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Abstract 

Real time monitoring of some key dynamical parameters of a vehicle provide critical information about the driving styles and expectations of 
vehicle drivers. Some of these key dynamical parameters include vehicle acceleration, braking, speeding index and throttle activity index. This 
paper presents a simple classifier that uses the estimated values of the above parameters to classify a driver into one of three categories, 
aggressive, moderate and conservative. The proposed classifier is computationally more efficient compared to other conventional classifiers, 
such as K-nearest neighbor algorithm, and hidden Markov model. Also, it filters the reference data set in an intelligent fashion. In a dual-power 
vehicle, such as a hybrid electric vehicle, this kind of classifier can be used to develop an optimum shift schedule, or an optimum engine on-off 
strategy, and estimate the available amount of regenerative energy. 
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1. Introduction 

To optimize the driving experience of a driver, significant improvements have been made to vehicle powertrains and their 
control strategies during the past few years. However, most of these strategies target a particular segment of drivers based on 
market segment studies. This strategy works well if the focus is on a particular demographic section, which it is designed for. 
However, if the powertrain controller can adapt itself to the short-term and long-term driving styles of a specific driver, the 
vehicle would be appealing to a broader section of customers. If the powertrain could learn the driving style of a driver and 
adjust its parameters, such as shift map, transmission gear-shifting style, pedal map, and engine operating point, it would greatly 
enhance the driving experience of the driver. The powertrain parameters can then be adjusted to maximize fuel economy based 
on the driver’s long-term driving style, whereas short-term learning can be used to adjust the powertrain for the driver’s  
instantaneous power requirement needs. 

A few studies on driver classification have appeared in recent literature. Wada [1] proposed a performance based index that 
estimates the driver’s attentiveness by monitoring the driving patterns and the deceleration profiles under various driving and 
braking events. An empirical classifier is modelled to index drivers based on their visual capabilities and alertness. SangJo Choi 
[2] used hidden Markov models (HMMs) to model the driving characteristic data gathered from the CAN-bus information of a 
vehicle. The emphasis of this paper is more towards identifying some of the actions taken by a driver, such as turning or braking, 
and deciding whether the driver is distracted by some secondary tasks. Nobuyuki [3] proposed a driver behaviour recognition 
model using HMMs to characterize and detect driving maneuvers and place it in the framework of a cognitive model of human 
behaviour. This study focuses on lane change maneuvers using measures, such as steering angle, steering angle velocity and 
steering force. However, an algorithm is used to classify the driving skill of the driver during a lane change, but not the power 
demands of the driver. Hsin Guan [4] used a fuzzy decision making model that calculates an index of driving safety (IDS) based 
on the geometrical characteristics of the road ahead and the driver’s response, driver handiness based on how busy the driver is 
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with the steering wheel at steady speeds, and driving legality based on how the driver obeys the traffic statute for passing 
vehicles etc.  

Lin [5] presented a quantitative analysis for on-going assessment of a driver’s cognitive responses by investigating the 
neurobiological information associated with electroencephalographic (EEG) brain dynamics in traffic light experiments. 
Nonparametric feature extraction, principal component analysis and discriminant analysis were applied to reduce the dimension 
of the feature vector. A combination of K-nearest neighbour (KNN) and naïve Bayes classifier (NBC) was used for 
classification. Ehmann [6] presented a parametric driver classifier that classifies the driver into four categories, namely, unskilled 
non-aggressive, unskilled aggressive, skilled aggressive, and skilled non-aggressive. The classification is based on driving speed, 
preview distance used to make braking decisions, rate of slowing down, and maximum steering wheel angle change rate. 
Veeraraghavan [7] proposed classification algorithm that classifies the actions of a driver as safe or unsafe. Bjorklund [8] 
showed that a positive relationship exists between a driver’s irritation and an increase in the frequency of aggressive actions. Ma 
[9] used a fuzzy clustering algorithm to analyze human driving behaviour with respect to car following and lane change 
maneuvering based on longitudinal and lateral acceleration, applied brake pressure, engine speed and some GPS data, such as 
speed, travel time and distance. These were used to classify a driver’s aggressiveness with respect to lane changes and car-
following. 

Although the above authors attempt to characterize a driver in one way or another, they do not attempt to classify the drivers 
based on their power demands from the vehicle powertrain. Such a characterization is important for developing an adaptive 
powertrain optimizer that can optimize the energy usage in a vehicle, promote greener ways of driving, and enhance fuel 
economy. This paper presents an attempt toward that. 

2. Data acquisition and preprocessing 

In the training phase of the classifier, data was collected from ten different drivers driving the same instrumented vehicle over 
a pre-selected route. The instrumented vehicle is capable of measuring the signals listed below at a frequency of 320 Hz. The 
drivers were asked to drive the first lap as an acclimatization lap. Then they were asked to make three laps of the route in 
conservative, moderate and aggressive driving styles. The route was chosen to have a good mix of various road attributes, such 
as grade changes, stop signs, traffic lights, left or right turns, and different speed limits along the route. The signals collected 
were chosen to cover all aspects of driving, such as vehicle speed, acceleration, torque, accelerator pedal, steering wheel angle 
and brake pedal force. The raw data collected for the purpose of driver characterization included the signals shown in Table 1 
below. 

  
Table 1: Signals Collected for Data Analysis 

 
Signal Name Symbol Unit 
Lateral Acceleration  m/s2 
Longitudinal Acceleration  m/s2 
Accelerator Pedal percentage  % 
Vehicle Speed  km/hr. 
Output shaft acceleration  rpm/sec 
Driver intended brake torque  Nm 
Steering wheel angle  degree 
Axle Torque  Nm 
Vehicle Torque Request  Nm 
Vehicle Acceleration  m/s2 

 

3. Correlation analysis 

Correlation analysis of the collected data was performed to find their inter-relationships and eliminate the redundant ones 
from further studies. The correlation analysis was performed on all training datasets, and strong correlations were observed 
between similar signals generated by different drivers. Correlation analysis revealed that the output torque demand , 
throttle position  and axle torque  are strongly correlated. Also, since throttle percentage is a good reflection of the 
axle torque , throttle (or accelerator ) pedal can be used as a representative signal for the three signals mentioned above. It 
was also observed that the steering wheel angle and vehicle speed are not strongly correlated with any of the other signals, and 
hence these can form a very good component of the classifier. Using correlation analysis, we were able to reduce the feature 
space from 9 to 7. The signals were shortlisted to steering wheel angle ( ), vehicle speed ( ), vehicle acceleration ( ), 
accelerator pedal driver requested brake torque ( ), lateral acceleration ( ), and longitudinal acceleration ( ). 
Next, principal component analysis was undertaken to determine the most important signals for classification. 

4. Principal component analysis 
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Principal Component Analysis (PCA) transforms an original set of variables into a substantially smaller set of uncorrelated 
variables, while retaining most of the information present in the original set of variables. Thus, PCA can be used to reduce the 
dimensionality of the original data set.. According to Dunteman [7], PCA can also be used to select a subset of variables from a 
larger set of variables by selecting only those variables that have a high correlation with the principal components. PCA was 
performed on the variables shortlisted from the correlation analysis, and the results are shown in Table 2 below. 

Table 2: PCA Results 

Principal Component Percentage Contribution Major Contributors Attribute Description 
PC1 37% , ,  and . Linear Acceleration of the Vehicle 
PC2 24% , , and  Vehicle Acceleration during turns 
PC3 14% , , and  Lateral  Acceleration 
PC4 12% ,  and   Speed Variations in the vehicle 

 

Based on the results of correlation analysis and PCA, the signals selected for feature extraction include lateral 
acceleration ), vehicle acceleration , vehicle speed and accelerator pedal percentage (  

5. Feature extraction and selection 

The following features were extracted from the signals identified at the end of the previous section for driver classification. 
 
Feature 1: Feature extracted from lateral acceleration,  
From the lateral acceleration signal, we extract information for two types of maneuvers, namely, 

maneuver
maneuver maneuver

maneuver
maneuver

Feature2: Mean vehicle acceleration/deceleration,  
This feature computes the mean acceleration of the vehicle when it accelerates from a certain threshold velocity,  to 80% 

of the posted speed limit or until the brake is applied. Similarly, it computes the mean vehicle deceleration when the brake is 
applied and the speed is between 80% of the posted speed and  or the brake pedal is released. 

Computational Logic: 

, compute  

 If  , compute , 
where ,  and  are the empirically determined minimum speed, minimum accelerator pedal value and the 

minimum brake torque threshold. 
 
Feature3:  Standard deviation of vehicle speed,  
Standard deviation of the vehicle speed is measured for the time interval during which the vehicle speed is above 70% of the 

posted speed limit and ends when either the brake pedal is pressed, or the vehicle speed drops below 70% of the posted speed 
limit, or when the vehicle is on a turn as detected by the steering wheel angle measurement from the earlier feature. This feature 
indicates the speeding index of the driver. 

Computational Logic: 
 compute s  

 
Feature4:  Throttle activity index (TAI) 
This feature characterizes the driver’s confidence level by measuring the change in the magnitude of the accelerator pedal 

relative to the frequency of change in the accelerator pedal percentage. It is measured when the vehicle speed is above 70% of 
the posted speed limit and the accelerator pedal percentage is greater than 10%. The throttle activity index is computed as 
follows. 
 

1. For a given time window , measure the standard deviation of accelerator pedal with respect to the moving ideal 
accelerator pedal percentage required to maintain the vehicle speed at a given posted speed limit and road gradient. Ideal 
accelerator pedal position, , can be calculated from the pedal-to-torque mapping of the vehicle once the tractive 
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force requirements are known for a given speed and grade. The vehicle torque demand is essentially the tractive force which 
is a function of road load, aerodynamic drag, rolling resistance and the acceleration component. 

2. The frequency of pedal change is determined using an instantaneous frequency estimator [14]. Next, the normalized 
standard deviation was calculated as follows. 
 

, where  is the normalization threshold. 

The normalized pedal frequency was calculated as: 

, where  is the normalization threshold. 

Computational Logic: 

 compute  

 
The throttle activity index, as illustrated in Fig. 1, is a fuzzy number ranging between 0 and 1, where 0 represents a steady and 

conservative driver, while a 1 represents an extremely aggressive driver showing significant movement in the accelerator pedal 
in both magnitude and pedal movement for the given window.  

 

Figure 1: TAI as a function of STD and DCC 

6. Classifier Design 

A generalized bell function [14] is used to describe the probability density function of each of the features and its 
classification into one of the three categories, aggressive, moderate and conservative. The function is defined as: 

 

.  

 

 
 

Figure 2: Sample PDF for Throttle Activity Index 
 

The PDF parameters for each feature are determined empirically, and they allows us to partition the whole training set into 
discrete individual feature spaces. During the classification phase, when a new sample is encountered, the PDFs of the extracted 
features are determined and then only those training datasets (pre-classified samples) that have at least 75% of the extracted 
features with non-zero values are chosen for analysis. The classification is done based on a simple majority criterion. This 
classifier does not need to compute the Euclidean distance between every new feature sample and the samples in the training data 
set. Also, if there is a repetition observed in the pre-classification stage, where the training data set is being classified, the 
dimensions can be reduced by simply eliminating one of the training data sets. This will occur only when all the extracted 
features of both the samples have the same individual PDFs and also are classified in the same category. Given an unknown 
sample, its nearest neighbours need not be sought in the entire feature space but only in a region surrounding it. This method 
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calls for the exploration of the concept of partitioning the feature space into cells. The downside is that this method leads to  
approximate nearest neighbours, which is adequate in most situations. For driver classification, three classes are considered,  
aggressive, moderate and conservative.  

Let  be the finite set of classes and let be the feature vector containing all the extracted features from a 
given time window such that . A general assumption is made that the data is bounded and partitioned into 
three categories, i.e., aggressive, moderate and conservative. Let  be the state conditional probability density function 
(PDF) for and  describe the prior probability that the class is .  is the prior probability that the class is  for 
the feature The posterior probability is then computed as 

 

 

 
Using Bayesian decision theory further, for a class vector , the class of the feature is now 

determined by finding the class that has the maximum probability. Thus we obtain the class for each individual feature in the 
feature vector.  

Next, to determine the posterior probability of a class for the entire feature vector, we use the following equation: 

 

The final class for the feature vector sample is determined by finding the class that has the maximum probability. 
 

Since a driver cannot be judged by just a few bad actions, hysteresis was built into the classifier by incrementing the 
appropriate bin counter for each class at the end of each sample window in the drive cycle and then using the following equation 
to estimate the driver characteristic for the entire drive cycle. The classes have been assigned numerical values for computational 
ease with conservative=1, moderate=2 and aggressive=3. If during the drive cycle, the driver’s actions are classified as 
conservative ‘k’ times, as moderate ‘m’ times and aggressive ‘n’ times, then their mean is given by: 

 

 

   The above equation gives us an index of the driver’s aggressiveness as compared to a discrete classification into one of the 
three classes. 

7. Experimental Results 

From the raw data collected, the threshold values used in the feature extraction phase were empirically determined to be as 
follows: 

Table 3: Threshold Values for Experimental Variables 

Threshold Variable Value 
 100° 
 3 Km/hr. 

 5% 
 40 Nm 

 % 
 10 sec. 

 0.35 Hz 
 

From the data that was obtained from different drivers, approximately 75% was used for initial training whereas the 
remaining 25% was used for validating the accuracy of the classifier.  

The classifier was initially trained based on the observed samples in the training set. Training samples that were observed to 
meet at least 80% of the PDF domains in the features from any of the previous samples were discarded as the classification 
would have resulted in the same class and to reduce the size of the data bank. However all samples (with new feature PDF 
combinations) were kept. This process ensured that the training and observation set is diverse and that repetitions are avoided. 
Features that had a value of zero in a given time window for a given feature vector was not considered in the analysis. The PDFs 
belonging to any feature were denoted by L (light), M (medium) and H (heavy). Since we had 4 features and each feature had 3 
PDFs, there were a total of  combinations possible. The classification was performed based on the technique explained 



393Gurunath Kedar-Dongarkar and Manohar Das / Procedia Computer Science 8 (2012) 388 – 393Gurunath Kedar-Dongarkar/ ProcediaComputer Science 00 (2012) 000–000 

*Corresponding author. Tel.: +1 2487665630, E-mail address: gurunath.kedar@gmail.com

above. For the sample instantaneous classifier, the classification is shown in the last column of table 4 (training set). Table 5 
shows the validation set in which the classifier was able to classify with 100% accuracy.  In the overall datasets collected, the 
classifier was able to classify with an overall accuracy of 77%. 

Table 4: Example of Training Set 

Sr. 
No.

Feature
 1

Class Feature
 2

Class Feature
 3

Class Feature
 4

Class Classification

1 0.1063 L -0.200 M 0.4578 L 0.3350 L Conservative 
2 0.0  X 0.13 L 0.3742 L 0.4107 M Conservative 
3 0.0 X -0.140 L 0.1358 L 0.6093 M Conservative 
4 0.0 X 0.21 M 0.7130 M 0.0150 L Moderate 
5 0.0 X -0.25 M 0.5351 L 0.7015 M Moderate 
6 0.1800 M 0.18 M 0.6959 M 0.5113 M Moderate 
7 0.34 H -0.331 H 0.8261 M 0.8111 H Aggressive 
8 0.0 X 0.3099 H 0.7930 M 1.0000 H Moderate 
9 0.0 X -0.26 M 0.8130 H 0.9899 H Aggressive 

Table 5: Example of Validation Set 

Sr 
No 

Feature 1 Class Feature 2 Class Feature 3 Class Feature 4 Class Classification 
(Supervised) 

Classification 
 (Classifier based) 
Matching 
Indices (50% ) 

Majority based 
Classification 

            
1 0.1859 M -0.3276 H 0.753 M 0.4858 M Moderate 4, 5, 6, 8 Moderate 
2 0.1271 L 0.1201 L 0.4986 L 0.745 H Conservative 1, 2, 3 Conservative 
3 0.2116 M -0.288 M 0.8342 H 0.6762 M Moderate 4,5,6, 8 Moderate
4 0.2648 H 0.2099 M 0.0.896 H 0.7999 H Aggressive 7, 9 Aggressive 
5 0 X 0.2469 H 0.7089 M 0.6928 M Moderate 4, 5, 6, 8 Moderate 

8. Conclusion 

This paper presents a new technique for driver classification for optimization of energy usage in a vehicle. The classifier uses 
features extracted from the vehicle’s powertrain signals. Experimental results show that the classifier is able to classify a driver’s 
driving style based on the power demands placed on the vehicle powertrain with an overall accuracy of 77%. The classifier is 
computationally more efficient compared to conventional KNNs as it does not need to compute the Euclidean distance of every 
new sample with respect to other samples in the training dataset. The achievable savings in computational cost and a powertrain 
optimization strategy that can achieve better fuel economy based on the information provided by the classifier are currently 
under investigation. 
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