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The mass of primordial dark matter (DM) protohalos remains unknown. However, the missing satellites

problem may be an indication that they are quite large. In this paper, we use effective field theory to map

constraints on dark matter-SM interactions into limits on the mass of DM protohalos. Given that leptons

remain in the thermal bath until late times, we focus on their interactions with DM. To illustrate the method,

we use the null results of LEP missing energy searches along with Fermi-LAT searches for DM annihilation in

nearby dwarf galaxies, to derive limits on the protohalo mass, � (10 −6 to 10 −1 ) M �, with the range depending

on the DM mass and the operator. Thus, if DM is to remain thermally coupled until late times and account

for the missing satellites, charged lepton interactions are insufficient. This motivates neutrinophilic DM,

which can have protohalo masses orders of magnitude larger, with constraints arising from Planck, IceCube

and unpublished Super-K data. We show that effective neutrinophilic models offer a viable solution to the

missing satellites problem for sub-GeV DM masses with larger than WIMP-sized annihilation cross sections.
c © 2013 Ian M. Shoemaker. Published by Elsevier B.V.  
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1. Introduction 

One of the simplest particle candidates for DM is the thermally

produced weakly-interacting massive particle (WIMP) [ 1 ]. WIMPs

with sufficient interaction strength are kept in chemical (number-

changing) and kinetic (momentum-changing) equilibrium with the

thermal bath. Thanks to the Universe ’ s expansion however, this state

of affairs is lost once the rate of WIMP-bath scattering is comparable

to the rate of Hubble expansion. Number-changing processes ( XX ↔ ff )

are the first to go out of equilibrium, fixing the comoving WIMP num-

ber density at a value determined by the annihilation cross section.

For a wide range of masses, the observed DM density is obtained

with a thermally averaged cross section of 〈 σv 〉 � 3 × 10 −26 cm 

3 s −1

(6 × 10 −26 cm 

3 s −1 ) for Majorana (Dirac) particles. If, like baryonic

matter, DM possess a nonzero particle–antiparticle asymmetry, an

analogous story plays out and the correct relic abundance is attained

for cross sections greater than the WIMP value [ 2 ]. 

Typically the WIMP story ends with chemical decoupling. How-

ever, as long as elastic, momentum-changing scattering processes

( Xf ↔ Xf ) continue, the WIMP population will remain in approxi-

mate thermal equilibrium. Eventually of course, even elastic scatter-

ing fails to keep up with Hubble expansion and kinetic decoupling of

the WIMP population occurs. This epoch imprints a cutoff, M cut , in the
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power spectrum, which determines the size of the first and smallest

DM structures [ 3 –5 ]. Moreover, it is the interactions that remain in

equilibrium latest that determine this cutoff scale. 

These first and smallest gravitationally bound DM structures re-

main of great interest. Should they survive until present, they can

impact searches of DM in a number of ways (for a nice review, see e.g.

[ 6 ]). First, if DM annihilates at large rates to photons, these protoha-

los are sufficiently dense to be visible in the gamma-ray sky. This has

already prompted the Fermi collaboration to search for unassociated

sources of gamma-rays, so far with only null results [ 7 ]. In the case

of DM direct detection experiments, the rate is on average markedly

diminished compared to a smooth halo since substantial mass in sub-

structure reduces the DM volume fraction of the Galaxy [ 8 ]. Moreover,

although it is estimated to be unlikely, were the Earth to pass through

a dense protohalo, a dramatic increase in the DM flux could be probed

by direct detection experiments [ 6 ]. Similarly, one could use a combi-

nation of direct detection data and the ν signal from DM annihilation

in the Sun as a probe of the local DM substructure [ 9 ]. Lastly, it may

be possible to detect DM protohalos directly through their gravita-

tional effects. For example, it has recently it has been pointed out

that DM substructure can produce a frequency shift in pulsar timing

measurements that can be probed at the Square Kilometer Array [ 10 ].

Moreover, both strong gravitational lensing [ 11 ] and “nanolensing”

[ 12 ] may with future data yield an orthogonal experimental handle

on DM subhalos. 

Intriguingly however, we may at present already be faced with

observations that indicate that these protohalos are quite massive. In

particular, there are many fewer dwarf galaxy-size structures orbiting

the Milky Way than expected from N-body simulations of cold dark
nse.
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atter structure formation [ 13 , 14 ]. This so-called “missing satellite 

roblem” could be accounted for from: (1) baryonic physics that may 

oth flatten the DM density of satellite galaxies and introduce strong 

idal stripping that would decrease subhalo survivability [ 15 –17 ] or 

2) a much larger cutoff in the power spectrum of DM than is con- 

entionally assumed. If the second option is realized in Nature, it may 

mply either that DM is warm (e.g. a keV sterile neutrino [ 18 ]) with a 

arge free-streaming length, or that it remained in kinetic equilibrium 

ntil late times [ 19 ]. 

If late kinetic decoupling is the answer, DM must have fairly strong 

nteractions with the thermal bath. These same interactions can be 

robed by terrestrial experiments and astrophysical observations. In 

his paper we have two related aims: (1) to estimate how the con- 

traints on DM ’ s coupling to SM particles translate into limits on 

he protohalo mass; and (2) to examine what model ingredients are 

eeded to accommodate the large protohalo masses the missing satel- 

ite problem may hint at. 

However, not all particles in the thermal bath contribute equally 

o DM ’ s kinetic decoupling. Given that the number density of hadrons 

ecomes small after the QCD phase transition, the coupling of DM to 

eptons can be much more important in setting the protohalo scale. 

e shall henceforth focus on the coupling of DM to leptons, and set 

ut to determine what the current experimental sensitivity to these 

nteractions can say about the allowed size of DM protohalos. We 

ill see that leptophilic and neutrinophilic models of DM yield very 

ifferent results than the MSSM neutralino [ 20 –26 ], or DM models 

ith quark-only couplings [ 25 ]. 

To remain as model-independent as possible we assume that 

epton–DM interactions can be described using effective field theory. 

his is an excellent approximation at the low temperatures relevant 

or kinetic decoupling, though it of course becomes circumspect at 

igh-energy colliders. We will examine a handful of qualitatively dis- 

inct operators. In all cases, the derived limits imply that DM–lepton 

cattering cannot be a solution to the missing satellites problem. This 

otivates neutrinophilic dark matter ( νDM), where the DM–neutrino 

nteraction is much stronger than the DM-charged lepton interaction. 

ith Planck, IceCube, Super-K being the only relevant experimental 

robes, we find that for νDM to accommodate the missing satellite 

roblem thermal DM must be sub-GeV in mass and with a larger 

han WIMP-sized annihilation cross section. Such a scenario can eas- 

ly obtain the correct thermal relic abundance if dark matter carries a 

onzero asymmetry [ 2 ]. Thus future CMB and neutrino telescope data 

ill be critical in determining whether or not νDM is the solution to 

he missing satellites problem. 

The remainder of this paper is organized as follows. In Section 2 

e discuss our model set-up and derive the relevant annihilation and 

cattering cross sections. In Section 3 we briefly review the experi- 

ental searches relevant for our study. Next, in Section 4 we review 

n analytic framework for the kinetic decoupling and free-streaming 

rocesses. In Section 5 we present the main results of this paper in the 

orm of approximate exclusion plots in the protohalo-DM mass plane. 

n Section 6 we conclude with a discussion of possible extensions and 

uture probes of νDM. 

. Effective dark matter–lepton interactions 

Given that the charged leptons and neutrinos are among the last 

M particles remaining in the thermal bath, we will be interested 

n the coupling of DM to these particles. LHC and direct detection 

ata can be used to constrain the epoch of DM ’ s kinetic decoupling 

rom quarks. This has been studied recently with the authors of [ 25 ] 

nding M cut � 10 −6 M �, with a weak dependence on the Lorentz 

tructure of the operator. Thus, quark–DM interactions cannot offer 

 solution to the missing satellites problem. Moreover, it is impor- 

ant to stress a priori that leptons and DM to can continue to ex- 

hange momentum long after the quark number density is strongly 
Boltzmann-suppressed after the QCD phase transition. 

The types of DM–lepton interactions we will study are vector, 
scalar and axial vector operators: 

O V = 

1 

�2 

(
X γμ X 

) (
� γ μ� 

)
, 

O S = 

1 

�2 

(
X X 

) (
� � 

)
, 

O A = 

1 

�2 

(
X γμγ 5 X 

) (
� γ μγ 5 � 

)
, 

(1) 

where � is the interaction mass scale. We will turn on each operator, 

one a time to derive constraints. With this set of assumption the only 

parameters are the DM mass m X and the interaction scale �. 

With the exception of the LEP missing energy limits, our con- 

straints will come from DM annihilation searches. Thus the precise 

form of the annihilation cross section will determine the sensitivity 

to �. With non-relativistic DM annihilation our cross sections are: 

〈 σann v 〉 V = 

m 

2 
X 

2 π�4 

∑ 

f 

( 

1 −
m 

2 
f 

m 

2 
X 

) 1 / 2 ( 

2 + 

m 

2 
f 

m 

2 
X 

) 

, 

〈 σann v 〉 S = 

m 

2 
X v 

2 

8 π�4 

∑ 

f 

( 

1 −
m 

2 
f 

m 

2 
X 

) 1 / 2 

, 

〈 σann v 〉 A = 

1 

2 π�4 

∑ 

f 

m 

2 
f 

( 

1 −
m 

2 
f 

m 

2 
X 

) 1 / 2 

, 

(2) 

where m X and m f are the DM and lepton masses. With these three 

operator choices, we have s -wave, p -wave suppressed and helicity 

suppressed annihilation, respectively. 

The other relevant piece operator-dependent physics is elastic 

scattering, which sets the temperature of kinetic decoupling. Given 

that the DM is non-relativistic by the era of kinetic decoupling, the 

concomitant momentum transfer in this era is quite small. Thus typi- 

cally one only need worry about the forward scattering cross section. 

This approximation is widespread in the literature [ 24 ], however it 

has been pointed out that the use of this approximation leads to a 

small overestimate of the actual momentum relaxation rate, and thus 

slightly underestimates the temperature of kinetic decoupling [ 25 ]. 

In what follows (see Section 4 ), we shall see that kinetic decoupling 

is determined by the quantity 

(
σfX t 

) ≡
∫ 0 

−4 p 2 
dt ( −t ) 

dσfX 

dt 
= αO 

p 4 

�4 
, (3) 

where σ fX is the elastic scattering cross section of DM X on a SM 

particle f , and αO is an operator dependent numerical coefficient given 

by 

αV = 

2 

3 π
, αS = 

1 

48 π
, αA = 

10 

3 π
. (4) 

Next, let us briefly discuss the validity of the effective field theory 

assumption. Suppose for example that the UV theory contains inter- 

actions of the form, L UV ⊃ g X φX X + g X φ� � , where φ is the mediator 

field. Thus at sufficiently low energies, the mediator φ can be inte- 

grated out, and its effects are encoded in the dimension-6 operator 

O S in Eq. (2) with � = M φ/ g X . Here we will simply assume (1) that 

the couplings are perturbative, and (2) that the mediator is massive 

enough to decay into two DM particles, M φ > 2 m X . Thus our cutoff- 

scale � must satisfy � > m X / 2 π . Imposing more stringent criteria 

(such as perturbative unitarity [ 29 ]) are important for the EFT as- 

sumption to hold at the LHC [ 29 , 30 ] and at future high-energy e + e −

colliders [ 31 ]. 

Lastly, let us comment on the possibility of having very strong 

DM–neutrino interactions without DM-charged lepton interactions 

of the same strength. One may be worried that this cannot be ac- 

complished since neutrinos and charged lepton come in the same 

doublet of SU (2) L . However, this concern can be ameliorated at the 



I.M. Shoemaker / Physics of the Dark Universe 2 (2013) 157–162 159 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

level of effective field theory by considering the dimension-8 cou-

pling O LH O X , where O ψ refers to some Lorentz- and gage-invariant

bilinear of ψ . Thus upon electroweak symmetry breaking, the Higgs

acquires a vacuum expectation value, and neutrino–DM interactions

are induced without same strength charged lepton–DM interactions

(see [ 32 ] for the analogous argument involving BSM quark–neutrino

interactions). 

3. Constraining � DM interactions 

A number of experiments are sensitive to lepton–dark matter

( � DM) interactions. Those that we will be especially interested in

are: 

• LEP : Missing energy searches with a single photon at LEP pro-

vide stringent limits on BSM physics [ 27 , 32 ]. These mono-photon

searches provide constraints on DM masses that are kinematically

accessible, m X � 100. These limits are in fact sufficiently strong

to exclude thermal DM annihilating to electrons for masses below

20 GeV or so [ 27 ]. 

• Fermi-LAT : Direct searches for DM annihilating to μ+ μ− and τ + τ−

are encroaching on light WIMP territory as well, having already

excluded thermally sized cross sections below roughly 40 and

30 GeV, respectively. Here we use null results from the joint like-

lihood analysis of 10 dark matter-dominated dwarf galaxies with

24 months of data [ 28 , 33 ]. 

• Direct detection : Until very recently most direct detection searches

vetoed events from electronic scattering. Now however, using the

methods outlined in [ 34 ], XENON10 has placed the first limits on

such scattering for DM masses in the MeV to GeV mass range [ 35 ].

Though the limits are quite mild at present (being based on only

15 kg-days of exposure), such an analysis represents an important

proof-of-principle for future studies of DM–electron interactions. 

• IceCube : Recently, very large neutrino telescopes have begun

deriving stringent limits on neutrino–DM interactions. IceCube

[ 36 , 37 ] now provides direct constraints on the DM annihilation

cross section into neutrinos. Though their current sensitivity re-

mains orders of magnitude away from the thermal relic scale,

substantial improvements are likely to follow with the 79 string

upgrade to IceCube, and it will likely be competitive with the un-

published results of Super-K. 

Here we will use the results of the 22-string analysis [ 36 ], rather

than the somewhat weaker limits arising from the 40-string anal-

ysis [ 37 ]. Note that although there is substantial uncertainty in

the Galactic Center limit due to the choice of galactic halo model,

the IceCube collaboration removes the Galactic Center from the

analysis such that the resulting bound is due to DM in the outer

halo region where model uncertainties are much smaller. 

• Super-K : The Super-Kamiokande collaboration has an unpublished

galactic halo neutrino line search [ 38 ]. We include these results

for reference here, though they may of course change significantly

once the results are finalized. 

• CMB : If DM remains in thermal equilibrium with neutrinos at

temperature below O ( MeV ), it can be constrained by the recent

Planck data through its affect on the effective number of neutri-

nos, N eff [ 39 ]. We make use of the constraint obtained from Planck

data that excludes (at 95% CL), Dirac DM with a mass < 8.7 MeV in

equilibrium with neutrinos. 

4. Kinetic decoupling and dark matter Protohalos 

Two distinct physical processes set the size of the smallest DM

structures: free streaming [ 3 ] and acoustic damping [ 4 , 5 ]. After the

comoving number density of DM has “frozen out” and chemical equi-

librium has been lost, the elastic scattering of DM on the thermal bath
continues the efficient exchange of momentum such that kinetic equi-

librium persists until late times. This process effectively damps the

growth of perturbations that would otherwise grow to form the first

DM subhalos. Once DM decouples, it can stream freely from over-

dense regions into underdense regions and efficiently erase structure

on small scales. In general, it is the largest of these two physically

independent processes that sets the scale of the cut-off in the power

spectrum. We therefore define this cutoff as 

M halo ≡ max ( M FS , M KD ) . (5)

When DM kinetically decouples, it can stream freely until matter-

radiation equality when structure formation begins in full force. This

process significantly damps fluctuations below the scale of free-

streaming k fs such that the smallest protohalo allowed by free-

streaming is [ 24 ]: 

M FS ≈ 2 . 9 × 10 −6 M �

×
⎛ 

⎝ 

1 + log 
(

g 1 / 4 T KD / 50 MeV 
)

/ 19 . 4 

( m X / 100 ) 
1 / 2 g 1 / 4 ( T KD / 50 MeV ) 

1 / 2 

⎞ 

⎠ 

3 

, 
(6)

where g is the energy relativistic degrees of freedom evaluated at the

temperature of kinetic decoupling, here set to 50 MeV as a represen-

tative example. 

Moreover the damping scale set by acoustic oscillations is given

by the DM mass enclosed in the horizon at this epoch, 

M KD ( T KD ) = 

4 π

3 

ρX ( T KD ) 

H ( T KD ) 
3 

≈ 9 × 10 −7 M �

[ 

h ( T KD ) 

g ( T KD ) 
3 / 2 T 3 KD 

] 

T KD = 50 MeV 

, 

(7)

where h is the entropic relativistic degrees of freedom, and ρX is the

DM density at temperature T KD , obtained by appropriately redshifting

the observed cosmological DM density today, DM 

h 2 = 0.12 [ 40 ]. For

both the energy and entropic degrees of freedom, we use the values

given in the DarkSUSY code [ 41 ] which are includes the improved QCD

equation of state from [ 42 ]. In Eq. (8) we have again set T KD = 50 MeV

in order to compare with the free-streaming mass scale in Eq. (7) .

Thus for this 50 MeV example, free-streaming determines the mass

of the smallest protohalos. 

More generally, we see that as the DM decreases, the mass scale set

by free-streaming becomes increasingly important. In general how-

ever, it is useful to notice that the acoustic oscillation scale Eq. (8)

falls off more rapidly with the decoupling temperature than free-

streaming Eq. (7) . Thus at sufficiently low-temperatures, the cutoff in

the power spectrum will always be set by acoustic oscillations. 

Importantly, after the QCD phase transition, the number density of

pions and hadrons becomes so small that kinetic equilibrium is only

maintained by lepton–DM interactions. (Indeed it has been recently

shown that the inclusion of DM–pion scattering modifies T KD by less

than one percent in most cases [ 25 ], though see [ 43 ] for a detailed

study of the effect of both pions and loop-induced lepton interac-

tions in leptophobic models.) One can immediately see that as long as

acoustic oscillations dominate the damping, one expects the size of

the protohalos are constrained to be � 10 −7 M � for DM models with

quark-only couplings. 

The temperature of kinetic decoupling can be estimated roughly

from simple analytic arguments. These assumptions are accurate

when the bath scattering partners are relativistic and when the de-

grees of freedom are not changing rapidly [ 22 ]. Similar treatments to

the methods we follow can be found in [ 20 , 22 , 24 ]. 

Let us begin with a simple sketch of the physics relevant for the

kinetic decoupling of DM. At the temperatures relevant for kinetic

decoupling, DM is non-relativistic. Thus the average change in DM

momentum from a single scattering event with a relativistic lepton

is Δp ≈ T is small compared to the DM equipartition momentum,
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Fig. 1. LEP limits (yellow) apply to the electron-type coupling and are based on 

monophoton + MET searches [ 27 ]. The Fermi-LAT limit (dark red) obtained from 

the joint likelihood analysis of 10 dwarf galaxies for DM annihilating to ττ [ 28 ]. For 

comparison we show the thermal symmetric WIMP (dashed blue line) for X X → � + � −

comprising the total annihilation cross section. Thermal symmetric models lie within 

the blue region, whereas thermal asymmetric models lie above. We have highlighted 

in pink the region, Λ > m X / 2 π , where the assumption of EFT is no longer valid (see the 

discussion in Section 2 for details). (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Constraints on the protohalo mass for neutrinophilic DM. Experimental upper 

bounds come from IceCube ’ s galactic halo analysis [ 36 ] which restricts DM annihila- 

tion into neutrinos (green, solid) and Super-K which has a similar but unpublished 

preliminary search [ 38 ] that extends to lower masses (dashed dark orange). The CMB 

constraint is derived from the recent Planck limit on N eff as analyzed in [ 39 ]. (For in- 

terpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
 

m X T . For DM to remain in kinetic equilibrium however the frac- 

ional change in momentum must be O(1). Since bath scatterings 

nduce a random walk in momentum space, we require N ≈ m X / T 

ollisions to maintain equilibrium and ensure large fractional change 

n momentum. We can therefore simply estimate the temperature 

hen DM loses kinetic equilibrium with a bath species f by solving 

p ( T KD ) � H ( T KD ) , (8) 

here the momentum relaxation rate can be roughly approximated 

y, γ p ( T KD ) � ( T / m X ) n f σXf , with n f the number density of the species f ,

nd σXf the t = 0 scattering cross section of DM on f . The above argu- 

ents make clear the physical effects that enter into a determination 

f the momentum relaxation rate, and provide a intuitive picture of 

ts parametric dependence. 

However, an improved estimate of γ p can be obtained from the 

okker–Planck equation. In what follows we will use the results of 

 25 ], which follow this method and include the effects of Pauli block- 

ng and contributions from the non-forward parts of the cross section. 

nder the assumption that the bath particles are relativistic the mo- 

entum relaxation rate is well-approximated by 

p ( T ) = 

g f 

6 m X T 

∫ ∞ 

0 

d 3 p 

( 2 π) 
3 

f ( p/T ) ( 1 − f ( p/T ) ) 

∫ 0 

−4 p 2 
dt ( −t ) 

dσXf 

dt 
, (9) 

here g � are the internal degrees of freedom of the bath particle, f ( p / 

 ) is the phase space occupancy function, and p is the center of mass 

omentum. 

Finally, we can solve for the temperature of kinetic decoupling by 

ombining Eqs. ( 3 ), ( 9 ), and ( 8 ) to arrive at 

 KD � 

0 . 69 g 
1 / 8 
eff 

g 
1 / 4 
f 

( 

�4 m X 

M Pl αO 

) 1 / 4 (
T 

T ν

)1 / 2 

, (10) 

here g f are the internal degrees of freedom of the bath particle 

 , and g eff are temperature-dependent energy degrees of freedom. 

ote that we have been careful to include the possibility that the 

inetic decoupling of DM may occur after neutrinos have decoupled, 

or which T = T ν . In what follows we will use this expression for 

he kinetic decoupling temperature to translate constraints on the 

nteraction scale � into constraints on protohalo mass. 

. Results 

.1. Charged lepton constraints 

Let us finally come to the main results of this paper, summa- 

ized in Figs. 1 and 2 . Fig. 1 shows how the relevant constraints on 

M–charged lepton interactions translate into constraints on the DM 

rotohalo mass. Here we have chosen universal couplings to all lep- 

ons. For reference, in each plot, we have also included the thermal 

elic density constraint 〈 σv 〉 sym 

= 6 × 10 −26 cm 

3 s −1 for Dirac DM, 

ssuming only one given operator is turned on at a time. We must 

ighlight a few key points about this region. First, consider a relic 

pecies in the presence of zero particle–antiparticle asymmetry. In 

his case, the correct thermal relic abundance is obtained entirely by 

he specified operator for points that line on the blue dashed line. Of 

ourse, in general, one expects more than one annihilation mode to 

ontribute, in which case any given mode must not exceed the total 

equired annihilation cross section, 〈 σv 〉 sym 

. Thus symmetric thermal 

elic models, lie above the blue dashed curve. However, now consider 

 model in which a nonzero asymmetry exists. Then, as long we do 

ot revoke the thermal hypothesis, the total annihilation cross sec- 

ion must be greater than the 〈 σv 〉 sym 

[ 2 ]. Thus for asymmetric models 

ith just one operator turned on, the correct abundance requires DM 

o lie above the blue curve. 

We now turn to the constraints on the vector operator, O V , dis- 

layed in the top panel of Fig. 1 . There we see that the limits are quite 
strong, especially at high DM masses. This can be traced to the fact 

that s- wave annihilation is strongly bounded by the Fermi data. At the 

lower mass end, where the LEP center of mass energy is large com- 

pared to the energy required to produce a DM pair, the constraints are 
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also strong. However it is important to notice that the LEP limit on the

protohalo mass becomes increasingly stringent as m X increases until

around masses O(100) GeV, despite the fact the limit on � degrades

as m X approaches 100 GeV. Inspecting Eqs. (8) and (10) however, one

sees that this is accounted for by the fact that the mass enclosed in the

horizon at kinetic decoupling scales as M KD ∝ m 

−3 / 4 
X . Below masses of

around 5 GeV, the mass scales set by free-streaming and acoustic os-

cillations cross over leading to the noticeable kink in the LEP curve.

However, the kink in the EFT curve around a few hundred GeV is due

to the change in the relativistic degrees of freedom when e ± pairs

become Boltzmann suppressed. A more accurate treatment includ-

ing the effects of non-relativistic bath particles should smoothen this

effect. 

The scalar operator, O S (displayed in bottom left panel of Fig. 1 ) is

quite different. In this case, there are two qualitative differences from

O V : (1) annihilation is p -wave suppressed (substantially weakening

the Fermi limits) and (2) the DM-bath elastic scattering is weaker

than in the vector case. The LEP limits are not especially sensitive to

the Lorentz structure of the operator, so the concomitant limits on the

cutoff � are nearly the same as they are for O V [ 27 ]. However, since

the elastic scattering of DM on leptons is weaker, the corresponding

constraints on the protohalo mass are stronger since thermal decou-

pling occurs earlier. 

Finally, the axial vector case, O A , is displayed in the bottom right

panel of Fig. 1 . Here the DM has helicity suppressed annihilation and

elastic scattering qualitatively much like the vector case. The helicity

suppression implies that the annihilation into tau leptons dominates

over nearly the entire mass range (this is the origin of the bump near

2 GeV where tau annihilation transitions to muon annihilation). Since

LEP is insensitive to the Lorentz structure and the elastic scattering

proceeds just as for O V , the resultant LEP constraints are nearly the

same. The observed rise in the limit on M halo from Fermi data is simply

due to the fact the Fermi ’ s sensitivity to DM annihilation weakens

with increasing DM mass. This rise does not occur for O V since two

powers of m X in the annihilation cross section compensate this effect. 

In total, the constraints on the protohalo mass implied by the

combination of LEP and Fermi data are relatively strong and do not

allow any potential solutions to the missing satellite problem. In what

follows, we will examine a way around this conclusion. 

5.2. Neutrinophilic DM 

In view of the above stringent constraints, we ask: how they can

be weakened? The simplest possibility is to permit only neutrino–DM

couplings. Neutrinophilic DM ( νDM) of this type has been studied by

many authors, e.g. [ 39 , 44 –47 ]. 

Let us examine the constraints on the operator ( X γμ X)( νγμν). In

the top panel of Fig. 2 we display the resultant constraints from Planck,

IceCube, and Super-Kamiokande. Both of the neutrino line searches

are based on their galactic halo analyses, and require no other DM

interactions. Of course, Solar searches for DM annihilation can be rel-

evant when DM also has interactions with nuclei sufficient to induce

gravitational capture by the Sun. We do not include these constraints

here. 

The constraints displayed in Fig. 2 reveal that the assumption of

EFT is the limiting factor at low masses. Recall that the missing satel-

lite problem could indeed be an indication that the DM power spec-

trum has a cutoff at large masses. Then, νDM with a heavy mediator

could account for such a large cutoff only if DM is sub-GeV in mass.

This range of masses and interaction strengths, corresponds to very

large annihilation rates. A thermal relic abundance with a larger than

WIMP value can easily be accommodated in models with a nonzero

particle / antiparticle asymmetry [ 2 ]. 

Of course, effective νDM cannot have arbitrarily large DM pro-

tohalos. Although we do not display the Lyman- α constraints (see

for example [ 48 ]) on the protohalo mass, they imply that this mass
cannot be larger than 5 × 10 10 M �. 

UV complete models of νDM may also offer a solution to the miss-

ing satellites problem even at large DM masses [ 19 ]. The minimal

model introduced in [ 19 ] explicitly breaks gage invariance and hence

suffers from very strong constraints from kaon and W decays [ 49 ].

Such constraints are however strongly model-dependent, not apply-

ing for example in models where the mediator couples dominantly to

sterile neutrinos. We hope to return to this problem in future work. 

6. Discussion and conclusions 

In this paper we have attempted to systematically study how con-

straints on lepton–DM interactions map into protohalo constraints.

We have shown that surprisingly strong limits on the DM protohalo

mass are obtained in the regime where EFT is valid and when charged

lepton couplings exist. 

If the missing satellite problem is indicative of non-standard DM

physics, it would likely indicate that DM is neutrinophilic. Generically

in the heavy mediator limit we have considered here, large protohalo

masses requires very light DM masses, though this is unlikely to be

true when one revokes the effective field theory assumption, and al-

lows for the possibility of light mediators. The topic of light mediators

connecting DM and neutrinos deserves further work in light of this

work (see [ 19 ] for an example). 

Future constraints on the coupling of DM to both charged lep-

tons and especially neutrinos will improve on the limits derived here.

Potential future constraints on charged lepton–DM interactions will

come from direct detection searches for electron–DM scattering, up-

coming Fermi-LAT releases, a re-analysis of DM limits from solar an-

nihilation when DM couples only to electrons, and future electron–

positron collider limits [ 50 ]. 

The strength of νDM interactions will be further limited by low-

threshold neutrino line searches. Thus existing Super-K data and fu-

ture DeepCore / PINGU [ 51 ] results from IceCube will be critical in

determining whether or not DM is neutrinophilic. 
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