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Results on vertex coloring and the vertex independence number of )I finite graph are used to 
prove: 

Z&mm. L.et G be a finite group with conjugacy classes indexed by cardinaiity: 1 =][x,]lr 
IrxJls. - * , and let C,(x) denote the centralizer of x. If m is the smallest integer i such that 

IIx,ll + IExJl + * * - + l[xJ~=IC(x,)l, then each abehan subgroup A of G has cardinality IAId 

Ih,ll +lIxJl+ * * - +lbmll. 
7&eorem. Let G be a finite group with a proper subgroup M, such that x ~M-{l}+~(x)t~ 

M. Then G contains at least [lG[“‘] paitwise non-commuting elements, and hence G cannot be 
covered by the union of fewer than [IG]“3] abelian subgroups. 

7korem. Let S be a locally maximal sum-free subset of the abelian group G. Then 
IS-Slc!SU-Sl-3~IG[(Z-IS-SI-‘),withequalityifandonlyifS-SisasubgroupHofG, 
[G: H]=3, and S is a coset of H. 

Some open problems see also stated. 

1. Iutrvductiou 

In this paper graph theoretic results concerning the degree sequence, vertex 
coloring, and the vertex independence number are used to derive theorems about 
finite groups. First, two elements X, y of the group G are connected by an edge 
whenever they commute: xy = yx. A well-known fact about coloring the vertices 
of a finite graph is shown to yield an upper bound to the order of the largest 
abelian.subgroup(s) of G, in terms of the cardinalities of the conjugacy classes of 
G. The same graph, and a lower bound to the vertex independence number in 
terms of the degree sequence, yields a sufficient condition on a non-abelian group 
G in order that G contain at least [ICI+] pairwise non-commuting elements, and 
hence cannot be covered by the union of fewer than [IGlfJ abelian subgroups. 
Such groups are, for example, permutation groups of prime degree, Frobenius 
groups, the simple groups PSL(2, p), and the sporadic simple groups. 

Finally, turning to finite abelian groups G and an entirely different graph 
association, we use the vertex independence number to prove an extremal result 
concerning the cardinalities of the (disjoint) sets S U -S and S-S when S is a 
locally-maximal sum-free subset of G. Along the way we find a lower bound for 
all such S c G, of the form IS( aconstant. \GI”. We also show that whenever 
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IS + S(a c IS( the lower bound can be improved to IS\ >lG(/f(c) where f(c) is a 
quadratic function of c. 

2. 

Let g be an undirected graph, with no loops or multiple edges, wlnose vertices 

are {x1,x,,..., a}. The degree d(x) of a vertex is the number of edges incident 

with x. We say that the vertices of S can be c-colored whenever there exists a 
partition of (x,, x2,. . . , x,,) into c subsets, with no two vertices in the same subset 

joined by an edge of 5% A complete subgraph of 0 is a subset of the vertices, every 
p.air of which is connected by an edge of %. A maximal complete subgraph of Q is 
called a clique. Thus if 59 can be c-colored, each clique has cardinality SC. 

Leanma 1 [Berge, p. 325, Corollary I]. Ifi for some integer q 2 1, the number of 
oertices of degree %q is sq, then YE can be q-colored. 

Let G be a finite group. The conjugacy class [x] containing x E G is defined by 
Ix]= (y-‘xy ( y E G). The centralizer of x in G is given by C(x) = 
{y E G 1 y-‘xy =x), and the center 2 of G is given by Z(G) = nxEG C(x). We will 
use the basic fact that I[x]l a IC(x)l= ICI, the order of G. 

‘Lbewem 1. Let G be a finite group. Index the conjugacy classes of G according to 
cardinality: 1 s \[xJ G l[xJl< * - - . Let m be rhe smallest integer i such that 
IMI + IMI + - * - + j[q]lalC'(q)l. Then each abelian subgroup A cG has order 

iA~+,ll’~lx,ll+~ - +ibnJl. 

Proof. The theorem is clearly true if G is abelian, so assume that G is non- 
abelian and a largest centralizer (#G) is C(x,). Thus I[xJl = \[xJ\ = * - - = I[x~-Jl= 

1. I[x<]la2, and IC(X~)~~IC(X,+,)~~~C(X,+~))~. - -. If A<G is maximal among 
abelian subgroups of G, then clearly Z(G) 6 A tl C(q). Furthermore IA\ G IC(xJ. 
To see this suppose there is an element a E A, a# C(x,). Since A SC(a) and 
a& ZiG). we have IA(sIC(a)l<lC(x,)\. Since the conjugacy classes partition G, 
wi+h i; non-abelian, the integer m (in the statement of the theorem) must be asl. 
If m = ’ then 1~1 sIC(x,)l ~l[xJl +I[x,]l+ - - * + I[x,J and we are finished. So 
assume m 2 I+ 1. We now consider the graph so on the elements of G, with 
x, y E G connected by an edge just in case xy = yx. (gG-= is the subgraph with 
Z(G) and connecting edges deleted, and we claim chat 5&_, can be &][x& 
colored. For this we show that the number of vertices of degree BCE,)[JC~]), is 
<Cr.“-, l[xi]l. Clearly each vertex y E G-Z has degree ICY(ylZ)- 1 in $&_+ If 
\C(yJ\ - \Z\ - 1 aIT1 l[q]l, then 
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Thus IC(y)l> jCfx,,,)l which implies that I[y]l< I[xJl. Thus y has already been 
counted among UzT’ [q], and we have shown that cz<’ If%]1 is an upper bound 
to the number of vertices of degree 3cElI[xJi. By the lemma the vertices of 
3o_z can ‘be ~~~~fx&colored, and hence the vertices of 3G can be 

(121 +XZt ([x&colored, that is CC1 @J-colored. Tlms each clique in ‘is, has 
cardinality axI”_, ][&]I and the theorem is proved. 

Remarks. Let M be an abelian group of odd order 2k - 1, k 2 2. If x has order 2 
and satisfies xyx = y-’ for all y E M, then (x, M), the group generated by x and M, 
is called a generalized dihedral group and has conjugacy class cardinalities: 

1,2,2,2 ,..., 2,2k-1. . 
k - 1 limes 

Here the integer m no the theorem is equal to k, and in fact we have 1 + 2 + 2+ 
l * - +2 = 2k - 1 = IMI, i.e. equality can occur. 

A check of the soluable groups with a small number (s7) of conjugacy classes 
reveals that in each case, except G = Sym(4), the symmetric group on four 
symbols, the sum zE1 l[xJl is in fact equal to IC(xJ, the largest centralizer #G. 
Among these groups most (but not all) are Frobenius groups. 

FrohIem. Find necessary and sufficient conditions on G in order that equality 
hold in Theorem 1, for some abelian A < G. 

In Sym(4), and each of the non-solvable groups with ~7 classes, zz”=, ][xJl is 
larger than IC(x,)l. However there are many examples of groups where this sum is 
less than JC(q)l; for example in Sym(n), n > 7, Ah(9) and other simple groups. 

3 L . 

Por the remaining applications of graph-theoretic methods we need tbe notion 
of vertex: independence nwmber. An independent set in a graph .%# is a collection of 
vertices no two of which are connected by an edge in $. For a finite graph 5% let 
a(%) (the independence number of ‘3) denote the largest cardinal@ of any 
independent set in Y3. The following theorem relating a(%) and the degrees of the 
vertices of %?, was proved in 1980 in V.K. Wei’s Ph.D. dissertation [ll, pp. 
104-1061, by removing a vertex c3 of minimum degree, all vertices connected to 
uo, and all edges incident with any of these vertices, Here we g!ve a different 
proof’, based on deleting a vertex of maximum degree. 

‘Iborem 2 W.K. Wei). Let d(v) denote the degree of the vertex ZJ in 54. Then 

&WC,,, l/(d(u) + l), with equality if and only if %? is a union of disjoint cliques. 

1 My thanks to Jerry Griggs and Tom Ramsey for pointing out this proof of Theorem 2. It was also 
proved, independently, by Yak Care, and others. 
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Roof. Let u. be a vertex of maximum degree: d(u,)ad(u) for all u ~9% Let ‘3T 
be the deleted graph consisting of the vertices of U-{u,) and ah edges of I8 not 
incident with uo. The inequality holds if 3 has no edges, or if 9 has only 2 vertices. 
Let d-(u) denote the degree of u in T. For u ET, d(u) = d-(r) if (u, uo) is not an 
edge of Y, while d(u) = I+ d-(u) if (u, uo) is au edge of 3. Clearly a(F) d a(S) s 
a(W)+ 1. In case a(S) = a(F) + 1 it is easy to show, using induction on a(W) 
and the fact that l>l/(l+d(u,)), that a(3)~~U~~l/(R+d(u)). But to charac- 
terize the case of equality, we will need the fact that we always have 

c 
1 

z: 
1 

ue’8- l+d-(u)S-u,,l+d(u)’ 

Clearly the latter, together with induction, yields the inequality for a(3). 
will shb>w that 

So we 

I+:-(&I+&) 

1 

- %- d<uo) - 

Since d-(u) = d(u) if (u, uo) is not an edge in 3, while d-(u) = d(u) - 1 if (u, uo) is 
an edge in 9, the latter inequality reduces to 

c l 1 

VP% d(u)(l+d(u))~l+d(uJ 
( U.V”) edw 

Since the left-hand side has d(u,) terms, each 3 l/(d(u,)(l + d(u,))), the inequality 
holds, and the first part of the theorem is proved. 

Clearly, if 9 is a union of disjoint cliques, then a(S) = CueS l/(1 t d(u)). Now 
suppose the latter equality holds for a graph 3. Let u. and 9?- be as before. Since 
we always have 

equality between first and last implies that 

a(W)= c l c l 
Uc’8 1 i- d-(u) = ur’9 1 + d(u) * 

By in&ction we may assume that W is a ILvnion of disjoint cliques, say 

K,, Kz. KJ, . . . , K, where r = c-x(W) = a(@. Thus u. must be adjacent to every 
vertex in some Ki, or else there is an independejnt set in 3 of cardinality r + 1 (~0 
and one vertex from each Ki, 1 c is r). If u. is a.djacent to every vertex in & and 
has no other adjacent vertices, then t8 is a clisjoint union of cliques. If u. is 
adjacent to a vertex not in Kiy then d(u,,) a lKil+ 1, and d(u) = lKi\ for each u E Kim 
But now 

c l 1 

usw d(u)(l+d(uH’l+d(uo) 
(C.U,,) edge 
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contradicting the equality between &,- l/( 1 + d’(u)) and zar l/(1 + d(u)); the 
proof is now complete. 

Recall Tchebychef’s inequality: 

2 4 f: 6iaR f &I$ 
i=l i-1 1=+1 

for (q}t and (6$ oppositely ordered sequences of real numbers, with equality if 
and only if either all & are equal or all bi are equal. From this (or Cauchy’s 
inequality) we obtain 

or 

where V(S) is the vertex set of 49 and E(S) the edge set of 3, with equality if zmd 
only if 0 is a regular graph. This, together with Wei’s theorem, yields the 
following corollary, which is also a corollary of Turan’s theorem characterizing 
graphs $ with n vertices, a(%?)~ b e n, and IE(S)I a minimum (see, e.g. Cl, p. 269 
ff.& 

Cor0Iky Zl. (u(g) Z ] V(%)]‘/(l V(%?)] + 2 IS(%)]), with equality if and only if B is a 
disjoint union of cliques of the same cardinality. 

If the center Z(G) of the group G is non-trivial, and G = 0 &Z is a coset 
decomposition of G, then G = l_J (x,Z) is a covering of G by abelian subgroups. 
Responding to a question posed by P. Erdiis and E.G. Straus [3], DR. Mason has 
shown [7] that even when jZj = 1 there are ~3 IGI + 1 abelian subgroups which 
cover G. 

With the ‘commuting graph’ & defined as in the proof of Theorem 1, a@) (or 
cu(@) denotes the maximum cardinality of any set of painvise non-commuting 
elements of G. 

Define a(G) to be the minimum number of abelian subgroups in any such 
collection whose union equals G. The pigeon-hole principle and our previous 
discussion give ar(G)ca(G)s[G:Z], and by Mason’s result u(G)s$(G(+l. If 
k(G) denotes the number of distinct conjugacy classes of G and A is any abelian 
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subgroup of G, we also have: 

Comllary 2.2. (a) /Gjsa(G) - k(G), 
(b) IAl’s k(G) * IGlt 
(c) JA12<a(G) - k2(G), where in each cuse equality holds if and only if G is 

abelian, and A = G in (b) and (c). 

Proof. Clearly (c) follows immediately from (a) and (b). To prove (a) we use 
Corollary 2.1 and count the edge.s of ‘s,. Hence d(x) = IC(x}l- 1, x E G, so 

2W3) = c (IC(x)( - 11 
XEG 

= @ 
lstlnct 

Ibll . Icbdi) --ICI = W(G)-- 1) ICI, 

classes 

as b3x)\ * I[xll= IGI = IW@l f or all x E G. Now (a) follows readily from Corollary 
2.1. and we have equality in (a) if and only if ‘& is a complete graph, i.e. G is 
abelian. To prove (b) we may assume A is a maximal abelian subgroup. Summing 
over the k,(A) distinct G-classes [a], a E A, we have 

~ ICI- k(G) <ici - k(G) 
~$1C,(dl I4 

since A is abelian; thus IAl’ s k(G) - IGj follows. If G is abelian and A = G, we 
clearly have equality. Now assume ‘we have equality. Then for each a, b E A, 

lb11 = IBll, h ence [[all = 1. But then A z 2. Since A is a maximal abelian 
subgroup, A must be all of G, and the proof of (b) is complete. 

Remarks. Using Corollary 2.2(a) we can produce a lower bound to a(G), and 
hence to a(G). ,whenever we have an upper bound to k(G). For example, when q 
1‘ ? prime power ~4, it can be checked that each simple group G E{PSL(~, q)} 
satisll,q 

where cl = lb)“’ and c2 = (-‘s)1’3. Thus, for each simple group G E (PSL(2, q} we 
know that a(G)2 clGi2’3 and hence that such G cannot be covered by the union 
of fewer than c IG12’” abelian subgroups. It is also likely that k(G)Gc2 (G(“3, and 
hence a(G) :r c JG)“3 for all finite non-abelian simple groups. On the other hand, 
the author has shown [2] that for each fixed E > 0 almost all integers n sx, as 
x-w, have the property that k(G)>IGJ’-’ for each group G of order n. In 
TIre0re.n 3 we will show that if the group G contains a proper ‘centralizer-closed’ 
sllhgrol p, rhen a(G) 2 [IG I”‘] (greatest integer function). 
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Concerning Corollary 2.2(b), we note that the dihedral groups D2,, given by 

D2n =(x, y 1 x2 = y” = e, x-‘yx = y-l) 

have order 2n, with W&j =$n +$ (for )r odd) and k(D2,) e&n +3 (for n even). 
In each case there is an abelian subgroup A of order n, and k l \Gi/]Al’ J 1 as 
n4m. 

Finally, the groups D2, with n odd show that a(G) = a(G) = 3 ICI+ 1 can occur. 
Here k Y, XY, xy2,. . . , XY”-‘I consists of n + 1 non-commuting elements of D2n. 
Other non-abelian groups G which satisfy a(G) = a(G) are those with I(;/ = pq, 
where p<q are primes and q = 1 (mod pj, and those with 101 =pq*, where 
q < p <q*. In fact any non-abelian group G in which all centralizers (except Gj 
are abelian satisfies cu(G) = a(G). For in such G, let g,, g2,. . . , g, be a largest 
collection of pairwise non-commuting elements. Then each x E G must commute 
with a.t least one of the g,, so G = lJfL7’ C(g,). Since each centralizer is abelian 
a(G)ccr(G). But always a(G)6 a(G), and equality follows. 

The condition that all centralizers be abelian is not necessary, however. In S,, 
the symmetric group on the four symbols {1,2,3,4}, the centralizer of the 
permutation (12)(3 4) is non-abelian. Furthermore S, is covered by the 10 
abelian subgroups: ((12 3 4)), ((1 3 2 4j), ((12 4 3)), ((1 2 3j), ((1 2 4)), ((1 3 4j), 

((2 3 4)), {(I 2), (3 4), (I 20 4), 21, ((131, (2 41, (I 3)(2 4), e), and {(I 4), (2 3), 
(14)(2 3), e}, which intersect pairwise only in the identity e. Finally, the first seven 
generators, together with (12), (13), and (14) form a collection of 10 pairwise 
non-commuting permutations. Thus a(&) = a(&). 

problem. Find necessary and sufficient conditions on G in order that a(G) = 

a(G). 

Lemma 2. Let G be u finite non-abeZian group such that cz(G)~jGl’- 1, O<rC 1. 

then: 
(a) For each x E G, IC(xjl> lG(“-‘“*. 
(b) There exists an element g E G-Z(G) with jC(g)l >IGl’-’ and 

IC(x) n C(g)/ > IGl(*‘ 3r)i2, for each element x E G. 
(cj Finally, in every finite group G, at least k(G) - cu(G) of the distinct conjugucy 

classes in G satisfy l[~]l<lGl”~. 

Proof. (a) In the graph go we have the degree of a vertex d(x) = IC(x)l -1. 
From Theorem 2 it follows that CXEG l/(C(xjl <a(G). Since IC(x>l== lGl/l[xJl is a 
class invariant, 

Thus we obtain Llasses I[x]l*< IGIl+‘, and each class satisfies l[x]l CIG[(1+r)‘2, i.e. 

IC(xjl > ]Gl”-“‘*. 
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To prove (b) we use 

If ]C(x)]a]G1’-’ for each x E G-Z, then our hypothesis on a(G) gives 

IGl--~Z~ PI I4 -- _- 
ICI”-’ 

<a(G)-~~lGlr-l IGlp 

and rearranging the extremes gives 

lslzl (I,;,-T 1 --- 
IGl ) ’ 

Since ]Z~~~C(x)]~]G]‘-‘, we are led to the contradiction lsl- l/]G]‘. Thus 

lC(g)l> ICI”-’ f or some g E G -Z. For each x E G we know that 

since C(g) and C(x) are subgroups of G (see, e.g. [S, p. 49. By (a) the right side 
of this inequality is >]GI”-3’“Z. 

To prove (c), let f(G) denote the number of distinct classes of G which satisfy 
][x]]‘<: ]Gl. Then k(G) - Z(G) of the classes satisfy ][~]]‘a ]G], so that 

tk(G)- I(G)) IGl c c l[x]12~ ICI - a(G), 
distinct 
classes 

as in the proof of (a). Thus I(G)rk(G)-a(G). 

From Lemma 2(b) we see that if \[x]la IG]’ f or every non-central class [x], then 
a(G)2[IGI’], that is a(G)5minXEz I[x]]. When r = f above, Lemma 2(c) yields 
a(G?ak(G)-IZ]. But in such groups IGl”‘~(IG/-IZl)/(k-(ZI), so k(G)-IZIC 
JG I”‘.. Thus Lemma 2(c) does not improve the lower bound for a(G) when r = $ 
above. 

WC turn now to those groups G which contain a proper ‘centralizer-closed’ 
zbgroup M, that is for each x E M-{ l}, Co(x) c M. Examples are: all Frobenius 
group’-. all transitive permutation groups on p (a urime) symbols, all of the simple 
gro=~ps PSL(2. p), PSL(2,2”), and other PSL’s, and all 26 of the sporadic simple 
grOUp!i. 

Theorem 3. Ler G be a group containing cl proper subgroup M such that whenever 
x E A4 -{I}_ C,(xlc M. 77~1 a(G) a[lGl”3]l where [r] = the greatest hteger W. 

Pro&. Suppose a(G>c[]G/“3]. Then a(G)~IGIL’3-l. In Lemma 2, put r=f. 
From Dart (b) of the lemma we know that there exists an element g E G -Z, with 
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the property that )C(g) (7 C(x)] B 1 for each x E G. However, this contradicts our 
hypothesis on the subgroup M. For suppose g EM-(l), and x&M. Then y E 
M-(l) implies that y 4 C(x), and y E G -M implies that y & C(g). In case g$ M, 
let x E M - (1). Then y E G -M implies that y$ C(x), whereas y e M-(l) implies 

that Y 4 C(g). 

CorogarY Let p be any prime dividing the order of the non-abelian group G. If 
there exists an element LEG such that IC(x)l=p, then a(G)3[lG11’3]. 

Remark. M. Isaacs [6] has shown that the corollary has a direct group-theoretic 
proof, as follows: Let P = (x), the cyclic subgroup of order p generated by x. Since 
P= G(P), P is a Sylow p-subgroup of G, i.e. p’l ICI. Also No(P)/C&(P) is 
isomorphic to a subgroup of the automorphism group of P, a cyclic group of order 
p-l. Thus ]G]=p*[G:N].[N:P]=p.m*e., where m=[G:N] and elp-1. 
Since any collection of m non-identity elements, chosen one from each of the m 
conjugates of P, are pairwise non-commuting we have a(G) a m. If the theorem 
were false, then a3(G)< IG], so m3<]GI, m2<pe<p2 and m<p. By Sylow 
m-l(modp)so m= 1 and p < pe = ]G] c p2. Also, P is a normal subgroup of G 
with G/P = N,(P)IP a cyclic group. 

Now let q be a prime, q 1 e, and suppose Q is a subgroup of G. with IQ1 = q. If 
x f P and x-‘Qx = Q, then, for each y E Q, (x-‘y-‘x)y E Q and x-‘(y-‘xy)~ P 
since P is normal. Thus x-‘y-‘xy E P n Q = {I} or y E C(x), in contradiction to 

C(P) = p. Thus p 1 I&tQ)I, so p 1 [G : N&Q)] and Q has at least p conjugates, 

say Q1, Qz, . . . , Qp, with Qi = (xi). If no pair xi, xi commute, then a(G) a p > IGIf. 
If 4 and 3 commute, then H = (4,x$ is abelian, but since Xj 6 (xi), H is non-cyclic 
of order q2. Since H fl P = (11, H = HP/P E G/P, which is cyclic, a contradiction. 

In 1975 Erdiis suggested the problem of finding an upper bound to a(G) in 
terms of o(G), whenever the latter is finite, and Isaacs [6] found the following: 

lbwem. [Isaacsl. Define a function f(n) inductivel$ by f(l)= 1 and f(n)= 
u +@f(n - 1). If a(G)C then a(G)sf(a(G)); in particular a(G) 

Proof. Put a(G)=cu. If x,y~G with xyfyx and cl,c2,...,c,~C(x)nC(y), 
then two of the elements x, cl y, c2y, . . . , c,y must commute. Since x commutes 

with none of the c,y, two of the latter must commute and thus two of the ci must 

commute. Hence (Y (C(x) 0 C(y)) C a(G), whenever ry # yx. 

Now let x1, x2, . . . , x, be paixwise non-commuting and let Bik = C(x,) n C(G) 

for jf k. Then a(Bjk)< a(G), so working by induction on (Y (and using the fact 
that f is monotone) we conclude that Bjk is the union of at most f(a - 1) abelian 



40 E.A. Bernam 

sdbgroups. Now let Ai = C(q) - U k*i Bik. Since 

G = U 
lsjrga 

C(3) = r<y.J_ (Ai)‘J i &, 
. 

once we show rthat each (Ai) is abelian, we have proved that 

f(a - 1) =f(a(G)). 

To show each (Ai) is abelian, let u, u E A,. Then x1,. . . , x+~, u, xj+), . . . , x, are 

Q pairwise non-commuting elements, so v must commute with one of them. Then 
u commutes with u, and (Ai) is abelian. 

Isaacs also finds that a(G) =2n + 1 for G extra-special of order 22n+*, and 
or(G)2 2” + 1. Thus, whereas the above theorem shows that always n(G)c 
f’(a(G))<(a(G)!)*, there exist G for which ~(G)>c”‘~‘, with c a constant >l. 

In this section we assume G is a finite abelian group. A subset S c G is called 
.sum-free if whenever x,y~S, x+y$S. If S+S={x+yjx,y~S}, and S-S is 
(defined analogously, we see that S is sum free if and only if 

sn(s+s)=g=Sn(s-S). 

A sum-free set S c G is called locally maximal (or non-extendable) if, whenever 
T is a sum-free subset of G and SE ‘I, then S = T. Such a set S is called maximal 
if S also has the largest cardinality among all sum-free subsets of G. Considerable 
progress has been made on the general problem of characterizing all maxima1 
sum-free sets in a given finite abelian group G; see e.g. [lo, Ch. 7, pp. 2052421. 

Locally maximal sum-free sets have been studied mainly because of their 
connection with the Ramsey number(s) I&(3,2): the smallest positive integer n 
such that any Ik-coloring of the edges of the complete graph on n vertices results 
in at :;ast one monochromatic triangle. In particular it is known [43 that if the set 
G ctf non-zero elements can be partitioned into k sum-free sets, then a 
triangle-free PE-coloring of the complete graph on IG] vertices is possible, and 
each sum-free set has cardinality <IX, __,. Further (see [9]) every sum-free 
partition of G* can be ‘embedded* in at least. one covering of G* by locally 
maximal sum-free sets, and again each of there has cardinality less than Rk_l. 

Thus it is of interest to find the minimum cardinality of the locally maximal 
sum-free sets in a given G, as well as to characterize all locally maxima1 sum-free 
subsets. Our first results concern lower bounds for the cardinality of any locally- 
maximal sum-free set, in terms of /G]. Let $S denote {x E G 12~ E S}. Clearly if S 
is sur+free, then $ is sum-free, and if ICI is odd, then j$Sl =\Sl. When jGj is 
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even, we see immediately that I$$1 6$ ICI, since every sum-free set in any f 
group has cardinal&y s$\GI (see e.g. [lo, p. 2OSJ). Also l&l =4iGl occurs e.g.. 
when S = (2 + 4i)g-’ c &,. 

‘I&o- 4. Let S be a Zody maximal sum-free set in G. Then . 

(i) G=SU(S+S)U(S-S)U$?J. 
(ii) If ICI is odd, then \S\~~((24)GI-15)‘n-3), 

(iii) If IGi is ewn, then ISI a;((12 ICI- 23)ln - 1). 
(iv) If IS+SiscIS/, tkn iSl~iGll(c”i-c-t-2) for \G\ odd, and IS\> 

JG)/2(c2+c + l), for IGl even. 

hf. For (i), suppose x E G \S U (S + S) U (S - S). Then S U {x) is not sum-free. 
Thus either 2x E S, x E S + S, or (x + S) n S# 8. Since S is sum-free, the only 
possibility of the three is 2x E S, i.e. x E 8s. Thus 

G=SU(S+S)U(S-S)U$. 

For (ii) and (iii) we use the fact that for every subset S, 

IS+Sls~~‘)+lSj and IS-Slgl+2ft’). 

These estimates, together with (i) and our earlier remarks on j$S(, show that for 
IGl odd: IGI~$IS(2+$ISI+1, whereas for /Cl even we have fGI~31Slz+ISl+2. 
To prove (iv), we use a result of 1.2. Ruzsa f8]: For an arbitrary set A E G, if 
]A fAldc IAI, then IA -AIsc2 I,AI. The lower bounds on ISI follow in each 

case, as above. 

Remarks. In our example:. S ={2,6,10,14,. _ . ,4pz -2)~&, the sum-free set &S 
also satisfies I$?+( = 2 IS(. There is ample evidence that &!!Zl s 2 (S( is true whenever 
S is a ZocaZly maximal sum-free set. It does not hold for arbitrary sum-free sets, 
as the sum-free set S = ((2,0), (2,2), (2,3)) in .Z!.&& shows. I-Iere S U((2,l)) is 
sum-free, and @$I = 8. I” IfSI s2 iSI is true, we may modify our lower bound 

estimates, when (GI is even, to (S( a$((24 (G(- 11)‘12- 5) in part (iii) and (S( a 
IGl/(c’+ c +3) in part (iv), of Theorem 4, 

In C9, p. 2261 it is pointed out that if &n +2) s h ~$(n +2), then there exists a 
locally-maximal sum-free set in B, of cardinality h, namely (!t, h + 1, . . . ,2h - 1). 
We add to this that in Zl,k+Z, k odd, the set (2k + 1,2/r i2,. . . , Sk, 4k-t 1, 
6k + 1) is a locally maximal sum-free set of cardinality C& (G\+2. 

Problems. (1) Does S locally maximal sum-free imply I$( ~2 iSj? 
(2) Decide whether or not there exists a sequence of abelian groups G and 

locally maximal sum-free sets S c G such that IS f Sl/jSl + 03 as IGl+ 00. 
(3) Decide whether or not there exists a sequence of abelian groups G and 

locally maximal sum-free sets S c G such that ISI CC IGj’” c a constant, as IGj ---f M. 
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As a prelude to our next use of the vertex independence number, consider an 
abelian group G of order divisible by 3, and H a subgroup of index 3 in G. Then 
G=HU(H+a)U(H+2a), where a, 2a$H, but 3aEH. Now S=H+a is a 
locally maximal sum-free set in G, since G = SU(S + S) 6 (S-S). Furthermore 

\S-Sl+\SU-Sl-3=3()HI--l)=\G((l-IS-S/-’). 

Theorem 5. Let S be a &ally maximal sum-free set in the finite abelian group G. 
Then IS - S( + IS U -Sl- 3 d \Gl (1-I-S - Sl-‘), with equality if and only if S -S is a 
subgroup of G, [G : S - S J = 3, and S is a coset of S - S. 

Proof. The example immediately above shows that if S is a non-trivial coset of a 
subgroup of index 3 in G, we have equality. For the converse, let S be locally 
maximal sum-free in G. If xl, x2,. . . , x, is any set of (distinct) elements of G with 
x.-X,$S-S, ifj, lsi, j<r, then we first claim that I 

4G(-IS-S\--ISU-S(+3. 

For, consider the r-set: y, =O, y2=x2-xl, y3=X3_Xr, s m s, yi =%-Xl, u . . . Since 
i#j+yi-yj=q-+ only y1 belongs to S-S. Also at most one of the yip ia 
belongs to S, and at most one of the yi, i a2 belongs to -S. Since S is sum free, 
(S - S) n (S U -S) = 8, and thus 

r+((S-SI-l)+(ISU-SI-2)4Gl. 

Now let S be any subset of the abelian group G, ICI= n, G = 

(RI* R2r. - - 7 gn). Define a graph 9& whose vertices are gl,. . . , gnr with an edge 
{g, gi) between g and gi if and only if gi - gj E S-S. For each g E G there are 
IS -Sl- 1 elements gj# g such that g -pi E (S-S)-(O). Thus 5& is a regular 
graph, each vertex of degree IS -S\ - 1, and Y?s has E = $n(lS -S\- I) edges. 
From Corollary (2.1) to Turan’s or Wei’s theorem we know that any independent 
set in ss of maximum cardinality a(G) satisfies 

\.4h equality if and only if Y& is a union of dtsjoint cliques, each of cardinality 
IS-.:; since $& is regular. 

An independent set in 5& is a set of distinct elements g,, gr, . . . , g, which 
satisfy gi - gi$ S-S for if j. When S is sum-free, we saw in the first paragraph 
that rs\GI-IS-St--ISU-SI+3. Thus 

and the inequality has been proved. ‘Furthermore the right-hand side is equal to 
the left-hand side if and only if 5!& is the union of disjoint cliques, each of 
cardinal&y \S -S\. 

When we have equality, the elements of S -- S themselves form a clique, since 
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B 
each element of (S -S)-(O) is connected by an edge to 0. Thus S-S is a 
subgroup of G,’ since the former is closed under differences. We claim that S is a 
clique in %Js, whence ISi -IS- Sj and S is a (non-trivial) coset of S-S. For the 
proof, note that each pair of elements of S is connected by an edge in ss. Suppose 
a$ S and a is connected to each member of S, i.e. (a - S) U (S - a) c S - S. Then: 

(i) 2a$ S; otherwise there exists an s ES such that 2a = s or a = s-a E S-S, 
contradicting the fact that no element of S -S is connected to any element not in 
s-s. 

(ii) a$S+S; for otherwise there exist sI,sa~S such that ~,=a-SUES-S, 
contradicting S is sum-free. 

But a# S-S e (a + S) n S = 8. This, together with (i) and (ii) imply that S U(a) 
is also sum-free contradicting our assumption that S is locally maximal. Thus S is 
a clique in @+ Clearly S is a coset of S-S, since two elements of G are in the 
same coset modulo a subgroup if and only if their difference is in that subgroup. 
Finally, -S is also a coset of S-S. 

Thus either S =-S or Sn-S=@ If S=-S and IS-S(+(SU-Si-3= 
[Gi (1 -IS - Si-I), then ISi = IS - Si yields iS( (2 iS( - 3) = jG\ (ISI - 1). But ISi - 1 is 
relatively prime to ISI and 2 iS[ - 3, so ISi = 2 = lG\, a contradiction. So S n -S = 8, 
and the equality gives 

3 lSi-3-is_si -~(ISl-I) 

i.e. S-S has index 3 in G. 
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