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Results on vertex coloring and the vertex independence number of « finite graph are used to
prove:

Theorem. Let G be a finite group with conjugacy classes indexed by cardinality: 1={[x,]j=
f[x,]l=- -, and let Cg(x) denote the centralizer of x. If m is the smallest integer i such that
T, 0 +ilxdl 4« - - +Ex 1= |C(x)l, then each abelian subgroup A of G has cardinality JA|=
x4+l + - - - +x )

Theorem. Let G be a finite group with a proper subgroup M, such that xe M —{1}> C5(x)s
M. Then G contains at least [|G{!/?] pairwise non-commuting elements, and hence G cannot be
covered by the union of fewer than [|G{'/®] abelian subgroups.

Theorem. Let S be a locally maximal sum-free subset of the abelian group G. Then
IS —S|+ISU~S§}|-3=|Gi(1-]8 - §|™"), with equality if and only if $~$ is a subgroup H of G,
[G:H]=3, and S is a coset of H.

Some open problems are also stated.

1. Introduction

In this paper graph theoretic results concerning the degree sequence, veriex
coloring, and the vertex independence number are used to derive theorems about
finite groups. First, two elements %, y of the group G are connected by an edge
whenever they commute: xy = yx. A well-known fact about coloring the vertices
of a finite graph is shown to yield an upper bound to the order of the largest
abeliantsubgroup(s) of G, in terms of the cardinalities of the conjugacy classes of
G. The same graph, and a lower bound to the vertex independence number in
terms of the degree sequence, yields a sufficient condition on a non-abelian group
G in order that G contain at least [|G}!] pairwise non-commuting elements, and
hence cannot be covered by the union of fewer than [|G|}] abelian subgroups.
Such groups are, for example, permutation groups of prime degree, Frobenius
groups, the simple groups PSL(2, p), and the sporadic simple groups.

Finally, turning to finite abelian groups G and an entirely different graph
association, we use the vertex independence number to prove an extremal result
concerning the cardinalities of the (disjoint) sets SU—S and $—3 when S is a
locally-maximal sum-free subset of G. Along the way we find a lower bound for
all such S G, of the form |S|=constant - |G|}. We also show that whenever
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|S + S|=<c|S| the lower bound can be improved to |S|=|Gl/f(c) where f(c) is a
quadratic function of c.

2.

Let € be an undirected graph, with no loops or multiple edges, whose vertices
are {x;, X5, ..., x,}. The degree d(x) of a vertex is the number of edges incident
with x. We say that the vertices of ¥ can be c-colored whenever there exists a
partition of {x,, x5, ..., x,} into ¢ subsets, with no two vertices in the same subset
joined by an edge of 4. A complete subgraph of ¥ is a subset of the vertices, every
pair of which is connected by an edge of §. A maximal complete subgraph of ¥ is
called a clique. Thus if ¢ can be c-colored, each clique has cardinality <c.

Lemma 1 [Berge, p. 325, Corollary 1). If, for some integer q=1, the number of
vertices of degree =q is <q, then 4 can be q-colored.

Let G be a finite group. The conjugacy class [x] containing x € G is defined by
{x}={y 'xy|{yeG}. The centralizer of x in G is given by C(x)=
{ye G|y 'xy=x}, and the center Z of G is given by Z(G) =\ g C(x). We will
use the basic fact that |[x]} - |C(x)|=|G|, the order of G.

Theorem 1. Let G be a finite group. Index the conjugacy classes of G according to
cardinality: 1<|[x,]|<|[x;]l<<-:-. Let m be the smallest integer i such that
xR +ilx 1+ - -+ [x 1 =|C(x,)|. Then each abelian subgroup A <G has order
IAl={x D+ Dl + - -+l Dl

Proof. The theorem is clearly true if G is abelian, so assume that G is non-
abelian and a largest centralizer (#G) is C(x)). Thus {[x,]={[x}1=- - =[x} =
1, [x =2, and |C(x)|=|Clx. )=]|Clx. =" -. If A<G is maximal among
abelian subgroups of G, then clearly Z(G)=< A N C(x;). Furthermore |A|<|C(x,)].
To see this suppose there is an element a€ A, a¢ C(x;). Since A <C(a) and
a¢ Z{(7), we have |A|<|C(a)|=<|C(x)]. Since the conjugacy classes partition G,
which is non-abelian, the integer m (in the statement of the theorem) must be =1.
If m=" then |Al=|C{x ) =<|[x,Q+|[x]]+::-+|[x.] and we are finished. So
assume m=1+1. We now consider the graph %5 on the elements of G, with
x, y € G connected by an edge just in case xy = yx. ¥5_z is the subgraph with
Z((G) and connecting edges deleted, and we claim that $g_z can be Y, |[x]-
colored. For this we show that the number of vertices of degree =Y, |[x;], is
<¥"[x]l. Clearly each vertex ye G—Z has degree |C(y)|—|Z|-1 in $5_z. I
ICON-iZ}-1=%",|[x]), then

Icl-1212)+ § i1
i=1

=10+l +- - -+l ZC)
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Thus |C(y)|>|C(x,)l which implies that |[y]|<|[x,.]l. Thus y has alrcady been
counted among 27! [x;], and we have shown that Y7 [[x;]| is an upper bound
to the number of vertices of degree =Y, |[x;]|. By the lemma the vertices of
¥s-z can be Y, |[x]l-colored, and hence the vertices of ¥; can be
(Z]+ X |[x. ]D-colored, that is Y%, |[x;]-colored. Thus each clique in ¥ has
cardinality <Y, [[x] and the theorem is proved. '

Remarks. Let M be an abelian group of odd order 2k —1, k=2. If x has order 2
and satisfies xyx = y™! for all y € M, then (x, M), the group generated by x and M,
is called a generalized dihedral group and has conjugacy class cardinalities:

1,2,2,2,...,2,2k—1. -
Lkt St et o

k — 1 times

Here the integer m in the theorem is equal to k, and in fact we have 1+2+2+
++++2=2k—1=|M|, i.e. equality can occur.

A check of the solvable groups with a small number (=<7) of conjugacy classes
reveals that in each case, except G =Sym(4), the symmetric group on four
symbols, the sum Y2, [[x;] is in fact equal to |C(x;)|, the largest centralizer #G.
Among these groups most (but not all) are Frobenius groups.

Problem. Find necessary and sufficient conditions on G in order that equality
hold in Theorem 1, for some abelian A <G.

In Sym(4), and each of the non-solvable groups with <7 classes, 372, |[[x,]] is
larger than |C(x;)|. However there are many examples of groups where this sum is
less than |C(x,)|; for example in Sym(n), n=7, Alt(9) and other simple groups.

3.

For the remaining applications of graph-theoretic methods we need the notion
of vertex independence number. An independent set in a graph 4 is a collection of
vertices no two of which are connected by an edge in 4. For a finite graph ¥, let
a(9 (the independence number of %) denote the largest cardinality of any
independent set in 4. The following theorem relating a(%) and the degrees of the
vertices of ¢, was proved in 1980 in V.K. Wei’s Ph.D. dissertation [11, pp.
104-106]}, by removing a vertex v, of minimum degree, all vertices connected to
vo, and all edges incident with any of these vertices. Here we give a different
proof’, based on deleting a vert=x of maximum degree.

Theorem 2 [V.K. Wei]. Let d{v) denote the degree of the vertex v in §. Then
(%) =Y, .4 1/(d(v)+ 1), with equality if and only if ¢ is a union of disjoint cliques.

! My thanks to Jerry Griggs and Tom Ramsey for pointing out this proof of Theorem 2. It was also
proved, independently, by Yair Caro, and others.
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Proof. Let v, be a vertex of maximum degree: d(vy)=d(v) for all ve 9. Let 9
be the deleted graph consisting of the vertices of ¥—{v,} and all edges of ¥ not
incident with v,. The inequality holds if ¢ has no edges, or if ¢ has only 2 vertices.
Let d™(v) denote the degree of v in §~. For ve€ ¥, d(v)=d (v) if (v, vg) is not an
edge of ¢, while d(v)=1+d™(v) if (v, vy) is an edge of 4. Clearly a(¥ )= a(¥)=
a(¥)+1. In case a(¥)=a(¥)+1 it is easy to show, using induction on a(¥")
and the fact that 1>1/(1+d(v,)), that a(9)>Y, .« 1/(1+d(v)). But to charac-
terize the case of equality, we will need the fact that we always have

1 1
L =L :
veW” l +d_(U) ve¥ l + d(U)
Clearly the latter, together with induction, yields the inequality for a(%). So we
will show that

,.( 11 )> 1
L \TTd () 1+dw)/ " 1+ dwg)

Since d™(v)=d(v) if (v, vo) is not an edge in ¥, while d (v) =d(v)— 1 if (v, V) is
an edge in %, the latter inequality reduces to

1 1
erQ' A1 +d@) 1+d(vy)’
{(v,vg) edge

Since the left-hand side has d(v,) terms, each = 1/(d(vo)(1+ d(vy))), the inequality
holds, and the first part of the theorem is proved.

Clearly, if % is a union of disjoint cliques, then a(9)=Y,.s 1/(1+ d(v)). Now
suppose the laiter equality holds for a graph 4. Let v, and ¥~ be as before. Since
we always have

S S SR R S
al€)=a(s )/%zg, 1+d‘(v)/u§gl+d(v)’

equality between first and last implies that

1 1
“9)= 2 T & TG
By indwction we may assume that ¢ is a union of disjoint cliques, sav
K. K3, K, ..., K, where r=a(¥)=a(¥). Thus v, must be adjacent to every
vertex in some K;, or else there is an independent set in ¢ of cardinality r+1 (v,
and one vertex from each K;, 1<i=<r). If v, is adjacent to every vertex in K; and
has no other adjacent vertices, then % is a disjoint union of cliques. If v, is

adjacent to a vertex not in K;, then d(v,)=|K;|+ 1, and d(v)=|K;| for each ve K,
But now
Z 1 1

& d+d) 1+d(oy’

(v,v,) edge




Some applications of graph theory 1o finite groups 35

contradicting the equality between Y, .o 1/(1+d"(v)) and Y, .o 1/(1+d(v)); the
proof is now complete.

Recall Tchebychef’s inequality:

iaiibi?uiaibi

i=1 i=1 im]

for {&}} and {b]} oppositely ordered sequences of real numbers, with equality if
and only if either all a; are equal or all b; are equal. From this (or Cauchy’s
inequality) we obtain

(2 175)(Z 1+aw)=Iver,

or

) 1 > |V(9))?
vee 1+d(v) " |V(9)|+2|E(9)

where V(¥) is the vertex set of ¥ and E(%) the edge set of G, with equality if and
only if % is a regular graph. This, together with Wei’s theorem, yields the
following corollary, which is also a corollary of Turan’s theorem characterizing
graphs € with n vertices, a(9)<b=<n, and |E(%)| a minimum (see, e.g. [1, p. 269
f£.]).

Corollary 2.1. (%) =|V(9)[Y/(|V(9)!+2 |E(9))), with equality if and only if G is a
disjoint union of cliques of the same cardinality.

4.

If the center Z(G) of the group G is non-trivial, and G = U xZ is a coset
decomposition of G, then G = J (x,Z) is a covering of G by abelian subgroups.
Responding to a question posed by P. Erdos and E.G. Straus [3], D.R. Mason has
shown [7] that even when |Z| =1 there are <%|G|+1 abelian subgroups which
cover G.

With the ‘commuting graph’ 9, defined as in the proof of Theorem 1, a(¥) (or
a(9)) denotes the maximum cardinality of any set of pairwise non-commuting
elements of G.

Define a(G) to be the minimum number of abelian subgroups in any such
collection whose union equals G. The pigeon-hole principle and our previous
discussion give a(G)<a(G)<[G:Z], and by Mason’s result a(G)<3|G|+1. If
k(G) denotes the number of distinct conjugacy classes of G and A is any abelian
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subgroup of G, we also have:

Corollary 2.2. (3) |G|<a(G) - k(G),

(b) |AP<k(G) |G|,

(©) |AP=a(G) - k*(G), where in each case equality holds if and only if G is
abelian, and A =G in (b) and (<).

Proof. Clearly (c) follows immediately from (a) and (b). To prove (a) we use
Corollary 2.1 and count the edges of 9. Hence d(x)=|C(x)|—1, x€ G, so
2E(®©) = ), (Cx)|-1)

xeG

= (d Y ix)- \C(x)t) ~-1Gl=(k(G)-1 |G|,

istinct
classes

as |C(x)] - [[x}} =G| = V(%) for all x € G. Now (a) follows readily from Corollary
2.1, and we have equality in (a) if and only if '§; is a complete graph, i.e. G is
abelian. To prove (b) we may assume A is a maximal abelian subgroup. Summing
over the kg(A) distinct G-classes [a], a € A, we have

lAl=X lalN Al<max {[a]l- ko(A)

_IGl-k(G) _|G| - k(G)
TminiCoa) A

since A is abelian; thus |AP < k(G) - |G| follows. If G is abelian and A = G, we
clearly have equality. Now assume we have equality. Then for each a,be A,
i[a]l=I[p]l. hence |[a]l]=1. But then A< Z. Since A is a maximal abelian
subgroup, A must be all of G, and the proof of (b) is complete.

Remarks. Using, Corollary 2.2(a) we can produce a lower bound to a(G), and
hence to a(G), whenever we have an upper bound to k(G). For example, when g

" 1 prime power =4, it can be checked that each simple group G €{PSL(2, q)}
satishi. <

¢, IG]‘/3<k(G)$C3 IG;II.’»

where ¢, =(})'” and ¢, = (i)', Thus, for each simple group G € {PSL(2, q} we
know thet «(G)=c|G[* and hence that such G cannot be covered by the union
of fewer than ¢ |G|** abelian subgroups. It is also likely that k(G)<c, |G|'?, and
hence a(G}:= ¢ |G|*” for all finite non-abelian simple groups. On the other hand,
the autkor has shown [2] that for each fixed € >0 almost all integers n<x, as
x—>, have the property that k(G)>|G|'™* for each group G of order n. In
Theore.n 3 we will show that if the group G contains a proper ‘centralizer-closed’
subgror p, then a(G)=[|G|'”] (greatest integer function).
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Concerning Corollary 2.2(b), we note that the dihedral groups D,, given by
Dy, ={x,y|x*=y"=¢,x'yx=y")

have order 2n, with k(D,,) =%n+2 (for n odd) and k(D,)=%n+3 (for n even).
In each case there is an abelian subgroup A of order n, and k - |Gl/|A* | 1 as
n—> o,

Finally, the groups D,, with n odd show that a(G) = a(G)=2|G|+ 1 can occur.
Here {x, y, xy, xy%, ..., xy""} consists of n+1 non-commuting elements of D,,.
Other non-abelian groups G which satisfy a(G) = a(G) are those with |G| =pq,
where p<q are primes and q=1(modp), and those with |C}|=pg? where
q<p<q> In fact any non-abelian group G in which all centralizers {except G)
are abelian satisfies a(G)=a(G). For in such G, let g;, g5,..., 8 be a largest
collection of pairwise non-commuting elements. Then each x € G must commute
with at least one of the g, so G = J&$ C(g). Since each centralizer is abelian
a(G)<a(G). But always a(G)=<a(G), and equality follows.

The condition that all centralizers be abelian is not necessary, however. In S,
the symmetric group on the four symbols {1,2, 3,4}, the centralizer of the
permutation (12)(34) is non-abelian. Furthermore S; is covered by the 10
abelian subgroups: {(1234)), ((1324)), {(1243)), ((123)), {(124)), {(134)),
((234)), {12), 34), (12)(34),¢}, {(13), 24), (13)(24), ¢}, and {(14), (23),
(1 4)(2 3), e}, which intersect pairwise only in the identity e. Finally, the first seven
generators, together with (1 2), (13), and (1 4) form a collection of 10 pairwise
non-commuting permutations. Thus a(S,) = a(S,).

Problem. Find necessary and sufficient conditions on G in order that a(G)=
a(G).

Lemma 2. Let G be a finite non-abelian group such that a(G)<|G|' -1, 0<r<1.
then:

(a) For each x € G, |C(x)|=|G|"™"".

(b) There exists an element ge G—Z(G) with |C(g)|>|G'™" and
|C(x) NC(@)|>|G|* 33, for each element x € G.

(c) Finally, in every finite group G, at least k(G)— a(G) of the distinct conjugacy
classes in G satisfy [[x] <|G|'2.

Proof. (a) In the graph ¥; we have the degree of a vertex d(x)=|C(x)| —1.
From Theorem 2 it follows that ¥ . 1/|C(x)|<a(G}. Since |C(x)| =|G|/|[x]| is a
class invariant,

= oy I _ ,
|G| dis%xct =1 dis?i:nc‘ IC(x)l\a(G)<|G| .
classes classes

Thus we obtain ¥ e [[X]Z<\G|'*", and each class satisfies Ix]<|G|**772, ie.
IC(x)l > |Gl(l—r)12_
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To prove (b) we use

R S S S
xe%:—z IC(x)| + IGl xezG lc(x)l \Q(G).

If |C(x)|<|G|'"" for each xe G—Z, then our hypothesis on a(G) gives

|Gl -1Z| \Z] _ ¥4
(o B e P -El<igIr-1-=,
‘G‘M—r <a(G) |G| lG! lGl

and rearranging the extremes gives

1 1
1=<|Z (—'—-:7“—‘)
\Gr o
Since |Z!=<|C(x)|<|G|'™, we are led to the contradiction 1<1-1/|G|. Thus
|C(g)|>|G|* for some g G—Z. For each xe G we know that

|C(g) |ICx)|
IGI
since C(g) and C(x) are subgroups of G (see, e.g. [S, p. 45)). By (a) the right side
of this inequality is >{G|* 73772,
To prove (c), let I(G) denote the number of distinct classes of G which satisfy
I[x])*<:|G|. Then k(G)~-I(G) of the classes satisfy |[[x]?=|G|, so that

IC(g) N Cix)| =

(k(G)-UGH|Gl= ¥ l[xIP<|G|: «(G),

distinct
classes

as in the proof of (a). Thus l(G)=k(G)—a(G).

From Lemma 2(b) we see that if |[x]| = |G| for every non-central class [x], then
a(G) =[|GI'], that is a(G)=min, .z |[x]. When r=1 above, Lemma 2(c) yields
a(GY=k(G)—|Z|. But in such groups |G|'"?<(|G|-|Z)/(k —|Z)), so k(G)-|Z|<
|G|'"*. Thus Lemma 2(c) does not improve the lower bound for a(G) when r=1
above.

We turn now to those groups G which contain a proper ‘centralizer-closed’
sebgroup M, that is for each x e M —{1}, C5(x) < M. Examples are: all Frobenius
grou, . all transitive permutation groups on p (a vrime) symbols, all of the simple

groups PSL(2, p), PSL(2,2™), and other PSL’s, and all 26 of the sporadic simple
groups.

Theorem 3. Let G be a group containing a proper subgroup M such that whenever
xe M—{1}. Cs(x)c M. Then a(G)=[|G|'>], where [r]= the greatest integer <r.

Proof. Suppose a(G)<[|G|"’]. Then a(G)<|G|"*-1. In Lemma 2, put r=4.
From nart (b) of the lemma we know that there exists an element g € G — Z, with
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the property that |C(g) NC(x)|>1 for each x € G. However, this contradicts our
hypothesis on the subgroup M. For suppose ge M—{1}, and x¢ M. Then ye
M —{1} implies that y¢ C(x), and y € G—M implies that y¢ C(g). In case gZ M,
let xe M—{1}. Then y€ G — M implies that y¢ C(x), whereas y € M —{1} implies
that y¢ C(g). ' ' o

Corollary. Let p be any prime dividing the order of the non-abelian group G. If
there exists an element x € G such that |C(x)|=p, then a(G)={|G|'?].

Remark. M. Isaacs [6] has shown that the corollary has a direct group-theoretic
proof, as follows: Let P ={x), the cyclic subgroup of order p generated by x. Since
P=C4(P), P is a Sylow p-subgroup of G, i.e. p*]|G|. Also Ng(P)/Cs(P) is
isomorphic to a subgroup of the automorphism group of P, a cyclic group of order
p—1. Thus |G|=p-[G:N]-[N:Pl=p-m-e, where m=[G:N] and e|p—1.
Since any collection of m non-identity elements, chosen one from each of the m
conjugates of P, are pairwise non-commuting we have a(G)=m. If the theorem
were false, then a’(G)< |G|, so m*<|G|, m*<pe<p? and m<p. By Sylow
m=1(mod p) so m =1 and p < pe =|G|<p?. Also, P is a normal subgroup of G
with G/P = Ng(P)/P a cyclic group.

Now let q be a prime, q | e, and suppose Q is a subgroup of G. with |Q]=q. If
xeP and x 'Qx = Q, then, for each yeQ, (x 'y 'x)ye Q and x"'(y 'xy)eP
since P is normal. Thus x 'y 'xye PNQ ={1} or ye C(x), in contradiction to
C(P)=P. Thus p } |N5(Q)}, so p|[G :Ng(Q)] and Q has at least p conjugates,
say Q1, Q,, . . ., Q,, with Q; = (x). If no pair x, x; commute, then a(G)=p>|G[%.
If x; and x; commute, then H = (x;, x;) is abelian, but since x;¢{x;}, H is non-cyclic
of order q°. Since HN P ={1}, H= HP/P < G/P, which is cyclic, a contradiction.

In 1975 Erdos suggested the problem of finding an upper bound to a(G) in
terms of a(G), whenever the latter is finite, and Isaacs [6] found the following:

Theorem. [Isaacs]. Define a function f(n) inductivelf; by f1)=1 and f(n)=
n+®Of(n—1). If a(G)<x, then a(G)=<f(a(G)); in particular a(G) <co.

Proof. Put a(G)=a. If x,ye G with xy#yx and ¢;,¢3..., ¢ € C(x)NC(y),
then two of the elements x, c,y, C2V, . . . , C,y must commute. Since x commutes
with none of the c;y, two of the latter must commute and thus two of the ¢; must
commute. Hence a(C(x)NC(y))<a(G), whenever ty# yx.

Now let x;, x5, ..., X, be pairwise non-commuting and let By = C(x) N C(x)
for j# k. Then a(B;j)<a(G), so working by induction on « (and using the fact
that f is monotone) we conclude that By, is the union of at most f(a—1) abelian
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subgroups. Now let A; = C(x;) = U xn; By Since
G= U C(x,')= U (A,')U Lz Bik,
I8

Isj®a Isj=a

once we show that each (A;) is abelian, we have proved that

a(G)<a+ (;)f(a ~1) = f(a(G)).

To show each (A;) is abelian, let u,ve A;. Then xy, ..., Xy Uy X1y, oo o5 X APE
a pairwise non-commuting elements, so v must commute with one of them. Then
v commutes with u, and (4;) is abelian.

Isaacs also finds that a(G)=2n+1 for G extra-special of order 2***', and
a(G)=2"+1. Thus, whereas the above theorem shows that always a(G)<
fla(G)) <(a(G)")? there exist G for which a(G)>c*'®, with ¢ a constant >1.

5.

In this section we assume G is a finite abelian group. A subset S < G is called
sum-free if whenever x,yeS, x+y¢S If S+S={x+y|x,yeS}, and S-S is
defined analogously, we see that S is sum free if and only if

S5NES+S)=9=8SN(S-9).

A sum-free set S < G is called locally maximal (or non-extendable) if, whenever
T is a sum-free subset of G and S< T, then § = T. Such a set S is called maximal
if S also has the largest cardinality among all sum-free subsets of G. Considerable
progress has been made on the general problem of characterizing all maximal
sum-free sets in a given finite abelian group G; see e.g. [10, Ch. 7, pp. 205-242].
Locally maximal sum-free sets have been studied mainly because of their
connection with the Ramsey number(s) R, (3, 2): the smallest positive integer n
such that any k-coloring of the edges of the complete graph on n vertices results
in at {vast one monochromatic triangle. In particular it is known [4] that if the set
G of non-zero elements can be partitionee into k sum-free sets, then a
triangle-free k-coloring of the complete graph on |G| vertices is possible, and
each sum-free set has cardinality <R,_,. Further (see [9]) every sum-free
partition of G* can be ‘embedded’ in at least one covering of G* by locally
maximal sum-free sets, and again each of thete has cardinality less than R,_,.
Thus it is of interest to find the minimum cardinality of the locally maximal
sum-free sets in a given G, as well as to characterize all locally maximal sum-free
subsets. Our first results concern lower bounds for the cardinality of any locally-
maximal sum-free set, in terms of |G|. Let 1S denote {x € G | 2x € S}. Clearly if S
is suin-free, then 1S is sum-free, and if |G| is odd, then 3S}=|S|. When |G| is
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even, we see immediately that |1S|=<3|G|, since every sum-free set in any finite
group has cardinality <31|G| (see e.g. [10, p. 205)). Also }}S|=3|G] occurs e.g.
when S={2+4i}y'<i,,.

Theorem 4. Let S be a locally maximal sum-free set in G. Then .
(i) G=SU(S+S)U(S-S)Uis.
Gi) If |G| is odd, then |S|=1((24|G|~15)"2-3),
(iii) If |G| is even, then |S|=X(12|G|—23)2-1). |
Gv) If IS+S|=clS|, then |S|=|Gl/(c*+c+2) for |G| odd, and |S|=
|GI2(c2+c +1), for |G] even.

Proof. For (i), suppose xe G\SU(S+8S)U(S~—S). Then SU{x} is not sum-free.
Thus either 2x€ S, xeS+S, or (x+S)NS#@. Since S is sum-free, the only
possibility of the three is 2x€ S, i.e. x€3S. Thus

G=SUS+SU(S-S)Uis.
For (ii) and (iii) we use the fact that for every subset S,

S|

is+si< ()41l and |S—S|s1+2(‘sl).

2

These estimates, together with (i) and our earlier remarks on S|, show that for
|G| odd: |G|<3|SI?+2|S|+1, whereas for |G| even we have |G|=<3|S]*+|S|+2.
To prove (iv), we use a result of 1.Z. Ruzsa [8]: For an arbitrary set A< G, if
|A+Al|=<c|A|, then |A —A|=c?|A]. The lower bounds on |S| follow in each
case, as above.

Remarks. In our example: $ ={2, 6, 10, 14, ..., 4n —2}<Z,, the sum-free set S
also satisfies |3S| = 2 |S|. There is ample evidence that |3S|=<2|S| is true whenever
S is a locally maximal sum-free set. It does not hold for arbitrary sum-free sets,
as the sum-free set $={(2,0), (2, 2), (2, 3)} in Z,H2Z, shows. Here SU{(2, 1)} is
sum-free, and [3S|=8. If [3S|=<2{S| is true, we may modify our lower bound
estimates, when (G| is even, to [S[=1((24 (G|—11)"2~5) in part (iii) and [S|=
|G|/(c*+ ¢ +3) in part (iv), of Theorem 4.

In [9, p. 226] it is pointed out that if 3(n +2)<h <3(n+2), then there exists a
locally-maximal sum-free set in Z,, of cardinality h, namely {h, h+1,...,2h—1}
We add to this that in Z,y.;, k odd, the set {2k+1,2k +2,...,3k, 4k+ 1,
6k +1} is a locally maximal sum-free set of cardinality <i;|G|+2.

Problems. (1) Does S locally maximal sum-free imply [35]|=<2{$|?

(2) Decide whether or not there exists a sequence of abelian groups G and
locally maximal sum-free sets S < G such that |S+ S|/|S] — < as |G| — .

(3) Decide whether or not there exists a sequence of abelian groups G and
locally maximal sum-free sets § < G such that |S| < ¢ |G|"? ¢ a constant, as |G| — c.
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As a prelude to our next use of the vertex independence number, consider an
abelian group G of order divisible by 3, and H a subgroup of index 3 in G. Then
G =HU(H+a)U(H +2a), where a, 2a¢ H, but 3acH. Now S=H+a is a
locally maximal sum-free set in G, since G = SU(S +S)U(S—S). Furthermore

IS —-8]+|SU~S|-3=3(H|-1)=|G| (1~|S—S|™).

Theorem 5. Let S be a locally maximal sum-free set in the finite abelian group G.
Then |S —S|+|SU-S|-3=<|G| (1-|S—S|™), with equality if and only if S-S isa
subgroup of G, [G:S~S]=3, and S is a coset of S—S.

Preof. The example immediately above shows that if S is a non-trivial coset of a
subgroup of index 3 in G, we have equality. For the converse, let § be locally
maximal sum-free in G. If x,, x5, ..., X, is any set of (distinct) elements of G with
x,—x,¢S—S8, i#j, 1=<i, j<r, then we first claim that

r<|G|-{S—-S|—-|SU-§|+3.

For, consider the r-set: y; =0, y2= X=X, V3=X3—Xp, ..., ¥ =X — Xy, . ... Since
i#j=>y -y, =x;—x; only y, belongs to $—S5. Also at most one of the y,, i=2
belongs to S, and at most one of the y,, i =2 belongs to —§. Since § is sum free,
(S-S)N(SU-8)=0, and thus

r+(S-S|-1D+(SU-S|-2)=|Gl|.

Now et S be any subset of the abelian group G, |Gl=n, G=
{g1. 82.- .., g.}. Define a graph %s whose vertices are g, ..., g, with an edge
{g. g} between g and g if and only if g —g €S—S. For each g € G there are
IS—S|-1 elements g #g such that g —g €(S—8)—{0}. Thus ¥ is a regular
graph, each vertex of degree |S—S|—1, and %5 has E =1n(|S—S|-1) edges.
From Corollary (2.1) to Turan’s or Wei's theorem we know that any independent
set in ¥ of maximum cardinality a(G) satisfies

6> __lal

“O>GT2E " [s-8)"

vrith equality if and only if % is a union of disjoint cliques, each of cardinality
|S— "% since g is regular.

An independent set in %g is a set of distinct elements g, g,,..., g which
satisfy g, — g;¢S—S for i#j. When S is sum-frcc, we saw in the first paragraph
that r <|G|-|S—S|-|SU-8|+3. Thus

IGUIS - S|<a(G)=|G|-|S-S|-|SU~S|+3

and the inequality has been proved. Furthermore the right-hand side is equal to

the left-hand side if and only if ¥ is the union of disjoint cliques, each of
cardinality |S —S|.

When we have equality, the elements of $—S themselves form a clique, since
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each element of (S~S)~—{0} is connected by an edge to 0. Thus S—3 is a
subgreup of G, since the former is closed under differences. We claim that S is a
clique in ¥s, whence {S|=|{S—S] and S is a (non-trivial) coset of S—S. For the
proof, note that each pair of elements of S is connected by an edge in ¥s. Suppose
a¢ S and a is connected to each member of S, i.e. (a—S)U(S—a)< S—S. Then:

(i) 2a¢ S; otherwise there exists an s€ S 'such that 2a=s ora=s—aeS-S§,
contradicting the fact that no element of S — S is connected to any element not in
S-S

(ii) a¢ S+S8; for otherwise there exist s,, 5,€8S such that s,=a-5,€$-8§,
contradicting S is sum-free.

But a¢ $—S & (a+S)N S =P. This, together with (i) and (ii) imply that S U{a}
is also sum-free contradicting our assumption that S is locally maximal. Thus S is
a clique in 9. Clearly S is a coset of S-S, since two elements of G are in the
same coset modulo a subgroup if and only if their difference is in that subgroup.
Finally, —S is also a coset of $—S.

Thus either §=-S or SN-S=¢. If S=-S and |S-S|+|SU~-S§|-3=
|G| (1~|S-S|™), then |S|=|S —~ S| yields |S]| (2|S|—-3)=|G| (|S|—1). But |S|-1 is
relatively prime to |S| and 2 |S|~ 3, so |S| =2 =|G], a contradiction. So SN~—§ =,
and the equality gives

|G|

3|s|—3=|—s—fsl(lS|—1)

1.e. S—8 has index 3 in G.
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