that CD137-CD137L/Cyclophilin A (CYPA) activation accelerated the formation and progression of atherosclerotic plaque. Here we explore to detect the effect of their interaction on the endothelial cells.

METHODS Reactive oxygen species (ROS) generation, apoptosis and necrosis, proinflammatory and prothrombic properties, the levels of the apoptotic signaling proteins and the transcription factors in human umbilical vein endothelial cells (HUVECs) were measured after exposure to anti-CD137 in the presence or absence of CYPA-silencer or ROS inhibition.

RESULTS The results showed that anti-CD137 markedly induced CYP expression, ROS production, mitochondrial depolarization and apoptosis in HUVECs; significantly increased the LDH leakage, the expression of CD54 and CD62E, the release of TNF-α, IL-6, IL-10 and VCAM-1; and activated NF-kappaB, increased Bax expression and suppressed Bcl-2 protein. Moreover, CYPA knock out attenuated anti-CD137-induced ROS enrichment, apoptosis, inflammation and the activation of NF-kappaB similar to the ROS inhibition.

CONCLUSIONS In summary, our findings demonstrated that CD137-CD137L/Cyclophilin A interaction could induce dysfunction of endothelial cells through oxidative stress via NF-kappaB pathways, and their interaction may serve as a potential target for atherosclerosis therapy.

GW26-e0711 Ticagrelor Prevents Endothelial Dysfunction of Aortas in Hypertension Rats

Xiaoyan Li,1 Caihong Qu,1 Erhong Zhang,1 Ying Lu,1 Yuxing Liu,1 Yongbo Tang,1

1The Third Affiliated Hospital of Sun Yat-sen University; 2Zhongshan School of Medicine, Sun Yat-sen University

OBJECTIVES The aim of the study was to investigate the effect of ticagrelor on function of the aortas in 2-kidney, 2-clip hypertension rats.

METHODS Male Sprague Dawley rats were made hypertension after partial renal artery constriction (2-kidney, 2-clip method). After 1 week, systolic blood pressure of rats was measured. Hypertension rats were simultaneously treated with ticagrelor (10 mg/kg ig.q24h) or vehicle at 1 weeks. Systolic blood pressures (mmHg) of rats were increased in hypertension rats. Ticagrelor or vehicle did not change systolic blood pressure of normal rats.

RESULTS At 1, 4, 8 weeks systolic blood pressure (mmHg) were increased in hypertension rats. Ticagrelor or vehicle did not change the systolic blood pressure (mmHg) of hypertension rats. 2-Me-ADP induced endothelium-dependent relaxations were decreased in aorta from hypertension rats, compared normal rats. In the same time, L-NAME and indomethacin augmented 2-Me-ADP induced contractions in hypertension rats, compared normal rats. Ticagrelor or vehicle did not normalize contractile responses and relaxation induced by L-NAME, indomethacin and 2-Me-ADP in aorta from hypertension rats. P2Y1 and P2Y12 protein expression was significantly increased, but P2Y13 receptor expression was reduced in aorta of hypertension rats. Endothelium-dependent relaxation by acetylcholine-stimulation was reduced in hypertension rats, and ticagrelor could improve endothelial function of aorta of hypertension rats.

CONCLUSIONS Our data suggested that ticagrelor ameliorates aortic endothelium function of 2-kidney, 2-clip method hypertension rats, but it was not through inhibition of P2Y12 receptors in this vessel.

GW26-e2102 Gut microbiota alter cholesterol metabolism and regulate NPC1L1 by inducing the expression of Cyp7a1

Chunyan Zhong,1 Liqing Yu,1 Weiwei Sun,1 Hong Wei,3 Benhua Zeng,3 Zhuyuan Song1

1Department of Cardiology, Southwest Hospital, Third Military Medical University, Chongqing, China; 2Department of Animal and Avian Science, University of Maryland; 3Department of Laboratory Animal Science, College of Basic Medicine Science, Third Military Medical University

OBJECTIVES To investigate the function of intestinal bacteria in NPC1L1 mediating cholesterol.

METHODS Germ Free mice and Specified Pathogen Free (SPF) mice were treated with western diet and ezetimibe, cholesterol metabolism related data were tested in different ways. Metagenome Sequencing was used to test the differences between the feces of SPF mice and Li-KO mice treated with Chow diet and High fat diet.

RESULTS Findings from these animals definitively establish that intestinal bacteria play a significant role in cholesterol metabolism and have affected ezetimibe action by increasing the expression of Cyp7a1 in C57Bl/6J mice. Additionally, The abundances of Anaeroplasm, Odoribacter, Clostridium_XIVb, Oscillibacter and Ruminococcus were significantly increased in NPC1L1 knockout mice.

CONCLUSIONS Gut microbiota may alter cholesterol metabolism and regulate NPC1L1 by inducing the expression of Cyp7a1.

GW26-e4406 Influence of different intensity treadmill training on myocardial energy metabolism substrate transition in rats

Zheng Ping, Xuejiao Li, Zhen Wang, Xuebin Cao
Department of Cardiology, No. 252 Hospital of PLA

OBJECTIVES To observe the influence of different intensity of treadmill training on key myocardial fatty acid and hybocardrate metabolism factors in rats and discuss the relationship between training intensity and myocardial substrate transition.

METHODS We divided 19 male rats into 3 groups randomly, control group(C, n=7), moderate training intensity group (M, n=7), and high intensity training group (H, n=7). M and H groups undertook treadmill exercise. M group run at the speed of 9 mile per minute, equally 45% VO2max, and H trial run at 18 miles per minute, equally 79% VO2max. Every trial trained for 8 weeks. After the last time training, rats were anesthetized. Serum was collected and the hearts were removed preserving at -80°C for further analyses. The levels of carbohydrate and fatty acid in the serum were detected by ELISA. The expression of GLUT4, Cpt-1, FAT/CD36 were determined.

RESULTS Compared with C group, the carbohydrate level in the serum of M group is significantly decreased, and the carbohydrate in H group is not significantly decreased in compared with C group, the fatty acyl level of M group is decreased significantly and the fatty acyl level of H group is decreased significantly. Compared with the C group, the GLUT4 mRNA and protein content of M group decreased significantly, and GLUT4 mRNA and protein content of H group increased significantly. Compared with C group, CPT1 and FAT/CD36 mRNA and protein content of M group were increased significantly and decreased significantly in H group.

CONCLUSIONS A greater reliance on fat source occurred moderate exercise and a greater reliance on carbohydrate source during high intensity exercise in rat heart myocardial energy metabolism.

GW26-e4408 The protective effects of salidroside from exhaustive exercise-induced heart injury by enhancing the PGC-1α-NRF1-NRF2 pathway and mitochondrial respiratory function in rats

Zheng Ping, Xuejiao Li, Yujuan Cui, Longfei Zhang, Xuebin Cao
Department of Cardiology, No. 252 Hospital of PLA

OBJECTIVES We aimed to investigate the effects of exhaustive exercise and salidroside interference on myocardial mitochondrial respiratory function and the key regulators of mitochondrial biogenesis in rats.

METHODS Adult male SD rats were randomly divided into four groups. Cardiomyocyte ultrastructure was observed by optical microscopy and transmission electron microscopy. The levels of the cardiac marker enzymes CK, CK-MB, LDH, cTn-I and MB were determined by ELISA. Muscle oxidative capacity was measured in perfused hearts. The expression of the mitochondrial biogenesis master regulator PGC-1α and its downstream transcription factors, NRF1 and NRF2, were measured.

RESULTS Salidroside ameliorated myocardium ultrastructure injury induced by exhaustive exercise, reduced the levels of CK, CK-MB, LDH, cTn-I and MB, increased mitochondrial respiratory function, elevated the mRNA expression levels of PGC-1α, NRF1 and NRF2, and increased the protein content of PGC-1α, NRF-1 and NRF-2.

CONCLUSIONS Salidroside can dose-dependently protect the heart from exhaustive exercise-induced injury. It might act by improving myocardial mitochondrial respiratory function by stimulating the expression of components of the PGC-1α-NRF1-NRF2 signaling cascade.