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The problem of obtaining the Regge-like behaviour for meson mass spectrum in the hard-wall AdS/QCD
models is addressed. We show that the problem can be solved by a simple incorporation of the effects of
local vacuum condensates into such models. The slope of trajectories turns out to be determined by the
local condensate of dimension 2 that is absent in the standard Operator Product Expansion. This pitfall,
however, can be escaped by means of physically plausible modification of boundary conditions for the
holographic fields corresponding to the usual gluon condensate, the latter then determines the slope.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Recently the bottom-up holographic models have experienced
noticeable success in description of non-perturbative QCD (see,
e.g., [1–4]). In particular, many important aspects of chiral dynam-
ics can be reproduced within the simplest hard-wall model [1].
However, the spectrum of highly excited mesons in the hard-wall
models [1,3,4] behaves like mn ∼ n that does not agree with the
Regge-type spectrum, m2

n ∼ n, expected in QCD. To solve this prob-
lem one resorted to an additional input from the 5d side — the
quadratic dilaton background (the so-called soft-wall model [2]).
Such an ad hoc solution, however, lacks for a simple description
of the chiral symmetry breaking (see, e.g., the recent discussions
in [5]). In addition, the physical meaning of the dilaton back-
ground is completely obscure. The slope of trajectories determines
the physical masses of hadrons, hence, the slope itself is deter-
mined by the confinement. The authors of Ref. [2] suggested that
the quadratic dilaton could reflect the closed string tachyon con-
densation since the latter process is often believed to be dual to
the confinement in the gauge theories. It was further speculatively
assumed in [6] that a closed string tachyon could be associated
holographically to a dimension 2 condensate whose relation to
various aspects of non-perturbative physics had been widely dis-
cussed in the literature (see, e.g., [7]). This conjecture opens the
doors to a more general idea that, instead of “playing” with metric,
some important aspects of the confinement can be incorporated
into the AdS/QCD models through the account for the local con-
densates. An essential feature in this program is that the local
condensates must be taken into consideration dynamically, this is
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opposite to the geometric approach of [8] where the condensates
were included through a modification of metric.

In the present Letter, we propose a very simple and straightfor-
ward way of incorporation of local condensates into the AdS/QCD
models. We make the case of the vector mesons within the hard-
wall holographic model on the simplest Randall–Sundrum back-
ground (a somewhat similar but much more complicated analysis
was performed in [6] for the glueball spectrum). It is shown that
with this theoretical setup the spectrum becomes Regge-like at
not very high energies, with the slope of trajectories being deter-
mined by the dim2 condensate. The latter circumstance is trou-
blesome because such a gauge-invariant local condensate is absent
in the standard Operator Product Expansion (OPE) [9]. If we re-
gard this condensate as non-local then we will be in conflict with
the AdS/CFT correspondence principle: The holographic fields must
be associated to local gauge-invariant operators in the field theory.
We have found a simple and intuitively plausible solution of this
problem — the slope can be related to the usual dim4 gluon con-
densate by a certain modification of boundary conditions for the
corresponding dual holographic field, therefore there is no need
for introducing the dim2 condensate.

The Letter is organized as follows. The general scheme is pre-
sented in Section 2. In Section 3, we consider a concrete model
demonstrating the underlying idea. Section 4 is devoted to discus-
sions where it is shown how the problem with dim2 condensate
can be avoided. Finally we provide concluding remarks in Sec-
tion 5.

2. General scheme

We will demonstrate the idea for the case of isoscalar vector
mesons (ω-mesons), this case can be straightforwardly generalized
to other kinds of mesons. To select the operators that are impor-
tant in the formation of masses of resonances we will be guided by
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the OPE for the two-point correlators of quark currents at large Eu-
clidean momentum Q . It has the following structure [9] (we omit
the Lorentz indices and irrelevant factors)

Π
(

Q 2) = C0 log
Λ2

Q 2
+

∞∑
k=1

Ck
〈O2k〉
Q 2k

, (1)

here O2k are local gauge-invariant operators of canonical dimen-
sion 2k (several operators can correspond to the same k) and Ck
are constants that can be calculated by means of the perturbation
theory. The vacuum expectation values (v.e.v.) of the operators in
the r.h.s. of Eq. (1) determine the masses of mesons, this is es-
pecially evident in the large-Nc limit of QCD, where the l.h.s. of
Eq. (1) represents a sum over meson poles. As is usual in calcula-
tion of masses within the QCD sum rules [9] we should retain only
the first several contributions to the r.h.s. of Eq. (1).

Let us discuss the relevant operators. The first term in the r.h.s.
of Eq. (1) is perturbative, hence, it is not of interest for us. The
local gauge invariant operator of dimension 2 is absent in the stan-
dard OPE [9], nevertheless, as is widely discussed in the literature
(see, e.g., [7]), an effective formation of dim2 gluon condensate
〈A2

μ〉 may turn out to be of high importance in the gluodynamics
and lead to a rich phenomenology. In addition, such a quadratic
correction is often associated with contributions of renormalons
(see, e.g., discussions in [10]). For this reason we tentatively in-
clude this operator into our analysis. The v.e.v. 〈O4〉 is contributed
by mq〈q̄q〉 and by the gluon condensate αs〈G2

μν〉. The both have no
anomalous dimension (the last in one loop). The relative contribu-
tion of mq〈q̄q〉 is very small, we neglect it adopting the chiral limit
mq = 0. The physical meaning of higher terms in the asymptotic
expansion (1) is not essential for our purposes.

According to the AdS/CFT correspondence, we must link each
operator O(x) to a field ϕ(x, z) in the 5d bulk theory, with the
5d masses of fields ϕ(x, z) being determined via the relation
[11,12]

m2
5 = (� − p)(� + p − 4), (2)

where � is the canonical dimension of the corresponding opera-
tor O(x) and p in our simple case is just the number of Lorentz
indices.

Let us discuss the field content in our model. First of all, we
have the vector meson that is interpolated by the current q̄γμq.
The corresponding 5d field will be denoted V M . We have p = 1,
� = 3, hence, (m5)

2
V = 0. Second, we have an infinite set of op-

erators 〈O2k〉 (for simplicity, we neglect the fact that, generally
speaking, a finite number of different operators corresponds to
each k). The corresponding 5d scalar fields X2k have p = 0, � = 2k,
hence,

(m5)
2
2k = 4k(k − 2). (3)

The action of the theory in the bulk describing the vector
mesons is

S =
∫

d4x dz
√

g Tr

{∑
k

(|D X2k|2 − (m5)
2
2k|X2k|2

) − 1

4
F 2

MN

}
,

(4)

where

DM X2k = ∂M X2k − ig5 V M X2k, (5)

F MN = ∂M V N − ∂N V M . (6)

As usual, the holographic coordinate z corresponds to the inverse
energy scale, z ∼ 1/Q . The v.e.v. of the fields X are determined by
the classical solutions satisfying the UV boundary conditions. Since
in the limit of very high energies the vacuum in QCD is perturba-
tive, i.e. there are no condensates, it is natural to impose the UV
boundary condition

X2k(x, z = 0) = 0. (7)

At this stage we do not impose any IR boundary (to be discussed
below) that determines a scale until which the running of the
QCD gauge coupling is neglected. We believe that in dealing with
renorminvariant (or almost renorminvariant) quantities, as we do,
the problem of running coupling is irrelevant.

To obtain a concrete model one has to choose a metric, the
classical solutions for 〈X2k〉 form then a “potential” for the vector
field V M , fixing for the latter a gauge and boundary conditions one
calculates the mass spectrum.

3. A model

We will consider the simplest metric exploited in the hard-wall
model, the anti-de Sitter one [1],

ds2 = 1

z2

(
dxμ dxμ − dz2), (8)

where for simplicity it is taken R = 1 for the radius of AdS space.
Fixing the gauge V z = 0, the normalized solutions vn , V n

M(x, z) =
V n

μ(x)vn(z), of classical equation for the transverse components

V T
μ exist only for discrete values of 4d momentum q2 = m2

n ,

∂z

(
1

z
∂z vn

)
+ m2

n vn

z
= 2g2

5

z3
vn

∑
k

〈X2k〉2, (9)

where 〈X2k〉 are solutions of

1

z3
∂μ∂μ X2k − ∂z

(
1

z3
∂z X2k

)
= − 1

z5
(m5)

2
2k X2k, k = 1,2, . . . .

(10)

We look for solutions for 〈X2k〉 which are functions of z only. Mak-
ing change of variables vn = √

zψn the system of equations (9),
(10) takes the form

−ψ ′′
n +

(
3

4z2
+ 2g2

5

z2

∑
k

〈X2k〉2

)
ψn = m2

nψn, (11)

z2 X ′′
2k − 3zX ′

2k − (m5)
2
2k X2k = 0, k = 1,2, . . . . (12)

Eq. (11) is of Schrödinger type with the “potential” in brackets,
this potential is determined by the solutions of Eqs. (12). Inserting
the values of (m5)

2
2k from relation (3) into Eqs. (12) we obtain the

following solutions satisfying the boundary condition (7),

〈X2〉 = c(1)
2 z2 + c(2)

2 z2 log z, (13)

〈X2k〉 = c(1)

2k z2k, k = 2,3, . . . , (14)

where c(i)
2k are some dimensional constants.

In order to have the Regge-like spectrum, m2
n ∼ n, the poten-

tial in Eq. (11) has to be of oscillator type, i.e. to behave as z2 at
large z. This is achieved if we set c(2)

2 = 0 and neglect the con-

tributions of higher-dimensional operators, c(1)

2k = 0 at k > 1. The
spectrum will be

m2
n = 4

√
2 g5

∣∣c(1)
2

∣∣n + const. (15)

In particular, choosing c(1)
2 = (

√
2 g5)

−1 in appropriate units of
energy square we arrive at the spectrum obtained in the sim-
plest soft-wall model [2]. We note also that since the slope a =
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4
√

2 g5|c(1)
2 | in Eq. (15) is proportional to the string tension σ ,

a = 2πσ , the quadratic correction in the OPE (1) turns out to be
also proportional to σ , this is in a qualitative agreement with the
results of holographic calculations performed in [13].

Thus, within the given holographic model, the first non-
perturbative contribution to the two-point correlators, the so-
called dim2 gluon condensate, is responsible for the Regge-like
behaviour of meson spectrum, the higher non-perturbative con-
tributions in the OPE (1) yield anharmonic corrections to the
spectrum.

4. Discussions

In a sense, the principle of AdS/CFT correspondence converts
the asymptotic expansion in Q −2 in the OPE into asymptotic ex-
pansion in z4 in the holographic potential of equation for mass
spectrum (11),

U (z) = 3

4z2
+ 2g2

5

∞∑
k=1

ckz4k−2. (16)

In the QCD sum rules [9], only the lowest contributions in the
OPE are essential for the determination of masses of ground states
of mesons. Accepting the same principle in the model above we
should also neglect the higher power-like contributions to the
spectrum.

Until now we have nothing said about the IR boundary. An
effective IR boundary zIR should certainly exist in the presented
model, but in contrast to the hard-wall models we do not impose
any special boundary conditions at zIR (the boundary conditions
are determined by the requirement to have the Regge-like spec-
trum), rather zIR shows the range of applicability of the model.
For instance, by tuning zIR one can achieve the dominance of the
oscillator-type contribution z2 in the potential of Eq. (11) in a
certain range of large z. Following this way one obtains a Regge-
like spectrum for a certain number of excited mesons which were
observed experimentally, the description of higher states (not ob-
served experimentally) are then beyond the validity of the model.
More exactly, the shape of potential well is O(z2) at zmin < z < zIR,
where zmin is the minimum of potential, and at z = zIR one has
a “hard” wall. As a consequence, the spectrum of normalizable
modes is of oscillator type, m2

n ∼ n, at small n and, after imposing
the appropriate IR boundary condition, represents zeros of Bessel
function, mn ∼ n, at large n, m2

n > U (zIR), where the model is sup-
posed to be not applicable.

The theoretical status of quadratic correction in the OPE (1) is
uncertain as long as the existence of dim2 gluon condensate (the
effective “tachyonic” gluon mass) and the related phenomenology
are somewhat speculative presently, let alone the problems with
the implementation of AdS/CFT principle mentioned in Introduc-
tion. The question appears whether it is possible to modify the
presented model such that the slope of meson trajectories were
not determined by the dim2 gluon condensate? Intuitively it would
be more natural to imagine that the slope is related to the dim4
gluon condensate, is it possible to implement this? The answer is
positive. The dim4 gluon condensate is known to be contributed
not only by the non-perturbative effects but also by the pertur-
bation theory after summation over certain gluon exchanges. For
this reason the UV boundary condition (7) may be just incorrect
for the scalar field corresponding to the dim4 operator αsG2

μν , it
should be weakened to

X4(x, z = 0) = const. (17)

In this case, the solution of Eq. (12) for k = 2 is

〈X4〉 = c(1)z4 + c(2)
. (18)
4 4
Substituting this solution in Eq. (11) we observe that 〈X4〉 yields
contribution both to the UV (stemming from c(2)

4 ) and to the IR

(stemming from c(1)
4 ) parts of potential, with the contribution of

oscillator type representing an interplay of the both, O(c(1)
4 c(2)

4 z2),
i.e.

m2
n ∼ c(1)

4 c(2)
4 n + · · · . (19)

This reflects holographically the fact that the gluon condensate en-
codes both perturbative and non-perturbative effects as we know
it from the phenomenology. In addition, we see a direct realization
of the AdS/CFT idea: The UV behaviour of the 5d dual theory deter-
mines the low-energy properties of the 4d theory on the boundary
— the slope of discrete mass spectrum in the given case. Now we
can remove the dim2 condensate basing our analysis on the stan-
dard OPE [9].

It should be noted that the metric can be chosen such that the
Regge slope is automatically determined by the dim4 operators in
the OPE while the dim2 ones do not contribute to the slope even
if they existed. We have found that this happens if the analysis
above is formally performed in the flat metric, see Appendix A.

It seems that the description of Regge-like spectrum can be
made fully compatible with the simultaneous description of the
chiral symmetry breaking. If we neglect all contributions that lead
to the anharmonic terms in the potential of Eq. (11) and take into
account the contribution of the quark bilinear operator q̄q in the
axial-vector channel following the procedure described in [1], this
contribution will dominate in the IR-region, on the other hand,
the UV asymptotics of the solutions will be unchanged. Since the
description of chiral dynamics is based on these asymptotics, the
corresponding results from [1] seem to be compatible with the si-
multaneous description of the Regge-like spectrum.

5. Concluding remarks

The experience of holographic models of QCD shows that it is
really hard to achieve a satisfactory comprehensive description of
non-perturbative QCD just by playing with the background metric
and boundary conditions for the fields in the bulk, one should add
some ingredients directly from QCD or low-energy effective the-
ories of QCD. For instance, knowing that the quark condensate is
the order parameter of the chiral symmetry breaking, one should
introduce a 5d scalar field corresponding to the quark bilinear op-
erator and organize a nontrivial solution that would correspond
to the v.e.v. of the operator under consideration — the quark con-
densate. This was the first indispensable step for the correct de-
scription of chiral dynamics in [1]. In essence, we have proposed
a simple and compact demonstration of the fact that in order to
obtain the correct spectrum of meson excitations it is not neces-
sary to complicate the bulk geometry, it is sufficient to add more
QCD to the simplest model in a similar way. Thus, the question
“Why does the simplest hard-wall model, being successful in de-
scription of the chiral dynamics, fail to reproduce the Regge-like
spectrum?” has a simple and natural answer: Because the 5d field
corresponding to the QCD operator that is crucial for chiral dynam-
ics — the quark bilinear operator — was taken into account while
the 5d fields corresponding to the QCD operators responsible for
the masses of hadrons were not taken into consideration.

The problem that emerges along this line is the appearance of
anharmonic corrections to the spectrum. As a result, the spectrum
looks like (at least if these corrections are small)

m2
n ∼

∞∑
cin

i . (20)

i=1
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The role of terms with i > 1 is an open question. On the one
hand, one may try to elaborate some mechanism for their sup-
pression (or, say, regard them as an artifact of asymptotic nature
of OPE), on the other hand, the experiment [14] does not provide
convincing indications that they must be suppressed. Within the
holographic models, such anharmonic contributions were system-
atically analyzed in [15]. It is quite intriguing to observe that the
found solution for the slope (19) shares with the analysis of [15]
the following general feature: The slope is equally determined by
the IR and UV sectors of the underlying theory.
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Appendix A

Consider the flat metric

ds2 = dxμ dxμ − dz2. (A.1)

In this metric, the classical equations (11), (12) take the form

−ψ ′′
n +

(
2g2

5

∑
k

〈X2k〉2
)

ψn = m2
nψn, (A.2)

X ′′
2k − (m5)

2
2k X2k = 0, k = 1,2, . . . . (A.3)
Making use of relation (3) and boundary condition (7), the solu-
tions of Eqs. (A.3) are

〈X2〉 = c2 sin(2z), (A.4)

〈X4〉 = c4z, (A.5)

〈X2k〉 = c2k sinh
(
2
√

k(k − 2) z
)
, k = 3,4, . . . . (A.6)

The harmonic contribution to the potential of Eq. (A.2) stems from
the v.e.v. 〈X4〉, at least for large enough z. It seems that we should
not use our logic for the operators with k > 2 as the solutions (A.6)
do not look physical.
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