-2 regulation that proposed that the numer-
ic ratio between pro- and anti-apoptotic proteins determines cell fate
[38,39]. Thus excess Bax compared to Bcl-2 would elicit apoptosis via
activation of caspases, but how this occurred was not known [38,39].
The subsequent identification of other pro-apoptotic family members,
the BH3 proteins, that (with the exception of Bid [40]) were structurally
different from Bax by containing only the BH3 region elicited two com-
peting models (De-repression and Direct Activation) that addressed the
question of how Bax is activated, and how Bcl-2 prevents this.

The De-repression model postulates that Bax (and its closely related
“cousin” Bak) are constitutively active and therefore need continuous
binding to anti-apoptotic proteins to repress their activity. In this case
BH3 proteins serve solely to displace Bax/Bak from anti-apoptotic pro-
teins [41]. An important facet of this model is that the combinatorial
specificity of BH3 proteins for other anti-apoptotic proteins discovered
after the identification of Bcl-2 allows for the fine-tuning of cell death
regulation [41]. For example Bid, Bim and Puma interact with all of the
anti-apoptotic members; Bad only binds to Bcl-2, Bcl-XL, and Bcl-w;
and NOXA specifically engages Mcl-1 and A1 [41]. Thus the model
proposes that different sets of BH3 proteins, activated by specific stress
signals, will neutralize the corresponding subsets of anti-apoptotic pro-
teins to liberate the Bax/Bak.

In contrast to the De-repression model, the Direct Activation model
states that Bax/Bak need to be activated to oligomerize and form pores
in the MOM. The BH3 proteins perform this function in two distinct
ways which divides them into functional sub-groups [42,43]. First,
Bax/Bak can be activated by direct binding of “activator” BH3 proteins
such as tBid (the truncated and active form of Bid), Bim and Puma
[43-45]. Anti-apoptotic proteins such as Bcl-XL sequester the activators
from Bax to prevent MOMP and cell death. This creates a scenario
whereby “sensitizer” BH3 proteins such as Bad and Noxa displace BH3
activators from anti-apoptotic proteins, and thus activate Bax/Bak
indirectly.

Therefore the De-repression and Direct Activation models propose dif-
ferent binding partners and functions for both the BH3 and anti-apoptotic
family members. Both models cite evidence from a variety of assays to
support their unique features, including co-immunoprecipitation assays
in transfected cells, binding of peptides to truncated proteins in vitro,
and gene knockout experiments in mice. However, certain inconsis-
tencies persist: the De-repression model does not explain that in all
cells, particularly growing ones, only a small fraction of Bax/Bak can be
co-immunoprecipitated with anti-apoptotic proteins, in contrast to the
claim that all Bax/Bak needs to be neutralized for survival [46-48]. The
direct-activation model needed to be modified to acknowledge that
anti-apoptotic proteins can also directly inhibit the auto-activation of
Bax/Bak [49,50]. Both models propose that the interactions between the
proteins are unidirectional rather than reversible equilibria.

2.2. The active role of membranes in apoptosis regulation and the
Embedded Together model

To reconcile these differences concerning the proposed functions
and binding partners of Bcl-2 family members an active role of mem-
branes needs to be considered. This was not directly included in earlier
models partly due to certain experimental limitations. For example,
assays such as co-immunoprecipitations and immunoblotting from
cell lysates require detergents to solubilize membranes. The detergents
used in these experiments can affect the binding interactions between
Bcl-2 family proteins: Triton X-100 artifactually promotes interactions
between Bcl-2 family proteins (such as Bax and Bcl-2 or Bcl-XL), while
CHAPS disrupts interactions between Bcl-2 members [51]. Furthermore,
in vitro experiments, that do not require detergents, have classically
used deletion mutants or peptides of Bcl-2 family members lacking
the putative trans-membrane (TM) region due to difficulties in purify-
ing the full length proteins [41]. In this circumstance, any effect of mem-
brane binding on protein—protein interactions that might occur in vivo
would be lost.

More recent evidence indicates that this is an important concern for
Bcl-2 family members in all three functional groups. For example, Bax
undergoes a series of conformation changes during activation when it
transforms from a cytoplasmic or loosely membrane bound protein to
a protein with helices 5, 6 & 9 integrated in the membrane before it
oligomerizes with other Bax monomers to form a pore in the MOM,
an event not observed with solution based assays [52]. Targeting of
tBid to the membrane also causes a conformation change that allows
it to both activate Bax [53], and facilitate the membrane insertion of
cytoplasmic Bcl-XL[54]. These tBid membrane interactions are sensitive
to membrane lipid composition [55] and catalyzed by the non-Bcl-2
family protein Mtch2 [53,56]. Furthermore recent reports suggest
other novel roles for non-Bcl-2 family mitochondrial membrane pro-
teins and lipids in the regulation of MOMP. For example, a GTPase of
the dynamin superfamily named Drp1 was found to enhance the pore
forming activity of Bax [57]. It has also been reported that tBid-Bax
interaction on the membrane induces redistribution of membrane
lipids [58].

Based on data obtained using recombinant full-length proteins and
in vitro model systems free of detergents to assay Bcl-2 family protein—
membrane binding and membrane permeabilization, the “Embedded
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Fig. 1. Models illustrating mechanisms for the regulation of MOMP by Bcl-2 proteins. The earliest “Rheostat” model proposes that cell fate is determined by the ratio between pro- and anti-
apoptotic proteins. Later models such as the De-repression and Direct Activation models hold different views on the role of BH3 proteins and anti-apoptotic proteins. The Embedded
Together model and the newly proposed Unified model both agree that Bax/Bak need to be activated by BH3 proteins and that anti-apoptotic proteins inhibit MOMP through multiple
interaction partners. The Unified model differs from the Embedded Together model chiefly by formalizing the relationship between mitochondrial dynamics and apoptotic regulation.
However, the Embedded Together model distinguishes itself from other models by recognizing that: 1) The membrane is an active participant in the interactions between Bcl-2 family
proteins. 2) Binding of anti-apoptotic proteins to BH3 or activated Bax/Bak leads to mutual sequestration. 3) MOMP is controlled by multiple reversible equilibria.

Together” model was proposed to explain the regulation of MOMP in
apoptosis [11,12,59]. In addition to the interactions of some family mem-
bers seen in solution (i.e. in the cytoplasm of cells), Bcl-2 family members
were proposed and later demonstrated to adopt a different conformation
after interaction with membranes. Most of these interactions were
observed to be saturable and reversible. Thus the Embedded Together
model incorporates protein-membrane and protein-protein interac-
tions of Bcl-2 family proteins that are tightly regulated by multiple paral-
lel equilibria. A focal point of the model describing the irreversible step in
apoptosis, posits that the activation of Bax/Bak at the membrane is the
rate-limiting step in MOMP, in part because it involves distinct stepwise
but reversible conformational changes leading to formation of the oligo-
meric pore. Most activator BH3 proteins such as Bim, tBid and Puma can
bind to membranes spontaneously where they recruit Bax (as well as
anti-apoptotic proteins) to the membrane, initiating a series of confor-
mational changes of Bax on the membrane leading to oligomerization
of Bax. In the case of Bak, which is constitutively bound to the membrane,
the first conformation change that leads to tight binding to membranes is
not required. The model also suggests the involvement of accessory

proteins such as Mtch2 and posits roles for post-translational modifica-
tions of the proteins [11,12]. Recent descriptions of the model made
explicit that the molecular interactions are not one way. Thus binding
of membrane bound anti-apoptotic proteins to activator BH3 proteins
doesn't just lead to inhibition of the activator protein but, in this scenario
the activator protein behaves like a sensitizer in that it inhibits the anti-
apoptotic protein. This kind of inhibition was called mutual sequestra-
tion [60]. Furthermore, the anti-apoptotic proteins also bind to activated
Bax/Bak on the membrane with high affinity, leading to mutual seques-
tration of this pair.

Sensitizer BH3 proteins such as Bad and Noxa have little binding af-
finity for Bax/Bak but can engage anti-apoptotic proteins with combina-
torial specificity (e.g. Bad binding to Bcl-XL and Bcl-2, Noxa binding to
Mcl-1, etc.), a scenario previously included in the De-repression model
[41] but here complex formation inhibits both proteins. For example,
when the sensitizer BH3 protein Bad recruits Bcl-XL into membranes
the function of both proteins is inhibited via mutual sequestration
[61]. Competition for binding from sensitizer BH3 proteins can disrupt
the sequestration complex formed by activator BH3 and anti-apoptotic
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proteins, as well as displace activated Bax/Bak from anti-apoptotic
proteins, so that they are sensitizers for both mechanisms proposed by
the De-repression and Direct Activation models [11,12,59]. The dual
nature of the effect of these binding interactions makes the description
of proteins as ‘activators’ or ‘sensitizers’ artificial and cumbersome.

A critical and previously under-appreciated feature of the Embedded
Together model is that the target membrane plays an active role in
mediating the interactions between Bcl-2 family proteins rather than
being a “passive recipient” in the process. Thus MOMP is controlled by
multiple reversible equilibria including protein-protein and protein-
membrane interactions that initiate these conformational changes. For
example, interaction between full length tBid and Bax is detected only
when membranes are present [51]. Precisely measuring the rates and
dissociation constants for these individual interactions will be required
to permit the prediction of the direction and extent of a specific interac-
tion when multiple interacting partners are present, as would occur
in vivo.

The Embedded Together model also diverges from its predecessors
by stating that anti-apoptotic proteins can be ‘activated’ in the sense
that anti-apoptotic proteins undergo conformational changes that
enhance or change their function in response to being recruited to the
membrane by pro-apoptotic family members. The regulation of func-
tion by mutual sequestration proposes that the difference between acti-
vator and inhibitor is quantitative rather than qualitative as the balance
is determined by the local concentrations of anti-apoptotic proteins and
their binding partners. In support of this, Bcl-2 inserts helices 5 and 6
into membranes upon direct binding of BH3-activators, a conformation
change critical for Bcl-2 mediated inhibition of Bax oligomerization [62,
63]. This conformational change thus activates Bcl-2 even though in the
absence of other changes the net effect of binding is inhibition of both
the BH3-activator and Bcl-2 due to mutual sequestration. However,
because binding is reversible and governed by an equilibrium binding
constant the model predicts that additional interactions can release
the activated Bcl-2 from the BH3-activator.

Finally the equilibrium binding underpinning the model suggests
that another molecular mechanism by which membrane-bound anti-
apoptotic proteins inhibit Bax/Bak is by functioning as a dominant neg-
ative Bax/Bak by capping the activated Bax/Bak monomer/oligomer and
preventing it from further oligomerization. In keeping with the theme
elaborated above, this is a form of mutual sequestration that arises
because the anti-apoptotic proteins bind to one of the oligomerization
surfaces of Bax/Bak but the anti-apoptotic proteins cannot further
oligomerize. This function for Bcl-XL was demonstrated by the observa-
tion that Bcl-XL inhibited Bax-activation induced by tBid mt1 (a tBid
mutant that no longer binds to Bcl-XL) in liposomes and mitochondria
[64] and in live cells using FLIP (fluorescence loss in photobleaching)
and FRAP (fluorescence recovery after photobleaching) [65]. Recently
a new pro-survival mechanism was found for Bcl-XL in which it
retro-translocates peripherally membrane-bound Bax to the cytosol
[64-66]. This novel mechanism named MODE 0 will be discussed in
detail in the following section.

2.3. Unified model

Another model has recently been proposed to account for how the
anti-apoptotic proteins function by inhibiting both BH3 activators and
Bax/Bak. This model also relates these two different modes of inhibition
to the role of mitochondrial dynamics in apoptosis regulation [67]. In
this model, sequestration of activators by the anti-apoptotic proteins
is defined as MODE 1 and the inhibition of Bax/Bak by anti-apoptotic
proteins is called MODE 2. While inhibition through either mode
prevents MOMP, MODE 2 is considered more potent. In addition
MODE 2 prevents mitochondrial fusion and promotes mitochondrial
fragmentation.

By introducing the terms MODE 1 and MODE 2 the unified model
more explicitly states the two ways anti-apoptotic proteins can inhibit

apoptosis previously incorporated in the Embedded Together model.
In this model, MODE 1 is equivalent to the inhibition of BH3 proteins
and anti-apoptotic proteins by mutual sequestration, while MODE 2
reflects the dominant negative function of the anti-apoptotic proteins
as inhibitors of Bax/Bak. The Embedded Together model predicts that
both events can occur simultaneously and are controlled by both the
relative abundance and the relative binding affinities of the Bcl-2 family
members expressed in that particular cell. Thus unlike the Unified
model, the Embedded Together model proposes that the dominance
of MODE 1 vs MODE 2 depends on the extent to which the proteins
are bound to membranes and the predominance of one mode over the
other can change dynamically depending on both the amount of protein
and post-translational modifications of the Bcl-2 proteins, such as phos-
phorylation, that affect binding to other family members and the mem-
brane. The complexity of the inter-relationship of all of these events
contributes to apoptosis occurring in a cell autonomous manner.

3. Importance of membranes: changes in conformation of Bcl-2
family proteins during apoptosis

A critical feature of the Embedded Together model is that for many
Bcl-2 family members, membrane binding induces conformational
changes that modify function [11,12,59]. Even for those family members
like Bcl-2 and Bak which are constitutively integrated in the membrane,
interacting with other membrane-bound binding partners causes dis-
tinct conformations that have functional consequences [62,68]. In this
section we will review the details of these processes.

3.1. The role of specific membrane components in MOMP regulation

An initial hint of the importance of membranes in Bcl-2 family regu-
lation came from reports of the importance of cardiolipin in regulating
tBid-Bax mediated liposome permeabilization [69]. Cardiolipin (CL) is
a mitochondria-specific membrane lipid synthesized within and local-
ized predominantly to the inner mitochondrial membrane. However,
a minor fraction of CL is located in the MOM [69]. This small pool of
surface-exposed CL appears to impact the pro-apoptotic function of
Bid and Bax [58,70] as removing CL from MOM-like liposomes abrogat-
ed pore formation by Bid and Bax in vitro [58]. In addition, CL binds to a
truncated Bak mutant in liposomes and increases its sensitivity to Bid
activation and subsequent membrane permeabilization [71]. Using
high enough concentrations (UM range) of Bid BH3 peptides can also in-
duce Bax pore formation in nanodisc lipid bilayers lacking CL [72]. The
elimination of CL in yeast expressing human Bax also has no effect on
Bax insertion into the MOM or induction of MOMP [73]. These reports
indicate that CLis not absolutely required for Bax-dependent MOM per-
meabilization, but does not leave out the possibility of CL enhancing the
activity or membrane binding of BH3 activators. It has been reported
that CL promotes Bid translocation to liposomes, MOM and mitochon-
drial contact sites [54,55,74]. CL also promotes mitochondrial localiza-
tion of caspase 8, providing a platform in cells for activation of Bid via
cleavage by caspase 8 [75,76]. The BH3 sensitizer protein Bad also con-
tains a lipid binding region that favors negatively charged lipids like
cardiolipin [77]. Whether or not membrane binding by the anti-
apoptotic proteins is affected by CL is currently unknown.

Cholesterol is the predominant component that controls the fluidity
of membranes in mammalian cells. Although mitochondria only contain
a restricted pool of cholesterol (3 ~ 5% of the total cellular cholesterol)
[78], it plays a major role during apoptosis where it inhibits Bax-
mediated MOMP by lowering membrane fluidity [79]. Correspondingly,
enhanced mitochondrial cholesterol in cancer cells increases resistance
to chemotherapy and Bax mediated MOMP, whereas lowering the cho-
lesterol content of the cells induces p53 dependent activation of Bax
[80,81]. The mechanism for this negative regulation of Bax by cholester-
ol is still poorly understood, although some evidence suggests high
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concentrations of cholesterol hinders the insertion of Bax into the
membrane [82] or the activation of Bax in the membrane [79].

The link between the sphingolipid ceramide and programmed cell
death was discovered in 1993 when cells treated with C2-ceramide, a
cell permeable ceramide analog, underwent apoptosis [83]. Additional-
ly, cell death by C2-ceramide was shown to be Bax dependent [84].
Ceramide has been shown to act synergistically with Bax to promote
MOMP [85]. Thus it is well established that C2-ceramide can regulate
apoptosis. However, cellular ceramide is primarily generated by
sphingomyelin hydrolysis via sphingomyelinase (SMase) or by de
novo synthesis via Ceramide synthase (CerS) [86]. Increasing the
amount of ceramide at the mitochondria by SMases or CerSs has been re-
ported to promote Bax translocation to the MOM, subsequent MOMP
and apoptosis, by a process that can be prevented by Bcl-2 or inhibitors
of the aforementioned enzymes [87-91]. Nevertheless the molecular
mechanism by which ceramide promotes apoptosis is still a mystery. It
has been demonstrated that ceramide can form channels large enough
to release IMS proteins from mitochondria [92-94] but it is not clear
how this function could be regulated by Bax. Additionally a downstream
metabolite of ceramide, hexadecenal, was shown to directly bind Bax
and promote Bax activation and pore formation in large unilamellar
vesicles, even when these vesicles lacked CL [88]. Clearly the field
would benefit from a systematic examination of the quantitative effects
of various lipids on the regulation of MOMP.

3.2. Bax/Bak change conformation in membranes

Bax and Bak are the effectors of MOMP that insert into the MOM and
induce membrane permeabilization allowing the release of contents
from the IMS that activate downstream effectors of apoptosis, such as
cytochrome ¢ and SMAC [95,96]. Both Bax and Bak contain 9 alpha-
helices. The crystal structures of Bax and Bak suggest that they share a
similar structure with each other and with their anti-apoptotic counter-
parts [97-99]. Helices 5 and 6 are in the center of the soluble version of
the protein and are surrounded by amphipathic helices, that shield
them from water and form a hydrophobic groove on the surface of
Bax and Bak [97,98]. Notably, a similar hydrophobic groove is present
in anti-apoptotic proteins and is the binding site for the BH3 region of
pro-apoptotic Bcl-2 family members [100-103]. Based on this observa-
tion, it is likely that the hydrophobic groove plays a similar role in
Bax/Bak. Indeed, a Bid BH3 peptide has been shown to bind to this site
in Bax and Bak by NMR/X-Ray Crystallography [104,105]. Both Bax
and Bak contain a carboxyl-terminal putative trans-membrane (TM)
domain in helix 9 which targets the proteins to the membrane [104,
106,107]. Soluble monomeric Bax, which is not active, is stable in the cy-
toplasm because the helix 9 TM domain binds in cis to the hydrophobic
groove [108,109]; activation of Bax by binding to a BH3 protein causes a
conformational change that displaces helix 9 such that it then inserts
into membranes [52].

In the Embedded Together model, displacement of helix 9 from the
hydrophobic groove is one of several distinct steps in Bax activation, but
not the first (Fig. 2) [11,12,59]. The initial step is transient binding of Bax
to the membrane without insertion of the TM into membranes; as with
all the other steps, the cytoplasmic and peripherally-membrane-
attached forms of Bax are in equilibrium. In growing cells, without
active BH3 proteins present, the equilibrium is shifted toward the cyto-
plasmic form but some Bax is peripherally attached to the mitochondria
membrane even in the absence of apoptotic stimuli [65,110-112]. Sig-
nificantly, peripheral binding of Bax to liposomes leads to the exposure
of an amino-terminal epitope recognized by the monoclonal antibody
6A7, which suggests a structural change that possibly facilitates Bax
binding to membrane-bound BH3 proteins that leads to further confor-
mational changes in Bax [113]. Studies using FLIP and FRAP reveal that
Bax cycles on and off mitochondria in growing cells spontaneously
[114] by a process that may be facilitated by an anti-apoptotic protein
like Bcl-XL [65,66]. Thus the concentration of Bax at the membrane is

kept low until an activator binds to Bax, triggering a conformational
change that increases the affinity of Bax for the membrane shifting
the equilibrium toward a membrane-bound state and effectively
‘capturing’ Bax within the membrane.

In contrast, Bak is constitutively inserted in the MOM via its helix 9
TM region, leaving the hydrophobic groove exposed, and bypassing
the membrane targeting step(s) seen with Bax [115,116]. The high
affinity of Bak for membrane insertion may be due to the increased hy-
drophobicity of the Bak TM region compared to that of Bax, which favors
binding to membranes rather than to the hydrophobic groove in cis
[115]. Consistent with this notion, mutations in the Bak TM that make
its amino acid composition similar to Bax results in binding of the
mutated helix 9 to the hydrophobic groove and, like Bax, shifts the
Bak binding equilibrium to favor localization in the cytoplasm [68,115].

Bax and Bak can also be activated by various physical factors such as
changes in pH [117] and heat [118] but in vitro these conditions are
more extreme than found in cells. Exposure to MOM components
like certain lipids that have been shown to activate Bax in vitro may
be more physiologically relevant [88]. However, the most studied
mode of activation is through activator BH3 proteins binding Bax/Bak
[51,70,119,120]. The interaction between BH3 proteins and Bax/Bak
has been described as a “hit and run” mechanism as the interaction is
transient [121]. After binding to activator BH3 proteins, Bax/Bak under-
go major conformational changes resulting in a complete structural
rearrangement of the proteins including the amino-terminal region,
BH3 region, and helices 5, 6 and 9 (the latter helix only in Bax) [52,
120,122]. One or more of these conformation changes may reduce the
affinity of Bax for BH3 proteins resulting in the observed ‘hit-and-run’
phenomenon. Recently a crystal structure of Bax (lacking helix 9) and
BH3 peptides revealed that Bid BH3 and Bax BH3 bind to the canonical
hydrophobic groove, resulting in a partial displacement of helix 2
[104]. This moves the helix 2/3 side of the Bax groove away from the
bound BH3 peptide and further “opens up” the groove, which might
weaken the contact between BH3 peptide and Bax [104]. This may be
the structural basis of the transient nature of BH3 protein binding to
Bax. The BH3 domain located in helix 2 exposed after activation may
facilitate the homo-oligomerization of Bax/Bak by reducing the affinity
for BH3 proteins and/or increasing the affinity for Bax/Bak and the
anti-apoptotic proteins [120,123,124].

Bax spontaneously inserts into the membrane when helix 9 is
displaced from the hydrophobic groove [104,119,120]. However, dis-
placement of helix 9 also releases helices 5 and 6 from the hydrophobic
core and they become tightly associated with the membrane, possibly in
a hairpin fashion. In support of this schema, IASD labeling assays suggest
that Bax inserts helices 5,6 and 9 and Bak inserts helix 5 and 6 into the
into the MOM after activation [52,125]. Insertion of the hairpin, com-
prised of helix 5 and 6, and the intervening sequence into the MOM
has been implicated in the pore-forming function of Bax, based on struc-
tural similarity to bacterial toxins such as Colicin A and Diphtheria toxin
[99,126]. Another mechanism for dissociation of helix 5 and 6 from the
Bax/Bak core was suggested by recent crystallography studies and
termed “core/latch dissociation”. In this process, the hairpin temporarily
opens up, allowing helices 6-8 (the “latch”) and helices 1-5 (the “core”)
to dissociate from each other [104]. Cross-linking of the cysteines be-
tween helices 5 and 6 inhibits Bax pro-apoptotic function, consistent
with the functional requirement for dissociation [104]. By measuring
these reactions simultaneously, it was revealed that at least for tBid
and Bax they occur as an ordered series of events [51], although to
date all of these measurements have been based on Bax activation by
tBid therefore, the process may vary depending on the activator.

By using stabilized (“stapled”) peptides from the BH3 region of the
activator Bim a novel “rear pocket” interaction site in Bax was discov-
ered. The rear pocket is located on the opposite side of Bax from the
canonical BH3 hydrophobic groove and involves helices 1 and 6 [119].
Binding of the Bim BH3 to this site results in displacement of the
helix 1, 2 loop which may facilitate the dispatch of helix 9 from the
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Fig. 2. Bax undergoes a step-wise activation mechanism that is tightly controlled by multiple equilibria. In growing cells, in the absence of apoptotic signals, cytoplasmic and peripheraly-
bound Bax are in an equilibrium that greatly favors the cytoplasmic form. Upon activation by various physical factors and/or activator BH3 proteins, Bax undergoes further conformational
changes involving unfolding of the protein and the insertion of helices 5, 6 and 9 into the membrane. Here Bax inserts helix 9 before inserting helices 5 and 6 into the membrane. This
activated form of Bax then goes on to recruit more cytoplasmic Bax that oligomerizes and eventually permeabilizes the MOM.

hydrophobic groove, suggesting an additional activation mechanism of
Bax by BH3 proteins [127]. However it is still unclear whether these
stapled peptides faithfully recapitulate binding of the BH3 domain in
full-length proteins, and whether this dimeric interaction measured in
a solution-based assay also occurs on membranes, as would happen
in vivo. An equivalent ‘rear pocket’ binding site has not yet been identi-
fied in Bak. However in Bak the helix 9 TM is constitutively inserted in
the membrane, which by exposing the canonical groove on an ongoing
basis may render rear-pocket activation irrelevant for Bak.

3.3. Bax/Bak pore formation on the MOM

Several models have been proposed describing the composition of
the Bax/Bak pore (Fig. 3). Early models suggested that Bax and Bak func-
tion by modifying existing proteinaceous channels. For example, Bax
may increase the permeability of the MOM by regulating VDAC1 chan-
nels [128]. However since Bax and Bak can activate, oligomerize and
permeabilize MOM-like liposomes without any other membrane pro-
teins, other models postulated that oligomerized Bax/Bak are the sole
components of the pore. This has also been demonstrated in more phys-
iologic membrane assays where Bax progressively forms a 5.5-6 nm
sized pore composed of 9-12 monomers in mitochondria [129].

How are these oligomers assembled? It is clear that the BH3 region
in helix 2 of Bax/Bak is essential for homodimerization [120,123,124].
Beyond this there are two interpretations for how this sequence (and
potentially other binding sites) mediates oligomerization: The symmet-
rical model and the asymmetrical model. In the symmetrical model,
Bax/Bak form dimers in which the BH3 regions bind reciprocally to
the front hydrophobic groove of each other [123]. This resultant dimer
can then bind to other dimers via the rear pocket allowing oligomers
to grow in multiples of two. In support of this, a Bax “BH3-in-groove ho-
modimer” crystal structure was obtained showing that a Bax BH3 binds
to the front groove of BaxAC [104]. Recent work using the site-directed
spin labeling method of electron paramagnetic resonance (EPR) spec-
troscopy and chemical cross-linking have indicated that Bak disengages
helices 1 and 6 and dimerizes with helices 2-5. This unit is structurally
homologous to the Bax “BH3-in-groove homodimer”. This method also
identified a novel-interface involving the carboxyl-termini of helices 3
and 5 [104,130]. Extrapolation from the structure of the dimer indicated
that Bak forms a lipidic pore with 4-6 homo-dimers aligned on the edge
of the pore [130].

The asymmetrical model was proposed based on the discovery of the
rear pocket in Bax; in this case, binding of a BH3 activator to the rear
pocket is the initiator of a conformational change that permits the
BH3 region of Bax to bind to the rear pocket of another Bax monomer,
exposing the BH3 region of the latter, propagating elongation of the
oligomer [131]. Consistent with this model, the NMR structure of a sta-
pled Bax BH3 peptide/Bax complex showed that the BH3 peptide bound
the rear pocket of Bax [127]. Recent modeling studies also propose that
Bak oligomerizes to generate a pore-forming octamer in a similar man-
ner, although a definitive rear pocket in Bak has not been discovered
[132]. Though these two mechanisms identify slightly different BH3
region interaction sites, both agree that the BH3 region and the hydro-
phobic pockets are important for Bax/Bak oligomerization.

Whatever the exact alignment of Bax/Bak monomers in the oligo-
mer, recent evidence indicates that lipids regulate pore formation. For
example, lipids with either positive or negative intrinsic curvature mod-
ify Bax-mediated liposome permeabilization [58,133,134]. Reciprocally,
Bax binding at very low concentrations can destabilize lipid bilayers,
suggesting the pore may contain both a protein and a lipid component
[135]. A structural model has been proposed in which Bax/Bak cooper-
ate with mitochondrial lipids to form a toroidal protein-lipidic pore in
which the two leaflets of the bilayer fuse to each other [58]. Mechanis-
tically this may be mediated by Bax/Bak rearrangement of lipids within
the MOM that helps to stabilize the pore [58]. Kinetic studies have been
interpreted to suggest that Bax oligomerization is not the rate-limiting
step of MOMP, indicating the possibility of lipid involvement in pore for-
mation [136]. Additionally, experiments using an isolated helix 5 pep-
tide of Bax support the formation of toroidal protein-lipidic pore [137].

Indeed the two views about pore composition may be complemen-
tary rather than mutually exclusive as there may be transitions between
a proteinaceous pore and a protein-lipidic pore which depend on the
equilibria of binding between lipids and Bax/Bak monomers and oligo-
mers. For example, membrane permeabilization may start with a
small proteinaceous pore. As the oligomer grows in size, the curvature
tension of the membrane increases causing the intrinsically curved
lipids to be re-arranged and participate in enlargement of the pore.
The balance may be determined by local Bax/Bak concentration, and
lipid composition and curvature. This model would be consistent with
a Bax/Bak conformational change, which occurs on the membrane,
being the rate-limiting step in MOMP [51]. The published data suggests
that Bax/Bak activation and oligomerization are the crucial decision
steps in the commitment to the execution phase of apoptosis, and that
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Fig. 3. Potential mechanisms of Bax/Bak mediated membrane permeabilization. a. Early models postulate that Bax/Bak regulate existing channels located within the MOM such as VDACT.
b. Other theories suggest that oligomerized Bax/Bak are the sole components of the pore. Two models, the symmetrical and asymmetrical models, propose potential explanations for the
mechanism of Bax/Bak oligomerization. c. Recent evidence has suggested that lipids can regulate Bax/Bak pore formation, indicating the possible existence of a protein-lipidic pore.

lipids not only regulate this critical step but contribute to Bax/Bak pore
structure and stability.

Bok, the third mammalian pro-apoptotic multi-domain protein, has
been less intensively investigated. Bok was found to be highly expressed
in germ tissues and may be associated with placental pathologies [138,
139], however it was also found to be expressed in a variety of cell types
[140]. Similar to Bax, it has been reported that Bok translocates from the
cytoplasm to mitochondria during apoptosis [141] although it was
recently found that both overexpressed and endogenous Bok mainly
localizes to the membranes of the ER and Golgi apparatus [ 142]. Bok dis-
plays a high sequence homology to Bax/Bak, and as such it was predict-
ed to function similarly by causing MOMP but recent evidence suggests
that this may not be the case. Overexpression of Bok failed to kill Bax/
Bak double knockout cells treated with apoptotic stimuli suggesting
that Bok may not act in a similar manner to that of Bax and Bak [142].
Additionally this study showed that Bok induced apoptosis was largely
Bax/Bak dependent, indicating that Bok acts upstream of Bax/Bak [142].

3.4. Targeting of BH3 proteins to membranes as a crucial step in regulating
apoptosis: overview and context

After activation, BH3 proteins translocate to the MOM and/or the ER
where they bind to pore-forming or anti-apoptotic proteins. Sequence
analysis suggests that most BH3 proteins (Bid, Bim, Bmf, Bik and
Puma) have a carboxyl-terminal tail-anchor region [143]. Other than
Bik, which is constitutively localized to the ER, the listed BH3 proteins
are found at the MOM only after activation [143]. In some cases the spe-
cific tail-anchor sequences are sufficient to determine the sub-cellular
localization of proteins. For examples, the predicted tail-anchor regions
of Bim and Puma are sufficient to target and insert GFP fusion proteins
into the MOM [143]. Other BH3 proteins such Bad and Beclin-1 contain

other types of hydrophobic sequences important for subcellular
membrane localization [31,77] while Noxa contains a conserved
mitochondrial targeting sequence found in non BH3 proteins at its
carboxyl-terminus [144].

There are clear functional consequences of appropriate membrane
targeting as BH3 peptides, derived from the sequence of specific BH3
proteins, bind to the appropriate Bcl2-family members but with mark-
edly decreased affinity compared to the full-length proteins [145].
Moreover many full-length BH3 proteins such as Bim, Bmf and Bad
lack a definitive structure in solution, but nevertheless show binding
preferences in vivo implying that they attain a specific conformation
when associated with the membrane [146]. The Embedded Together
model would predict that these intrinsically unstructured proteins
may adopt distinct conformations on the membrane which promote
their function. We will discuss how these features are relevant for spe-
cific BH3 activator and sensitizer proteins.

3.4.1. BH3 proteins and membranes: Bim, Bid and Bad

Bim is an important mediator of apoptosis initiated by many types
of intracellular stress including DNA damage and the ER-associated
unfolded protein response [147-149]. Three major isoforms of Bim are
formed by alternative splicing of mRNA: BimEL, BimL, and BimS [150].
BimEL and BimL are present in many different tissues and cell types
[151] while BimS is almost never present in normal cells and has been
detected only in HEK 293 cells [152]. Thus, BimEL and BimL are likely
the most relevant isoforms mediating an apoptotic response for most
cell types.

Although in vitro studies of protein function using full length pro-
teins are lacking, structural studies using Bim BH3 peptides indicate
that Bim binds to the hydrophobic groove of anti-apoptotic proteins
[100,101]. It seems likely that binding anti-apoptotic proteins causes
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the Bim BH3 region to adopt a defined alpha helical structure. As de-
scribed above, NMR data with stapled peptides suggest that the Bim
BH3 region binds directly to the Bax rear pocket to provoke Bax activa-
tion. It remains to be determined if the Bim BH3 region also binds the
hydrophobic ‘front pocket’ on Bax and, if so, what the relative affinities
are for the two pockets. However, a carboxyl-terminal deletion mutant
of Bim lacking the membrane anchoring domain (BimAC) failed activate
Bax in vitro; this interaction can be partially restored if BIimAC is
brought to the membrane by other mechanisms (e.g. by histidine-tag-
Ni2 + chelating or Tom5 complex targeting sequence) [153]. Recent
studies claim that Bim spontaneously inserts into the MOM via its puta-
tive tail-anchor, and that binding to the MOM is crucial for activating
Bax [154]. Both of these results are consistent with Bim folding into a
defined structure when it targets to membranes. However, it is unlikely
that the mechanism is closely related to that of authentic tail-anchor
proteins as the putative tail-anchor sequence of Bim contains charged
residues which are normally incompatible with tail-anchor mediated
insertion into the membrane. Thus, while the carboxyl-terminal ‘hydro-
phobic region’ of Bim is necessary and sufficient for binding to MOM
[143] it is unlikely that it mediates membrane binding by a conventional
tail-anchor insertion mechanism.

Because Bim binding to membranes occurs spontaneously and the
unmodified protein is constitutively active there must be a control
mechanism to prevent from Bim constantly provoking apoptosis. BimS
appears to be regulated transcriptionally while BimL and BimEL are se-
questered to the cytoskeleton via a short peptide motif (DKSTQTP)
encoded by exon 4 that binds to dynein Light Chain LC1 [155]. The
c-Jun NH2-terminal kinase (JNK), which is activated upon apoptosis
stimuli such as cell stress, phosphorylates Bim at 2-3 conserved sites
on and near the LC1 binding motif, specifically at Thr-56 and at least
one of the adjacent serine residues, Ser-44 and/or Ser-58 (sequence po-
sitions refer to human BimL). Phosphorylation in this motif in BimL and
BimEL causes the release of Bim from the motor complexes resulting in
spontaneous relocalization to the MOM [156,157]. Thus phosphoryla-
tion can regulate BimL and BimEL activity in cells. Consistent with the
complex regulation of apoptosis by many intracellular signaling
pathways, Bim is also phosphorylated on serine-87 through PIP3/Akt
pathway, although this has the opposite consequence to JNK phosphor-
ylation as it leads to ubiquitination and degradation of the protein [158].
The absence of the dynein binding motif and the associated regulatory
phosphorylation sites in BimS probably accounts for the extremely
potent apoptotic activity of this isoform [156].

Bid is another activator BH3 protein that binds to and activates Bax
in membranes [51]. It was first reported in 2000 that Bid induces the
oligomerization and insertion of Bax into the MOM, inspiring much of
the subsequent work on Bid using reconstituted systems [159]. The
BH3 region of Bid also binds to Bak as demonstrated by a crystal struc-
ture of the dimer [105]. Unlike other BH3 proteins, in solution Bid has
a distinct 3D-structure that is homologous to multi-BH domain family
members like Bax and Bcl-XL. Functionally Bid serves as a link between
the extrinsic pathway and the intrinsic pathways: at the onset of extrin-
sic apoptosis, Bid targets to membranes once it is cleaved into cBid
by active caspase 8 which itself requires prior activation via death-
receptor mediated cleavage. During the intrinsic pathway of apoptosis
there are other mechanisms by which either caspase 8 is activated or
Bid is cleaved. However in this case, cleavage of Bid generally occurs
after MOMP and appears to provide amplification of the death signal.
The cleaved version of Bid (cBid) consists of two fragments: an amino-
terminal p7 fragment and a carboxyl-terminal p15 fragment (tBid).
Using liposomes or isolated mitochondria with fluorescently labeled
proteins, our lab has shown that membrane targeting of cBid is suffi-
cient to cause the dissociation of the p7 fragment from tBid [53].
Thereafter a series of conformational changes ensue in which tBid first
unfolds at the membrane such that a-helices 4, 5 and 8 interact with
the membrane followed by insertion of a-helices 6 and 7 into the mem-
brane [53]. This conformational change on the membrane constitutes

the rate-limiting step for cBid activation. Interestingly the MOM protein
Mtch2 facilitates tBid binding to membranes [56] and accelerates the
conformational change of tBid thereby activating Bax [53]. However,
Mtchz2 is not essential for the cBid-mediated Bax permeabilization of
all membranes, as liposomes or proteo-liposomes containing cardiolipin
but lacking Mtch2 can be permeablized by cBid and Bax [53,160]. Nu-
merous studies have indicated that the spontaneous membrane binding
of tBid causes the migration of soluble Bax and Bcl-XL to membranes
[51,54,64,158]. Recent studies have also shown that in many situations
tBid preferably activates Bak while Bim preferably activates Bax [145].

The best characterized sensitizer BH3 protein is Bad. Two lipid bind-
ing regions have been identified in Bad, one of which confers binding to
cholesterol and the other to negatively charged lipids [77]. Survival sig-
nals trigger the PI3K/Akt pathway and the phosphorylation of Bad at
three conserved serine residues: S112, S136 and S155. Upon phosphor-
ylation, Bad is sequestered by 14-3-3 chaperone proteins [161,162]. The
phosphorylated Bad-14-3-3 complex has high affinity for cholesterol
rich lipid membranes but a low affinity for the MOM, thus phosphoryla-
tion of Bad at these sites prevents the interaction of Bad with anti-
apoptotic proteins [77]. When dephosphorylated, Bad localizes to the
negatively charged MOM and exerts its pro-apoptotic effects by binding
to anti-apoptotic proteins [77]. As mentioned above, while Bad binding
inhibits Bcl-XL, it also activates Bcl-xI by causing the recruitment of
Bcl-XL to the MOM because Bad binding to Bcl-XL is reversible. Thus,
the outcome of mutual sequestration depends on the expression level,
localization and post-translational modifications of Bad. Taken together
these observations suggest that differential interactions with mem-
branes and BH3 proteins govern structural changes that modify their
function.

3.5. Anti-apoptotic proteins: multiple mechanisms to inhibit MOMP

Anti-apoptotic Bcl-2 family members are important guardians of cell
survival [38]. Bcl-XL, Mcl-1 and Bcl-w are located in the cytoplasm
in growing cells and localize to the mitochondria during apoptosis
[108,163,164]. In contrast, Bcl-2 constitutively binds to both the MOM
and the ER membrane [29,165] but undergoes a conformational change,
after binding membranes, essential for it efficiently inhibit Bax mediat-
ed MOMP [62].

Detailed studies on the structure and function of some
anti-apoptotic proteins are difficult for various technical reasons: it is
challenging to purify recombinant Bcl-2 due to its marked tendency to
aggregate in vitro while Mcl-1 is notoriously unstable both in vivo and
in vitro. However, once purification of full length Bcl-XL (i.e. with the
carboxyl-terminal targeting sequence intact) was possible, useful infor-
mation concerning the mechanism(s) of apoptosis inhibition and how
this is modified by binding membranes started to become available.

Despite opposite effects on apoptosis, there is a striking resemblance
between Bcl-XL and Bax in terms of their structure and behavior.
Both proteins contain hydrophobic grooves for binding BH3 regions of
other proteins, and a carboxyl-terminal hydrophobic TM tail bound to
this region in cis [100,103]. Both Bcl-XL and Bax remain mainly cytoplas-
mic or peripherally bound to membranes in growing cells and only bind
tightly to the membrane after activation, by shifting the equilibrium to
favor the membrane bound form [108]. Bcl-XL inhibits Bax/Bak activa-
tion and oligomerization on the MOM by several non-exclusive mecha-
nisms [64]. Behaving as a dominant-negative Bax, Bcl-XL binds to BH3
proteins (MODE 1) or activated Bax/Bak (MODE 2). Both MODEs 1
and 2 lead to the membrane localization of Bcl-XL and mutual seques-
tration of Bcl-XL and its binding partners [64]. In both cases binding
between Bcl-XL with its partners involves the interaction of the hydro-
phobic groove of Bcl-XL with the BH3 region of either Bax/Bak or BH3
proteins [100,103]. Recently studies have suggested that there are
other sites outside of the BH3 region of Bim that mediate binding to
Bcl-XL, as mutations that abrogate the binding of a Bim BH3 peptide
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to Bcl-XL did not prevent binding of a similarly mutated full-length Bim
to Bcl-XL in vivo [166].

It is now recognized that in addition to directly engaging and
sequestering pro-apoptotic proteins, Bcl-XL also actively transports
peripherally membrane-associated Bax to the cytoplasm [64-66]. This
mechanism has been dubbed MODE 0 to complement the previously rec-
ognized MODEs 1 and 2 [167]. The mechanism of retro-translocation of
Bax is still unclear, but there are hints that direct interaction is involved
as mutations have been identified in the Bax BH3 domain, the Bcl-XL
hydrophobic groove [65] and the BH4 region of Bcl-XL that inhibit this
process [64]. A possible explanation for MODE 0 inhibition, consistent
with the Embedded Together model, would involve MODE 0 acting prin-
cipally on peripherally bound Bax. This form of Bax undergoes a limited
conformational change in vitro, involving the exposure of an amino-
terminal epitope recognized by the monoclonal 6A7 antibody with pos-
sible changes in the BH3 region [113]. An exposed site on Bax may inter-
act transiently with either peripherally or integrally bound Bcl-XL,
shifting the conformational equilibrium in Bax toward the cytoplasmic
6A7 negative form thereby reducing the affinity of the complex for the
membrane and allowing Bax to retro-translocate back to the cytoplasm.
The difference between Bax inactivation by anti-apoptotic proteins via
MODE 0 and MODE 2 is the membrane status of Bax [67,113]. MODE 0
inhibition occurs in the absence of a BH3 activator, where Bcl-XL binds
peripherally membrane bound Bax resulting in dissociation of both
from the membrane. Reciprocally, MODE2 inhibition occurs when a
BH3 activator promotes Bax conformation changes on the mem-
brane and shifts the equilibrium toward membrane insertion. Then
membrane-inserted Bax will recruit Bcl-XL from the cytoplasm where
mutual sequestration results in MODE 2 inhibition. Thus, control of
Bax subcellular localization clearly serves as a distinct mechanism
governing survival in healthy cells. Other reports indicate that Bax can
retro-translocate independent of anti-apoptotic proteins in mouse
mammary epithelial cells [114]. However, in this study Bax was fully
inserted into the MOM rather than peripherally bound to the mem-
brane, indicating yet another poorly understood mechanism that regu-
lates Bax localization (and hence function) in some cells.

Recently Mcl-1 has become a better recognized target for cancer
treatment as it mediates chemotherapy resistance in many cancer cell
lines [168-171]. Not surprisingly, Mcl-1 is over-expressed in many
cancers and cancer cell lines [168-172]. A special role of Mcl-1 for cell
survival is suggested by experiments in which genetic deletion of
Mcl-1 induces cell death even when other anti-apoptotic proteins are
present in these cells [170,171]. Among the anti-apoptotic proteins,
Mcl-1 possesses several unique structural and functional features
including a long and intrinsically unstructured amino-terminal region.
The region contains interacting sites that target the protein for
ubiquitin-dependent [173-176] and ubiquitin-independent [177]
degradation via a multi-step mechanism that is partly responsible for
the extremely short half-life of Mcl-1 [164]. When expressed in cells
approximately 80% of the exogenous Mcl-1 is located in the cytoplasm
of growing cells [178]. Partial proteolysis of the amino-terminus of
Mcl-1 on mitochondria gives rise to three different species: 40 kD
(full-length), 38 kD, and 36 kD [179]. Full-length 40 kD Mcl-1 is tightly
bound to the MOM and resists alkaline extraction; 38 kD Mcl-1 is
enriched at the MOM but has a lower binding affinity to membranes.
Both 40 kD and 38 kD Mcl-1 fulfill their pro-survival function by mutu-
ally engaging specific pro-apoptotic proteins such as Bim [179]. The
binding mechanism may be the same as other anti-apoptotic proteins
like Bcl-XL, as the crystal structure of the stable core fragment of
Mcl-1 in complex with Bim BH3 and Noxa BH3 shows great similarity
with the Bcl-XL-BH3 complex [100,101,103,180].

The amino-terminal region of Mcl-1 has been shown to result in a
fraction of the mitochondrial bound Mcl-1 inserting into the MOM with
an opposite orientation. In this situation the amino-terminus of Mcl-1 en-
ters the mitochondria matrix where it undergoes further cleavage to gen-
erate the 36 kD form. This novel matrix localized form of Mcl-1 regulates

mitochondrial fission/fusion that, as noted above, modulates apoptotic
function [179]. In the next section we will examine the regulation of
these reciprocal processes by the Bcl-2 family in more detail.

4. Mitochondria dynamics and apoptosis

Mitochondria are highly dynamic organelles with major morpholog-
ical differences seen between cell types. These differences in morpholo-
gy are dictated by cytoskeletal transport and the relative rates of fission
and fusion. By shifting the balance of these rates the morphology can
range from a long filamentous network to highly fragmented uniformly
shaped mitochondria.

Mitochondrial fission and fusion is regulated by large self-
assembling dynamin-related GTPases. Fusion of the MOM is mediated
by the partially redundant, membrane anchored mitofusins Mfn1 and
Mfn2 which can form homotypic or heterotypic oligomers on the
MOM [181,182]. When cells lack either Mfn1 or Mfn2, the mitochondria
become highly fragmented resulting in a phenotype that can be rescued
by overexpression of either Mfn1 or Mfn2 [182]. Fusion of the mito-
chondrial inner membrane (MIM) is mediated by Opa1l which is located
in the IMS anchored to the MIM within cristae and cristae junctions
[183,184]. Fission of mitochondria is carried out by a single protein
Drp1 that is predominately cytoplasmic and localizes to sites of mito-
chondria fragmentation [185-187]; a process which may be facilitated
by ER-mitochondria contact sites (discussed below) [188].

Mitochondrial fission and fusion are imperative for cells to respond
to metabolic and environmental stress and play a prominent role in
apoptosis [189]. In the majority of healthy cells mitochondria exist as
a filamentous network and, upon transformation, cellular stress or apo-
ptosis, undergo increased fission [190]. Generally, cells with highly
fused networks of mitochondria are more resistant to apoptosis
compared to cells with fragmented mitochondrial morphology. The
overexpression of a dominant negative Drp1 results in decreased mito-
chondrial fission and impairs both MOMP and apoptotic cell death
[187]. Furthermore, overexpression of Opal results in increased fusion
and protection from apoptosis by preventing MOMP [191]. The mecha-
nism of Opa1 protection may be due in part to control of cristae remod-
eling, which is independent of its role in mitochondrial fusion, whereby
it prevents the redistribution and release of cytochrome c stored in cris-
tae by forming tight cristae junctions [191,192]. Conversely, knockdown
of Opa1 by siRNA results in fragmented mitochondria with unstructured
cristae and spontaneous apoptosis that can be reduced by overexpres-
sion of Bcl-2, which presumably prevents Bax/Bak mediated MOMP
[193]. Additionally, cells overexpressing Drp1 have highly fragmented
mitochondria that are more sensitive to staurosporine induced apopto-
sis [194]. The exact mechanisms that regulate the interplay between
mitochondrial dynamics and apoptosis are currently unclear however
accumulating evidence suggests that the Bcl-2 family proteins can
regulate fission and fusion.

During apoptosis Bax colocalizes to mitochondrial foci containing
Drp1 where subsequent mitochondrial fission occurs, and Bax remains
associated at both tips of the newly formed mitochondria [195,196].
Interestingly, Bax was found to also colocalize with Mfn2, a promoter
of mitochondrial fusion, at the same fission sites [195]. To corroborate
this finding, a soluble monomeric conformationally restrained Bax,
which cannot insert into the MOM and thus does not promote MOMP,
was found to associate with Mfn2 in healthy cells and promote mitochon-
drial fusion. This fusion was impaired by the addition of staurosporine or
tBid [197]. Furthermore, during apoptosis Drp1 becomes stably associated
with the MOM in a Bax/Bak dependent manner that occurs before MOMP
[198]. The BH3 protein cBid plays a role in mitochondrial fission since
addition of cBid to isolated mitochondria causes the disassembly of
OPA1 complexes resulting in remodeled cristae that allow the mobiliza-
tion and efficient release of cytochrome c from cristae during MOMP
[191,199]. Cristae remodeling has also been observed for the BH3-only
proteins BimS and Bnip3 [199,200]. cBid mediated cristae remodeling
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transpires in a Bax/Bak dependent manner and can occur in the absence
of MOMP [199]. Exactly how cBid, a cytosolic protein targeted to the
OMM, results in the disassembly of Opal complexes located at the IMM,
is currently unknown. There must be unidentified proteins responsible
for transmitting a signal from the OMM to the IMM in order for Opal dis-
assembly to occur. Typically cBid and Bax have similar effects within the
cell, promoting apoptosis, so it is interesting to note that the addition of
¢Bid has an opposing effect, promoting fission, to that of Bax, promoting
fusion, in the aforementioned study [197]. The opposite effect observed
is likely because a mutant Bax was used that is soluble and cannot insert
into the MOM due to engineered disulphide bonds that prevent Bax con-
formation changes. These studies suggest that in growing cells cytoplas-
mic Bax works to promote fusion and upon the induction of apoptosis
Bax inserts in and oligomerizes within the MOM where it can then pro-
mote the binding of Drp1 to the MOM thereby increasing fission leading
to MOMP and mitochondrial fragmentation. It is to be noted that fission
is not necessarily required for apoptosis to occur. When Drpl was
knocked down via RNAI, cytochrome c release was impaired however
other apoptogenic IMS proteins such as Smac/DIABLO and Omi/Htra2
were released and the cells still underwent apoptosis [201,202]. This is
in contrast to the studies that suggest fission is required for Bax/Bak
mediated apoptosis [187,203]. All four studies suggest that mitochondrial
fission is required for efficient cytochrome c release, potentially via cristae
remodeling, and that the discrepancies between the studies may be
explained by differences in cell types that require complete release of
IMS localized apoptogenic factors in order to induce apoptosis.

The mechanism of how anti-apoptotic Bcl-2 family proteins regulate
mitochondrial dynamics is less clear. As described above, post-
translational proteolytic cleavage of Mcl-1 results in a truncated species
that is tethered to the MIM, and is required for proper cristae structure
and mitochondrial fusion [179]. Furthermore, Bcl-XL can stimulate
mitochondrial fusion in vitro and in growing cells [197,204,205]. How-
ever, in response to apoptotic stimuli ectopically expressed Bcl-XL
or Bcl-2 did not prevent Bax/Bak dependent mitochondrial fission
but did prevent cytochrome c release suggesting that MOMP can be
uncoupled from mitochondrial fragmentation [205]. It is unknown
whether or not Bcl-XL or Bcl-2 affects mitochondrial dynamics by
directly binding to fission or fusion machinery, or indirectly by seques-
tration of Bax/Bak and BH3-only proteins.

4.1. Cell death and the Endoplasmic Reticulum

The Bcl-2 family proteins regulate cell death at both the mitochon-
dria and ER. This is evident by the fact that all three classes of the
Bcl-2 family proteins target to the ER where they regulate both apopto-
sis and autophagy. Autophagy is primarily a cell survival mechanism
activated by many stressors, most notably cellular starvation, and is
mediated by the accumulation of autophagosomes that degrade and re-
cycle intracellular contents such as damaged organelles and proteins
[206]. Excessive autophagy results in cell death through degradation
of the Golgi complex, the ER and finally the nucleus [207]. One important
link between autophagy and apoptosis is through the dual-regulation of
both processes via Bcl-2 and Bcl-XL. The BH3-only protein Beclin-1 has a
central role in autophagy where it promotes autophagosome nucleation
[208]. Bcl-2 localized to the ER can bind to and sequester Beclin-1
resulting in decreased autophagic cell death [209]. Furthermore cells ex-
pressing a Beclin-1 mutant which cannot bind Bcl-2 have increased
levels of autophagic cell death suggesting that the anti-apoptotic Bcl-2
family proteins help regulate autophagy by keeping Beclin-1 activity in
check [209]. The BH3 protein Bad is able to stimulate autophagy by
disrupting the interaction between Bcl-2/Bcl-XL and Beclin-1, providing
a link between autophagy and apoptosis [210]. Bim may represent
another potential link between autophagic and apoptotic cell death pro-
cesses as at least one report suggests that Bim can inhibit autophagy by
recruiting Beclin1 to microtubules [211]. Nutrient starvation results in
Bim phosphorylation by JNK causing Bim to release Beclin-1 and

dissociate from microtubules, this results in the simultaneous induction
of autophagy via Beclin-1 and apoptosis by Bim [211].

Another way cell death can arise from the ER is the initiation of the
unfolded protein response (UPR). Generally UPR results from the accu-
mulation of misfolded proteins within the ER as a result of a loss of ER
homeostasis by physiological stress such as hypoxia and oxidative stress
[212]. If UPR cannot reduce the amount of unfolded proteins within the
ER lumen, thus relieving ER stress, then apoptosis is triggered [213]. ER
stress is sensed by at least three ER-localized proteins, ATF6, IRE1aw and
PERK that are maintained in an inactive form in growing cells by binding
to the chaperone Grp78. Increased unfolded proteins within the
ER lumen results in the dissociation of Grp78 from ATF6, IRE1 o and
PERK where they trigger UPR [214]. ATF6 and PERK activation during
UPR results in upregulation of the transcription factor CHOP which
upregulates the BH3 proteins Bim and Puma, in a p53 independent
manner, and downregulates Bcl-2 resulting in apoptosis [33,215-217].
Moreover, overexpression of Bcl-2 or Bcl-XL protects cells from death
triggered by ER stress [218]. It is unclear whether or not protection of
apoptosis by Bcl-2 and Bcl-XL is mediated through prevention of
MOMP at the mitochondria or by an ER specific cell death mechanism.
However, there is some data that suggests that overexpression of
Bcl-2 specifically targeted to the ER prevents cell death even after cyto-
chrome c has been released in response to ER stress [219,220]. This im-
plies that there are cell death pathways mediated through the ER by the
Bcl-2 family proteins since MOMP, the point of no return in apoptosis,
has already occurred within these cells. Additionally, some forms of
cell death can be mediated at the ER that are not related to ER stress.
Several agonists that induce cell-stress result in the post-translational
modification of E-cadherin, preventing its trafficking from the ER to
the plasma membrane, exacerbating apoptosis via the initiation of
anoikis [221]. Clearly there is significant crosstalk between the ER and
Mitochondria allowing for various forms of cell stress to be sensed and
dealt with via apoptosis. This crosstalk may be facilitated, in part, by
regions of the ER and Mitochondria that are in close proximity.

4.2. Integrating the organelles: mitochondrial associated membranes

The Mitochondria and ER have specific regions within the cell that
are tightly associated termed “mitochondrial associated membranes”
(MAMs) which may link cell death processes mediated by both the ER
and mitochondria [222]. The ER has a very interconnected tubular struc-
ture and, much like mitochondria, the morphology of the ER is highly
dynamic with tubules constantly undergoing fission and fusion [223].
It has even been suggested that specialized tubules of the ER wrap
around and constrict the mitochondria facilitating mitochondrial fission
[188]. Drp1 stably associates with mitochondria localized to these
ER-mitochondria contact sites suggesting that the ER marks sites for
mitochondrial division. Additionally, the formation of constriction
sites was found to be independent of the mitochondrial fission machin-
ery but may depend on Mfn2 homotypic complexes between the ER and
MOM [188,224]. Furthermore, as a possible link between ER stress and
mitochondrial dynamics and apoptosis, a recent study has identified
that Mfn2 is phosphorylated by JNK during cellular stress. Phosphoryla-
tion increases ubiquitination and proteasomal degradation of Mfn2
leading to a decrease in the rate of fusion and thus extensive fragmenta-
tion of the mitochondrial network and cell death [225]. Additionally,
autophagy is dependent on Mfn2 stabilization of MAMs since depletion
of Mfn2 diminishes MAMs and severely compromises autophagy [226].
The enrichment of Mfn2 at MAMs, paired with the information that Bax
colocalizes and potentially interacts with MFN2 suggests that MOMP is
regulated at MAMs by Bcl-2 family proteins.

5. Conclusion

With the basic interaction network of Bcl-2 family members
established, we are now at a stage where growing knowledge is yielding
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practical results. The discovery that some cancer cells are “addicted” to
one or more anti-apoptotic proteins for survival provides a way to cate-
gorize malignancies for target-specific treatment [227]. Small molecules
mimicking the BH3 regions of Bad (e.g. ABT-737, ABT-263) bind to and
inhibit Bcl-XL and Bcl-2 with high affinity [228] and have shown notable
benefits in lymphoid malignancies as monotherapy or in combination
with other chemotherapies [229,230]. A recent derivative ABT-199
that selectively targets Bcl-2 but not Bcl-XL has reduced thrombocyto-
penia [231] and is starting phase III clinical trials. We propose that mem-
brane bound Bcl-2 family proteins may serve as a more precise target for
drug screening. Our reasoning is that the Bcl-2 family proteins adopt
distinct conformations at, on and in intracellular membranes altering
their affinities for one another and potentially exposing new binding
sites for targeted therapies.

Initially, regulation of the Bcl-2 family was thought of as a rheostat
where the relative levels of pro- and anti-apoptotic proteins determines
the fate of a cell. At present, it is clearly apparent that regulation of
apoptosis is much more complicated. Whether the cell lives or dies is
governed by a set of complex equilibria not only between the protein—
protein interactions of the Bcl-2 family but also by their interaction
with membranes. It is evident that intracellular membranes play an ac-
tive role in apoptosis as the Bcl-2 family proteins undergo substantial
conformational changes upon binding membranes that modifies their
affinity for other Bcl-2 family proteins and other binding partners.
Even more complexity is added via the localization of Bcl-2 family
proteins at different intracellular membranes, where the Bcl-2 family
proteins seem to regulate more than just MOMP. It is obvious that
there is still much to learn about the Bcl-2 family proteins. It will be
exciting to see additional studies that answer the mechanistic details
of how Bcl-2 family proteins are regulated by each other, by their local-
ization and by membranes, helping us to fully understand cell death
regulation and aiding in the development of novel disease therapies.
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