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For given finite (unordered) graphs G and H, we examine the existence of a
Ramsey graph F for which the strong Ramsey arrow F— (G)* holds. We concen-
trate on the situation when H is not a complete graph. The set of graphs G for
which there exists an F satisfying F — (G){* (P, is a path on three vertices) is found
to be the union of the set of chordal comparability graphs together with the set of
convex graphs. € 1993 Academic Press, Inc.

1. NOTATION

For a set S and a given ne w we define [S]"={T<S:|T| =n} to be the
set of all subsets of S of size n. The power set of S is denoted by 2(S).

For this discussion, a hypergraph G = (V(G), E(G)) is a finite vertex set
V(G) together with edges E(G)cP(V(G)); for an (ordinary) graph,
E(GYS [V(G)]% f H is a weak subhypergraph of G, ie., V(H)c V(G)
and E(H)SP(V(H))n E(G), we write Hc=G. If H= G and E(H)=
P(V(H))n E(G) then we say H is an induced subhypergraph of G, denoted
by H=<G. Letting =~ denote graph isomorphism, we use the binomial
coefficient (§)={H'<G: H' = H}.

An ordered hypergraph (G, <) is a hypergraph G, together with a total
order < on V(G). Two ordered hypergraphs are isomorphic just in case
there is an order preserving graph isomorphism between them. Definitions
analogous to those given above hold for ordered hypergraphs as well. For
a hypergraph H, let ORD(H) be the set of (distinct) isomorphism types of
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orderings of H. It is often convenient to abuse the notation and deliberately
confuse an isomorphism type with a hypergraph of that given type and
hence we write ORD(H) = {(H, <), (H, <)) .., (H, <)}

For a given (unordered) hypergraph H and an ordered hypergraph
(G, <*) we define

Gs S *
DO(H, G, €*)= {(H, < )eORD(H):( H < );é @},
the distinct orderings of H in (G, <*). Let the minimum number of distinct
orderings of H in any one ordered G be denoted by

mdo(H, G) =min{|DO(H, G, <)|: (G, <)e ORD(G)}.

For example, if an ordinary graph H is complete, then mdo(H, G) <1 for
any choice of G.

For hypergraphs F, G, and H, and a fixed re w, we use the standard
(strong) Ramsey arrow notation F— (G)” to mean that for any coloring
A4: (L) —r, there exists G'e(l) so that 4 is constant on (%) We use
the analogous notation for ordered graphs. The notation #Z[(G)"]=
{F: F— (G)"} is used to denote the Ramsey class for G in coloring of H’s
with r colors. Observe that for these Ramsey-type statements to be non-
trivial we usually only consider pairs G, H so that mdo(H,G)=1. In
ordinary graphs, we use P, to refer to a path of length n on n+ 1 vertices
and S, =K, , for the star on n+ 1 vertices.

2. PRELIMINARIES
We recall the Ramsey theorem for ordered hypergraphs [1, 8, 9].

THEOREM 2.1. Given r € w and ordered hypergraphs (G, <) and (H, <),
ARG, <)"="1#£ .

An application which will be used repeatedly in the remainder has
appeared in [5]. For the purpose of exposition, we review the result here.
Let K= (X, &) be a hypergraph and recall that the chromatic number y(K)
of K is the least ne w so that there is an n-coloring of the vertex set X
yielding no monochromatic edge £ ¢". If there is no such integer, we
write y(K)= co. For a given pair of hypergraphs G and H, let us define a
new hypergraph K, ; on the vertex set ORD(H) with edge set E(K, ;)=
{DO(H, G, <’): (G, </)e ORD(G)}. Since for each ordering of G there
corresponds an edge we may, by abuse of notation, refer to the orderings
of G as edges, i.e., we could say E(K, ;)= ORD(G), and a vertex (H, <)
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is contained in an edge (G, <’) if and only if (H, <,)<(G, <’). We now
give a characterization [5] of those triples H, G, and r for which there
exists a Ramsey graph.

THEOREM 2.2. Let G and H be hypergraphs. Then R[(G)"] # & if and
only if Y(Kn.g)>r.

Proof. Throughout the proof we fix rew, hypergraphs G, H and
K = K; 4. Assume y(K) > r. Enumerate both ORD(H) = {(H, <,),
(H, <), (H, <, 1)} and ORD(G) = {(G, <°), (G, <), .. (G, <* )}
Construct a graph (B, <)=,., (G, <), the (disjoint) ordered sum of the
orderings of G. By Theorem 2.1 choose (B,, <) satisfying

(By, <) (B, < )LH =0,

and for i=1, .., r—1 choose (again by Theorem 2.1) successively (B;, <)
so that

(B,, <)— (B, ,, <)<

We claim that B,_,, the unordered version of (B, |, <), satisfies B, |, —
(G)”. Fix a coloring 4: (%;') - r. By construction there exists (B, <)e
(#5'<) so that for each i, (}'S) is monochromatic. This coloring of
ordered H’s in (B’, <) induces an r-coloring ¥ of the vertices of K
and since y(K)>r, there exists a (G, <’) in the edge set of X which
is monochromatic with respect to . Thus, there exists G*e (%)
monochromatic with respect to 4, giving B,_, € Z[(G)!].

Now assume x(K)<r. Choose a coloring : ORD(H) — r so that each
element in ORD(G) is multi-colored. Examine any hypergraph F and
impose an arbitrary (but fixed) ordering <* on V(F). This naturally
imposes an order on each H’ e (},), so color (}) according to . That is,
define 4:(f)—r by A(H')=y({(H' 6 <*)) for each H'e(}), where
(H', <*)e ORD(H) is the < *-ordered H-subhypergraph. Since each
element in ORD(G) is multi-colored with respect to ¥, so also is each
G’ e () with respect to 4. This shows that F¢ #[(G)"], and since F was
arbitrary, Z[(G)"] is empty. 1

This next result [5] can viewed either as a corollary to Theorem 2.1 or
to 2.2

COROLLARY 23. Fix rew. If H and G are (unordered) hypergraphs
satisfying mdo(H, G)=1 then Z[(G)"]# &.

Proof. Let mdo(H, G)=1 and fix an ordering < of G so that every
induced H-subgraph of G is <-order-isomorphic to say (H, <). Apply
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Theorem 2.1 to obtain (F, <)e Z[(G, <) =<']. Using the condition
|IDO(H, G, <) =1, it is now easy to check that the unordered F also
satisfies F— (G)*.

Alternatively, if mdo(H, G) = 1, then K, contains a loop, so

WKy )= 1

LEMMA 24. Fix re o and graphs B, H so that Z[(B)"] # . Then for
all induced subgraphs A< B, #[(A)! 1+ .

Proof. 1f F— (B)", then clearly F— (4). |

3. APPLICATIONS

An ordinary graph containing no cycles is a forest, and a connected
forest is a tree.

THEOREM 3.1.  If G is a forest, then #[(G);*]# .

Proof. 1If (,?‘):g then the result is trivial. If P; K G, then every
connected component of G is a star. Clearly then mdo(P,, G)=1 and the
result follows by Corollary 2.3. So assume P,<G. We will produce three
orderings of G, namely (G, <%, (G, <'), and (G, <?), so that each
DO(P,, G, <), i€3, is a unique pair from ORD(P,). We then conclude
that y(Kp, ) > 2 (for we will have shown K, , contains a triangle) and so
by Theorem 2.2 the result will follow.

Fix a representation of G as a collection of rooted trees with at least one
of these roots being an inner vertex of some copy of P, <XG. Let V(G)=
Liwl,u---w L, bea partition of V(G) into “levels”; that is, each L, is
the union of the jth levels of all the rooted trees comprising G, where L,
is the set of all the roots. Note that we have insisted that a copy of P,
begins in L,, goes “down” to L,, then back “up” through L, and L,.
Impose an order <2 on V(G) which respects

L1<2L2$2L3<2"‘ <2Lna

and let <! be the inverse order of <2 Lastly, fix an order <° of V(G)
which “folds” at levels, i.e.,

o SOLs <Ly <L <Ly <L <L <0,

continuing all levels are exhausted. Let ORD(P,) be enumerated as in
Fig. 1.

It is straightforward to verify that for ie 3, DO(P,, G, £')= {(P,, <,):
Jj#i} as required. ||
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)

(P2, <o) (P2, <) (P2, <9)

Fic. 1. ORD(P,).

Throughout the remainder of this paper, we use the notation for the
three orderings of P, as given in Fig. 1. Note that we cannot conclude from
this proof that the resulting Ramsey graph is also a forest, even if it is
minimal in some sense. Indeed, if Z[(G)%*] # &, G need not be a forest.
If G is a triangle (a K,), we trivially have #[(K;)5*]+# &J; just choose
F=G=K;.

Furthermore, the orderings of the two graphs G, and G, in Fig. 2 show
mdo(P,, G;)=1 for i=1, 2 and hence each #[(G,)$*] is non-empty. Note
that G, consists of n copies of K; attached at a single vertex, while G, is n
copies of K} all sharing a common edge. Alternatively, we could say G, was
constructed by starting with a star §,, replacing each end-vertex with a
copy of K, (edge), and then joining vertices of each K, in the same manner
as the original vertex was. Similarly, G, could be conceived by replacing
the central vertex of S, with an edge in a like manner. As we have already
observed, mdo(S,, P,})=1 and so #[(S,);*] # & also holds.

This method of replacing a vertex by a K, works in general. We first give
a definition which generalizes that for a lexicographic product. Let G be a
graph with a fixed enumeration x,, x,, .., x, _, of V(G). Let K, , K, , ...,
K, ..., K, , be (vertex disjoint) complete (or null) graphs and define the
product G® (ng, ny, ..., n, ;) on the vertex set {J,., V(K,) by

E(G®(ng, .. n, )= E(X,)

iek

V{(yi, ) yie VIK,,), y,€ V(K, ). (x,, x;) € E(G)}.

2n
2n —1
2n -2 n+1
2n—3 n
2n -4 n—1
0 0
Gl GZ

FiG. 2. Vertices of a star exploded into edges.
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In this product, we replace each vertex by a complete graph (possibly null)
and connect each vertex of a “replacement” graph to each vertex of another
“replacement” graph if and only if the replaced vertices were originally
connected. If we let K, denote a null structure (a “graph” with no vertices),
and K, a single vertex, the graph G®(0,1,1,.,1)=G\{x,}. For
example, K, @ (0, 1, 1, 1)=K; and K,® (0, 1,2)=K,.

In applying the definition of this product, we tacitly fix an enumeration
of V(G); our arguments do not depend on which, We remark that if G' =
G®(ny,ny,..,n,_,), then GR M+ L, n,..n,_ )=G'®2, 1,1, 1, ..., 1)
for some appropriate enumeration of ¥(G’). Using this type of inductive
step, it is not hard to prove the following lemma.

LEmMMA 3.2. If for each i€k, n,, m,e wm are given with each n,<m,, then
G®(np, ny, i ISGCR (Mg, My, oy my )

The next theorem can be used to generate a large class of graphs G
for which #[(G)5*]# & (for example, those obtained from forests by
“exploding™ vertices).

THEOREM 3.3. Let rew, graphs G and H satisfy R[(G)?]+# & with
|V(G)| =k. If for each edge (a, b) of H there exists we V(H)\{a, b} so that
exactly one of (w, a)e E(H) or (w, bye E(H) holds, then for any collection
Mg, My s o Ny 1 Of non-negative integers, R[(G® (ny,n,, .. n, NI#@
also holds.

Proof. We first show the result for the case when each »,>0. In
this case we use induction on Y, _, n;, the size of the vertex set of the
product graph. The base step no=n,= --- =n;, _, =1 is the assumption.
Fix positive integers ng, #n,,...n, ,; set G'=G® (ny, 1\, ..., ) and
G'=G®(ny+1,n,,.,n, ), and assume Z[(G')"]# &. It will suffice to
show that Z2[(G")"]1# &.

For each ordering <’ of G’ we will produce an ordering <” of G” so0
that DO(H, G", <')=DO(H, G", <”). In this case, K, ;- will be a weak
subhypergraph of K, - and so (K, ) = x(K, ) > r will give the result
by Theorem 2.2.

Fix an ordering <’ of G'. Since G"=G ' ® (2, 1, ..., 1), we can, without
loss, take V(G")=V(G")u {»}, where, say xe V(G’) is replaced by x and
yin G". Define an ordering < "of G”, an extension of <’, by keeping x and
v adjacent in <" (and in the same relative position as was x in <'). By
Lemma 3.2, DO(H, G', < )eDO(H, G", <"), and so it remains to show
the reverse inclusion.

Pick H*e(9)) and let (H*, <)=<(G”, <") be with the order induced by
<" If H*=< G’ there is nothing to show, so assume ye V(H); that is, H*
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is a “new” copy of H in G" not in G'. If x¢ V(H*), then (H*, <) is
isomorphic to a copy of an ordered H already in G’, namely the one with
the vertex x replacing y in H*. But if xe V(H*) then (x, y)e E(H*), and
by the definition of the product, all remaining vertices of H* are related
to both x and y in identical manner, contrary to the condition in the
statement of the theorem. So (H*, <) is of the same order-type as a copy
of H already present in (G”, <'). Thus DO(H, G", <")=DO(H, G', <’),
showing DO(H, G', <')=DO(H, G", <") as required.

Now suppose some of the n/’s are zero. For each i, define m,=n,
if n,£0 and m;=1if n,=0. Set G’ =G® (ny, n;, ..., ", _;)and ¢"=G®
(my, My, ... m,_ ). By the first case, Z[(G")”]+# &, and by Lemma 3.2,
G'<G”, and so Lemma 2.4 gives the result. J

CoRrOLLARY 3.4. Fix rew and a connected triangle-free graph H with
|V(H)| = 2. Let G be so that Z[(G)']1# & and G'=G® (ng, ny, .., B )
is defined. Then Z[(G')"]+# .

In particular, the above result holds for H=P,.

4. CHORDAL, COMPARABILITY, AND CONVEX GRAPHS

An ordinary graph is chordal (also called triangulated or a rigid circuit)
if every cycle of length >4 has a chord; ie., a chordal graph is a graph
which contains no cycle on >4 vertices as an induced subgraph.

LEMMA 4.1. If a graph G is such that R[(G)5*] # & then G is chordal.

Proof. Assume G is not chordal, ie., there exists an induced cycle of
length 24 in G. Then any ordering of G produces two distinct ordered P,’s
as induced subgraphs, namely (P,, <,) and (P,, <,) (the ones which have
the middle vertex at either end of the order).

Fix any graph F and impose an order < on V(F). Let 4:(f)—>2be a
coloring which satisfies

A(Py)=0 if (P, )=(Py, <)),
and
where (P53, <) is a copy of P,=<X F with the order < imposed. Thus every

G’ e (£) is multicolored and so F¢ #[(G)3?], so if G is not chordal, then
PO LA |
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A vertex x in an ordinary graph G is simplicial if its neighbors induce
a complete subgraph of G. We use the following result of Dirac [2] (also
see [3]).

THEOREM 4.2.  Every chordal graph contains a simplicial vertex, and upon
removal, produces another chordal graph.

Given a partially ordered set (Q, <), construct the graph G(Q) on vertex
set O, where (x, y)e E(G) if and only if x < y or y < x. Such a graph G(Q)
1s called the comparability graph for (Q, <). For a survey on comparability
graphs, see [6].

Given a partial order (Q, <), (Q, <*) is a linear extension of (Q, <)
if €* is a linear (total) order and a< b implies ¢ <* . Such a linear
extenston always exists.

An interesting (probably well-known) characterization of comparability
graphs is the following. We remind the reader that (P,, <) is the “flat”
ordering of P, as in Fig. 1.

LEMMA 4.3. G is a comparability graph if and only if G has an ordering
<% 50 that (P,, <o) X (G, €%,

Proof. Let G=G(Q) be a comparability graph for some poset (Q, <).
A linear extension (@, <*) of (Q, <) gives rise to the ordered graph
(G, <*) in the following manner: for x <* y, (x, ¥)e E(G, < *)if and only
if x<y If (x,y) and (y,z) determine a weak (P,, <,)-subgraph of
(G, <*), then transitivity of < gives (x, z) to be an edge also, preventing
an induced copy of (P,, <)

Now suppose that G has an ordering <° so that (P;, <,) X (G, <°).
Look at the relational structure (Q, <) defined by x < y if and only if
(x, y)eE(G) and x <®yp. If (x,y) and (y,z) are (ordered) edges of
(G, <°), (x, z) is also, since (G, <°) does not contain a copy of (P,, <,).
Thus x <z and the transitivity condition is satisfied for (Q, <) to be a
partial order and G = G(Q) is a comparability graph. ||

On the other hand, it also serves our purpose to classify those graphs
having an ordering which admits only (P,, <,), the “flat” ordering of P,.

LEMMA 44. Let (G, <) be an ordering of G admitting only flat P,’s
(ie., DO(P,, G, )= {(P,, <¢)}). Then there exists an order <* so
that (G, <*) also admits only flat P,’s, and the connected components of G
determine disjoint intervals in the order. Also, if (x, y)e E(G) with x <* y,
then the set of vertices {z:x <* z <* y} induces a complete subgraph of G.

Proof. Let (G, <) admit only flat P,’s. It is easy to see that there is <*
so that (G, <*) also admits only flat P,’s, and components of G determine
disjoint intervals in the order <*.
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The proof we give for the last statement of the theorem is by induction
on |V(G)|. By the first part, we can assume without loss that G is
connected. For [F(G)| <3 the result is trivial, so let vy <*v, <*-.- < * v,
be an enumeration of V(G), where DO(P,, G, <*)<= {(P,, <,)}. Let G
be the graph induced by V(G)\{v,} and observe that since the deletion
of a vertex cannot create any new copies of P,, DO(P,, G, £*)c
{(P,, €4)}. Thus, by the induction hypothesis, G’ satisfies the lemma.
Since G does not admit any copies of (P,, <), it follows that the graph
induced by the neighbors of v, is complete, and since G is assumed to be
connected, so is all of G'. It now follows that for each ien—2, (v,,v,, )€
E(G). Let v; be the least (in the order <*) neighbor of v,,.

It is sufficient to show that {v,: j<i<n} is a clique. Recursively, the
pairs (v;, 1, v,), (V;5 2, V,), s (v, -, v,,) can be shown to be edges to avoid
copies of (P,, <,). Also, for each k,! with j<k<iI<n—1, similarly
(v,,v,)e E(G) can be shown since (v,,v,) and (v,, v,) are edges and G
forbids copies of (#,, <,). |

Roughly speaking, we see that those graphs having an ordering which
admits only flat P,’s can be constructed by fixing a collection of intervals
in an ordered set of vertices and imposing a complete graph on vertices
determined by each interval in the collection. In fact, the converse holds as
well. Any ordered graph constructed in this manner can easily be seen to
omit flat P,’s.

Recall that a subset S of partial order (P, <) is called convex if whenever
x,yeS and x<z<y then zeS. So in this respect, ordered graphs
satisfying Lemma 4.4 have the property that if a subset of vertices
determines a clique, then it corresponds to an interval in the linear order
and hence is convex. Hence, we call those graphs G for which there exists
an ordering <* of G so that DO(P,, G, <*)< {(P,, <)} convex clique
graphs, or simply convex, without having to specify an ordering. This
terminology avoids any conflation with the term “interval graph,” yet
captures the property.

5. COMPLETE CLASSIFICATION

We can now classify those graphs G for which Z[(G)5*] is non-empty.

THEOREM 5.1. Z[(G);*]1# D if and only if either G is a chordal
comparability graph or G is convex.

Proof. First assume that G is chordal and is a comparability graph. We
define three orderings of G as follows.

By Theorem 4.2 there exists a simplicial vertex so€ V(G). By the same
theorem, there is s, € V(G)\{so}, again simplicial. Continue, exhausting
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V(G) and let <' be an ordering of V(G) given by s, <'s5, <'--- <!
Sy 1- Observe that (P,, <) X (G, € '), because each upper (right)
neighborhood of each vertex is complete. Similarly define (G, <?), where
<?=(<") ' Then (P,, <,) X (G, <?). Now let (G, <°) be the ordered
graph guaranteed by Lemma4.3 so that (P,, <,) X (G, <°). So by
Theorem 2.2, #[(G);*] # .

Now assume that G is convex. If <* is an ordering of V(() so that
DO(P,, G, <*)={(P,, <4)}, then by Theorem 2.2 (or Corollary 2.3) we
have #[(G)5*] # & as well.

To prove the other direction, suppose that #[(G)52]# . Then by
Lemma 4.1, G must chordal. It remains to show that either G is a
comparability graph or G is convex. We will use Theorem 2.2 and two
orderings given by chordality in the first part of the proof.

As defined for Theorem 22, set K=K, , on vertices (P,, <y),
(P, <), and (P,, <,). By chordality, fix two hyperedges of K, ie., two
orderings of G, each omitting (P,, <,) and (P,, <,), respectively. If either
of these two orderings of G omits (P,, <,) as well (ie, if either
corresponds to a hyperedge of K consisting of a single vertex—a loop), we
are done since then G is a comparability graph by Lemma 4.3. So suppose
that both {(P5, <), (P>, <)} and {(P,. <o). (P,. <,)} are hyperedges
of K, and neither {(P,, <,)} or {(P,, £,)} are hyperedges. Since
¥(K) =3, either {(P,, <), (P,, <,)} or {(P,, <)} is a hyperedge of K.
In the first case, the edge omits (P,, <,) and so by Lemma 4.3, G is a
comparability graph and we are done. In the second case, G is convex and
we are done again. ||

We add that although a convex graph is chordal, it is not necessarily a
comparability graph. For the purpose of presenting an example of such a
convex graph, we recall the following well known characterization
theorem [4] (see [6 or 7] for other references) for comparability graphs.

THEOREM 5.2. G is a comparability graph if and only if G does not
contain an odd number of (not necessarily distinct) vertices vy, vy, ..., U, = Uq,
so that for each i, (v;, v;, )€ E(G), but (v;,v;,,)¢ E(G).

ExaMpLE 5.3. The graph G given by V(G)={0,1,..,6} and E(G)=
{(i,i+1)ie6}u{(ii+2)ie5} is convex but it is not a comparability
graph,

1 3 5
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Proof. The natural ordering of vertices as given is used to show that G
is convex. The “semicycle” <02353134642) on 11 vertices satisfies the
condition of Theorem 5.2. ||

This appears to be the smallest of infinitely many such examples. It
would be of interest to classify chordal comparability graphs. For examples
of graphs which are one or the other and not both, see [7]. In classifying
those graphs for which #[(G)*] is non-empty, the case for colorings
of the graph consisting of an edge and a disjoint vertex is also implicitly
settled (examine the Ramsey statements in the compiement).
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