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Abstract 

In this paper we follow the work of [7] to evaluate the scalability of contact law for a linear spring dashpot (LSD) 
model. Models are evaluated using a shear test box with Lees-Edwards boundary conditions. Afterwards we extend 
our analysis for a Hertz model and a limited analysis in cohesive contact model. Results demonstrate that Hertz 
model has the same behaviour as the scaled LSD model for both inertial and quasi static regime. In coarse graining 
we expect constant stresses values for different parcels sizes. Both models demonstrate an almost constant stress in 
the quasi-static regime, but a significant increase is obtained in the inertial regime. A limited number of analysis 
were also made for a JKR cohesive contact model. 
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1. Introduction 

Discrete element modeling is a numerical method that simulates particle dynamics based on individual particle 
collisions. Therefore computational effort increases with the increase of the number of particles simulated, which 
may result in prohibitive computational times when simulations of more than 10 million particles are necessary.  
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However, many industrial sectors like powder metallurgy, minerals processing, iron- and steelmaking, chemical 
industry and many more run processes containing huge amounts of powder or particles in their processes. Die filling 
process for example in powder metallurgy deals with a prohibitive number of particles to be simulated in most of the 
cases. Coarse graining allows reducing the computational effort by replacing individual particles by representative 
parcels, substantially reducing the required number of particles to represent a process. However analytical 
considerations and verifications are necessary to ensure that the physics is captured correctly. 

1.1. Model Description 

Discrete element method (DEM) was first developed by [4]. The method aim at tracking individual particles or 
parcels representing a number of particles in the flow domain. Particles interactions are modelled using a soft-sphere 
model where rigid spheres are allowed to overlap each other at the contact point. 

Giving the sum of forces if  total force due to contacts with other particles or walls acting on particle i, the 
changes in positions and velocities of the particles are calculated from the integration of Newton’s equation of 
motion. For translational motion of particle i the equation is given as [6]: 

 
2

2i i i i
dm r f m g
dt

 ,                     (1) 

 
where im is the mass of the particle i, ir  is the position of particle i and g is the gravitational force. Also for the 
rotational motion of the particle i the equation is given as [6]: 
 

i i i
dI t
dt

,                                  (2) 

 
where iI  is the moment of inertia of particle i, i  is the angular velocity of particle i and it  is the total torque on 
particle i. 

1.2. Normal contact force law 

To perform correct simulations using coarse particles one has to think on how to connect the original particle 
interaction parameters with the coarse particle parameters. Spring and stiffness parameters must be scaled when 
particle size is scaled. 

Following the work of [7], the analysis is based on equal energy densities in the original and the coarse grained 
system. The density of the particles and the translational velocity must be invariant. Also, the total rotational kinetic 
energy of the original and coarse grained system must be the same. 

 The following analysis is valid for a linear spring-dashpot model with frictional slider. We start looking at the 
differential equation for the normal overlap based on Newton’s equation of motion [7]: 

 

eff n n n n nm k c                   (3) 
  

Here the effective mass is: 
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The effective radius is 
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Inserting Equations 4 and 5 in Equation 3, and using dimensionless variables * /n n R , *

0/n n v , and 
*

0/ ( / )it t R v  yields: 
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with 3 3

1 4 / 3 1K . Thus, scaling is based on dimensionless (normal) overlap for the translational motion 

of a particle, with the reference length being the parcel diameter in the parcel approach and the particle diameter in 
the original unscaled problem, i.e., the relative overlap will remain invariant when scaling the system. From 
Equation 4 the following dimensionless parameters can be identified: 
 

n n
1 2 32 2

i P 0 i P 0

k c
π β,   π ,   π

R ρ v R ρ v
                         (7) 

 
Condition 1π  requires a constant ratio of the radii of the colliding particles or parcels. This ratio will remain 

constant as long as each parcel is made up by the same number of particles N. 2π requires that kn/Ri = constant, 
since we require also the density and the reference velocity v0 to be invariant. Condition 3π  requires cn/Ri

2 to be 
constant [7]. 

1.3. Simple Shear Test 

We started performing simple shear flow simulations in a cubic box (see Fig. 1). Lees-Edwards boundary 
conditions were used on two sides of the box. In the other sides periodic boundary conditions were employed. 
Initially linear spring model was used to reproduce the same data obtained by [7]. 

Shear rate was chosen such that * / / ( )prim P primd k d  = 10-4 was constant. Systems with different parcel 
sizes were investigated by holding the box size (0.015 m) and the primary particle diameter (100 um) constant, and 
grouping between 4 and 8192 particles in one parcel. For the inertial regime a solid fraction of ΦP = 0.55 was used. 
For the quasi-static regime a solid fraction of ΦP = 0.62 and 4000 parcels were used [3,7]. Simulations were 
performed using a 1) unscaled system and 2) scaled system according to previous obtained relation for stiffness and 
damping and data is shown in Fig. 2. For all simulations static friction used was 0.1, rolling friction 0.0, coefficient 
of restitution 0.75 and density 2500 kg/m3. 
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Fig. 1 – Shear box with boundary conditions indicated. 

 

 
 

 

Fig. 2 – Pressure (left) and shear stress (right) for different parcels diameters. Data is displayed for scaled and unscaled system and predictive 
theory for each regime (quasi static and inertial) is also depicted. 

 
We define pressure as ) 3( /xx yy zzP V . Shear stress (τ) is defined as the stress component pointing in the 

shearing direction and acting on the surface normal to the gradient direction (the other components are much 
smaller). 

2. Hertz Contact Model 

We now extend the analysis from [7] by verifying the behavior of the Hertz contact model. [2] already performed 
some analysis in the behavior of Hertz model for quasi-static regime. We will also extend to the inertial regime. The 
difference between LSD and Hertz models is how stiffness and damping coefficients are calculated. In Hertz model 
stiffness is calculated as [5]: 

 
* *4

3n nk Y R                             (8) 

 
From Equation 8 we can observe that stiffness already scales with R. In his model the condition 2π is satisfied. 
Damping coefficient is calculated as follow [5]: 
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*52
6n nS m                   (9) 

 
and Sn is calculated as [5]: 
 

* *2n nS Y R                         (10) 
 

We have then Sn which scales with R and multiplied by m* which scales with R3. From Equation 10 we can see 
that damping scales with R2 and satisfies condition 3π . From that we can observe that Hertz law is scale independent. 

In the Hertz model stiffness is dependent of the overlap so it is not possible to define a fixed value as in the LSD 
model. However in the inertial regime the pressure is independent of the particle stiffness [3]. It is expected that 
pressure data obtained with Hertz contact model collapse in the same curve as the pressure data obtained by scaled 
LSD contact model. Also in the quasi-static regime it is expected that pressure increases with the increase of the 
stiffness. Although curves may not collapse (unless both models have equivalent stiffness) is expected a similar 
profile in the Hertz and scaled LSD curves. In fact this is depicted in Fig. 3. We considered for the simulations with 
Hertz contact model the same shear rate and volume fraction used for LSD model. 

 

  
 

Fig. 3 – Pressure (left) and shear stress (right) for different parcels diameters. Hertz contact model data for different values of Young’s modulus 
and LSD scaled are collapsed in the same curve in the inertial regime (bottom curve). 

 
To verify the independency of the stiffness in the inertial regime and consistency in the profile of obtained data in 

the quasi static regime we varied the stiffness of the scaled LSD and also varied the Young’s modulus in the Hertz 
contact model. Obtained data is depicted in Fig. 4. 
 

  
 
Fig. 4 – Pressure (left) and shear stress (right) for different parcels diameters. Hertz contact model for different Young’s modulus values and LSD 
scaled for different values of stiffness quasi-static regime are depicted. 
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3. Cohesive contact model 

 
With a defined method to evaluate the scalability of the contact models we proposed to extend the analysis for 

cohesive contact models. A limited number of tests were performed using a JKR contact model implemented in 
LIGGGGHTS software [5]. In JKR model normal force is calculated as [8]: 

 
* 3 1/2* 3

*

4 8
3n
E aF E a
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               (11) 

 
where  is the surface energy and a  is the particles contact area. Particle overlap is calculated as follows: 
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When surface energy is zero, the second term of Equations 11 and 12 vanish and the JKR contact model reduces 

to standard Hertz contact model. The shear test failed for cohesive material and no predictive behavior could be 
obtained. We found that for high cohesive forces particles stick together and change the translational velocity. Also 
this additional cohesive force in the contact model may increase solid fraction in certain regions (depending on the 
particle stiffness) resulting in a different flow regime than initially modelled. On the other hand if cohesive forces 
are too low imposed velocity causes shear force to separate particles and the behavior is identical as Hertz contact 
law. 

4. Conclusions 

Coarse graining still needs more analysis to perform correct behavior in all particle flow regimes, even though 
this approach has been used for almost 20 years [1]. We performed a simple analysis in the linear spring dashpot 
model to obtain correlations in order to have a scale independent contact model. The same analysis was further 
extended to a Hertz contact model and a similar behavior was obtained for the Hertz and the scaled LSD contact 
model. 

Although similar stresses were obtained for both contact models in different regimes both demonstrate a different 
behavior than the expected in terms of stresses when coarse graining modelling is to be used. For quasi-static regime 
was demonstrated that the stresses were almost constant for all parcel sizes. A slight increase is observed for 
correlations of Dp/Dprim >10 when dimensionless shear rate are > 10-2 [3]. This could be explained by the higher 
dimensionless shear rate for such parcels that results in flow regime where both inertial and quasi static flow merge 
in one curve and pressure increases linearly as shown by [3]. 

The inertial regime has a very different profile in the obtained pressure for different parcels size. The pressure 
increases significantly with the parcel size. In coarse graining we desire a constant pressure for different parcels size 
similar to the one obtained in the quasi static regime. 

For coarse graining and especially in the inertial regime is necessary to develop correlations that corrects this 
increase in pressure. A relaxation function was implemented by [7] for LSD models to try minimize this increase in 
pressure. As further steps a relaxation function will be implemented in Hertz contact model to try to obtain a 
generalized function that could be valid for the different regimes. 
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