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ABSTRACT

A matrix X is said to be r-potent if X" = X. We investigate the structure of linear
operators on matrices over antinegative semirings that map the set of r-potent matrices
into itself and the set of matrices which are not r-potent into itself.

0. INTRODUCTION

Let A, (F) be the algebra of n X n matrices over an algebraic structure F.
Problems of the following type have been of interest to several authors: let ¥
be an algebraic subset of .# (F); characterize the semigroup of all linear
operators T: .4, (F) = .4, (F) that map ¥ into ¥. Beasley and Pullman
characterized the linear operators that strongly preserve idempotence over an
antinegative semiring with no zero divisors [3].

The purpose of this paper is to extend these previous results. A matrix X
is said to be r-potent if X" = X. In this paper we will characterize the
semigroup of linear operators that strongly preserve the set of r-potent
matrices, i.e. that map r-potents to r-potents and non-r-potents to non-r-
potents. We find that it is generated by transposition, the similarity operators,
and some scaling operators when F is an antinegative semiring with no zero
divisors (in particular a chain semiring).

Preliminary results and definitions are presented in Section 1.
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1. PRELIMINARIES

A semiring is a binary system (8, +, X ) such that (8, +) is an abelian
monoid (identity 0), (S, X ) is a monoid (identity 1), x distributes over +,
O0Xs=sx0=0forall sin$, and 1 # 0. Usually 8 denotes the system and
X is denoted by a juxtaposition. If (8, X ) is abelian, then $ is commutative. If
0 is the only element to have an additive inverse, then $ is antinegative. All
rings with unity are semirings, but no such ring is antinegative. The two-
element Boolean algebra B, the nonnegative integers Z*, the nonnegative
rationals @*, and the nonnegative reals R all serve as examples of antinega-
tive semirings which occur in combinatorics.

Algebraic terms such as unit, zero divisor, linearity, and invertibility are
defined for semirings as for rings.

We let A4 ,(S) denote the set of n X n matrices over $. The matrix all of
whose entries are 1 is denoted J,. We will suppress the subscripts on these
matrices when the order is evident from the context,.

If Aand B arein #, we say B dominates A (written A < B) if b;; = 0
implies a;; = 0 for all i, j.

The number of nonzero entries in a matrix A is denoted | A|. The
number of elements in a set % is also denoted | & |.

A matrix S having at least one nonzero off-diagonal entry is a star matrix if
all its nonzero entries lie on a line (a row or a column). An s-star matrix is a
star matrix having | S| = s and all diagonal entries 0. A zero-one n X n matrix
with only one entry equal to 1, say the (i, j)th entry, is called a cell, E;;. A set
of cells is collinear if their nonzero entries lie in one line.

When X and Y are in 4 (B), we define X \ Y to be the matrix Z such
that z;; = 1 if and only if x;; =1 and y;; = 0. Welet K=] N\ L

We denote the Hadamard product of A and B in .# by A< B. That is,
C = A°B if and only if ¢;; = a;;b;; for all i and j.

An operator L is nonsingular if L(X) = O only when X = O; such
operators need not be invertible. For example, when § = B if L( X) = J for all
X # O in 4 S) and L(O) = O, then L is linear and nonsingular, but not
invertible unless m = n = 1. However, we have Theorem 2.1 below for
operators which strongly preserve r-potence.

Henceforth, we will assume that T is a linear operator on #,($) which
strongly preserves the set of r-potent matrices, and n 2 r > 2.

2. THE BOOLEAN (0, 1) CASE

Throughout this section $ = B, the Boolean algebra of two elements.



PRESERVING r-POTENT MATRICES 591

Taeorem 2.1. T is nonsingular.

Proof. The case r = 2 was proved in [3, Lemma 1.3]. So we only need to
prove the theorem for n > r > 3. Suppose T(X) =0 and X # O; then
T(C) = O for some cell C, because is antinegative and T is linear.
Now [T(])]" = T(J), since J" =] and T strongly preserves r-potence. But
[TJNC) =[T())" =T{J) =T\ C), a contradiction, since (J\ C)" =
J#J]\C. |

Note. If r =1, then T may be singular; in fact, all operators preserve
1-potence strongly, since all matrices are 1-potent.

Lemma 2.1. Ifn 2 3 and E is a cell, then T(E) is a cell.

Proof. Suppose there is a cell C with |T(C)| > 2. Let X; = C, and
index the cells by C; = C and the rest Cy, Cs, . . ., C,: arbitrarily. For 2 € j £
n? let X; = X;_; or X;_; + C;, according as T(C;) < T(X;_,) or not Then
| X | <X | +1 for all j > 2. If equallty held for every 2 € j < n?, then
|T(X ) 2 ] + 1, in particular for j = n2?, which is impossible. Therefore
| X,2| <n®—1and T(H) < T(X,,_,) for some cell H = C,, not dominated
by X,,_,. Therefore T(J) = T(J \ H). But [T(])]" = T(J) because T preserves
r-potence, and so [T(J \ H)]" = T(J \ H). Therefore (] \ H)" = J \ H, be-
cause T preserves r-potence strongly. But in fact (J \ H)" = ], a contradic-
tion. |

LemMa 2.2.  Ifn 2 3, then T is bijective on the set of cells.

Proof. Let E and F be different cells. Suppose T(E) = T(F); then
T(J) = T{J N (E+ F)| + (E+ F)} = T[J\ (E+ F)] + T(E + F) = T[J \
(E + F)] + T(E) + T(F) = T[] \ (E + F)| + T(E) = T(J \ F). But J is r-
potent and J \ F is not—a contradiction, since T strongly preserves r-potence.
Thus T(E) # T(F).

LeEmMma 2.3. Ifn > 3 then T(I) = I and T(K) =

Proof. 1If E is a diagonal cell, then T(E) is a cell by Lemma 2.1. Since T
strongly preserves r-potence and E" = E, we have T(E)” = T(E). Since the
only r-potent cells are diagonal cells, T(E) is a diagonal cell. Therefore
T(I) = I, since T is bijective on the set of cells from Lemma 2.2. Also, since T
is bijective, T(K) = K. ]
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LemMa 2.4, Let F, G be distinct off-diagonal cells, and E be a diagonal
cell. Then (E4+ F+ G)"=E+F+ Gand F # G' ifand only if E, F, and G
are collinear.

Proof. The necessity is trivial. Now, without loss of generality, we assume
E=E). Let F=E; and G = E;,. We have j # k, i # s, (j, k) # (i, 5), and
(J» k) # (s, 1), since F and G are distinct off-diagonal cells and F # G*. First
we will show that E is collinear with F or G. Suppose not; then j, k, i, s # 1.
Let X =E+ F+ G. Then X? = (Ey; + Ej + E,)* = E, + E4E,, + E, E,.
Ifk=iand j# s then X*=E), + E;. If j = sand k # i, then X2 = E}, +
E;;. Therefore X"# X for all r > 2, a contradiction. Since F # GY, the
remaining case is k # i and j # s. We now have X2 = E|,, so that X" = E,,
# X for all r > 2, a contradiction. Therefore E is collinear with F or G.

Assume E and F are collinear and j =1, i.e. F=E;;. We will show
i=1. Suppose i # 1. Then X2 =E, + E; + E;E;, + E,E,, + E,,E;;. If
s # 1, then X% = E,; + E; + E;E;,. Furthermore, if k # i, then X2 = E,
+ E;, so that X% =E;; + E; = X% 1t follows that X" = X2 # X for all
r > 2, a contradiction. If k = i, then X% = E;; + E; + E,,, so that X® = E,
+ E+E,=X%#X, since k # 1. Hence X" # X for all r > 2, a contra-
diction. We thus must have s = 1. Now X% = E,; + Ej; + E;; + Ey, since
(Lk) # (1,i), so that X®> = E;; + E;; + E + E;; = X* # X. Therefore X" #
X for all r > 2, a contradiction.

This contradicts the assumption i # 1, since each choice of s and k yields
a contradiction. Therefore E, F, and G are collinear. The proof that G is also
collinear with E and F when k = 1 and j # 1 is parallel. .

CoroLrrary 2.1.  If F, G are distinct off-diagonal cells and E is a diagonal
cell such that (E+ F+ G)Y"=E + F+ Gand F = G, then r is odd.

Proof. Without loss of generality, assume E = E;,, F = E; and G = E;.
Let X=E+ F+ G. Suppose i =1 then X?>=E; +E};+E; +E; and
X"=X?2#X for all r>2, a contradiction. Therefore, i # 1, and similarly,
j# 1. Thus X2**!' =X for all k, since X* = E,, + E, + E;;. Obviously
X" = X only if r is odd. [ |

CoroLLary 2.2.  If F, G are distinct off-diagonal cells, E is a diagonal cell,
and ris even, then (E+ F+ G)"=E+ F+ Gifand only if E, F, and G are
collinear.

Proof. This is immediate from Lemma 2.4 and Corollary 2.1. ]
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A star matrix is maximal if it has exactly n — 1 nonzero off-diagonal
entries.

LemMa 2.5. If |F| =n—1 and X = J \ F is r-potent, then all of the
diagonal entries of X are nonzero, F is a maximal star matrix, and X is
idempotent.

Proof. If X were irreducible, then since one of its diagonal entries is not
zero, it would have to be primitive. Being r-potent, X would then have to be
J. So X is reducible. Therefore it has a k X (n — k) submatrix of zeros, and
hence k(n — k) = n — 1. That quadratic in k has only two roots: 1 and n — 1.
The line containing the n — 1 zeros must have a nonzero diagonal entry,
because X is reducible. Therefore F is a maximal star matrix, and hence the
diagonal entries of X are all nonzero and X2 = X. ]

ReEmark. Since T is bijective on the set of cells, T(X \ Y) = T(X) \
T(Y) for each fixed X and Y.

CoroLLarY 2.3.  Ifn > 3, then T preserves s-stars forall 1 < s <n — 1.

Proof. Let S be a s-star matrix, H be a maximal star matrix such that
S < H,and AbeT(H). Then | A| = n — 1, since T is bijective and | H| = n
~ 1. Thus (J \ H)" = J\ H,and so T(J \ H) = T(J) \ T(H) = J \ T(H) =
J N\ A s r-potent. By Lemma 2.5, A is a maximal star matrix. Therefore, T(S)
is an s-star matrix, because T is bijective on the set of cells and T(S) < T(H).

LemMma 2.6.  If n = 2, then T is bijective on the set of cells, T(I) = I, and
T(K) = K.

Proof. Let E=E;y, E =E;, D=E|, D) =Ey, S=K+ D, and §
=K+ D’. We know T(E) # O by Theorem 2.1, and every 2 x 2 Boolean
matrix with two or more cells is either idempotent, S, S’, or K; the last is
r-potent when r is odd. Suppose T(E) 2 F + G, where F and G are distinct
cells. Then T(E) 2 K, since E and T(E) is non-r-potent. Also we know
T(E) # K and hence |T(D + E)| = 3 when r is odd. Therefore T(D + E) 2
K. But T(D + E) is idempotent, so that T(D + E) = J,, since [, is the only
idempotent 2 X 2 matrix with more than two cells dominating K. Thus
T(S) = T(D + E) + T(E’) = J. But S is non-r-potent and ] is r-potent, a
contradiction. So |T(E)| = 1. Furthermore, T(E) is not a diagonal cell, since
E is non-r-potent. Therefore T(E) = E or E’. Similarly T(E’) = E or E'.
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Suppose T(E) = T(E"). Then T(D + E + E) = T(D + E). But D + E + E’ is
not r-potent, while D + E is r-potent, a contradiction. Therefore (i) T(E) = E
and T(E’) = E’ or (ii) T(E") = E and T(E) = E’. Therefore we have shown
T(K) = K. We now suppose T(D) is not a cell. That is, T(D) > F + G for
some cells F, G. If F and G are distinct off-diagonal cells, then T(D) > T(E +
E’), so that T(D + E + E") = T(D) is idempotent. It follows that D + E + E’
must be r-potent, a contradiction. Thus we may assume that F is a diagonal
cell. If T(D) > I then T(S) > I. But T(S) is not r-potent, and every 2 x 2
matrix which dominates I is r-potent, a contradiction. Therefore T(D) does
not dominate I. It follows that T(D) = F + G, where F is a diagonal cell and
Gis Eor E'. Then T(D + A)= F+ E + E’, where A=E or E.. But D + A
is r-potent while F + E + E’ is not, a contradiction. Thus T(D) is a diagonal
cell. Similarly T(D") is a diagonal cell. Suppose T(D) = T(D’) = F, where F is
a diagonal cell; then T(J) = T(D + D) + T(K) = F + K, which is not r
potent, a contradiction. Therefore T(I) = I, T(K) = K, and T is bijective on
the set of cells. u

Lemma 2.7 (2, Lemma 3.7].  If a nonsingular linear operator T on 4 (8)
is bijective on the off-diagonal cells, T(I) < I, and T preserves 2-star matrices,
then T is one of, or a composition of two or more of, the following operators:

(a) transposition (i.e., X = X*),

(b) similarity operators (i.e., X = PXP' for some fixed permutation matrix
Pin A),

(c) nonsingular diagonal replacement (i.e., for some fixed nonsingular lin-
ear operator s on the diagonal matrices of M, X = XK + s(X-1)).

Tueorem 2.2. If n 2 2, the semigroup & of linear operators strongly
preserving r-potent matrices over the two-element Boolean semiring is generated
by transposition and the similarity operators.

Proof. Since transposition and all operators X — PXP* are in ¥ (P*'=
P! when P is a permutation matrix), we need only show that ¥ is contained
in the group they generate. Let Te . If n > 3, let S be an (n — 1)-star and
E be a diagonal cell such that they are in a line. Then S + E is r-potent, so
(S+ E)" =S + E, and hence [T(S + E)]" = T(S + E). Since T is linear, [T(S)
+ T(E)]” = T(S) + T(E). By Lemma 2.5, T preserves 2-stars and T(S) must
be a star matrix. Therefore T(E), T(S) are collinear. That is, T(S) is an
(n — 1)-star and T(E) is a diagonal cell lying in the same line as T(S). Thus the
operator s in (c) of Lemma 2.7 must be the identity.
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In case n = 2, by Lemma 2.6, T either fixes the diagonal cells or switches
them. Also, T either fixes the off-diagonal cells or switches them. The only
four possible operators are those given, establishing the theorem. ]

3. THE ANTINEGATIVE-SEMIRING CASE

In this section, & is an antinegative semiring with no zero divisors,
n2r22 and Y= %(A) denotes the semigroup of all linear operators on
A (A) strongly preserving r-potence.

The mapping accomplished by associating each matrix A in 4 (S) with its
pattern A in .# (B) is a semiring homomorphism when $ is antinegative and
zero-divisor-free.

If T is a linear operator on . ,(8), let T, its pattern, be the operator on
M (B) defined by T(E;;) = T(E,;) for all (i, j). Then T( A)< T(A) for all A in
A ($). Equality holds if § is an antinegative semiring having no zero divisors.

Let Ae.#,(S). The scaling operator L, induced by A is defined by
L,:X—AeX.

LemMa 3.1.  The semigroup & is generated by the scaling operators in &,
transposition, and the similarity operators.

Proof. Suppose Te .¥. Then T € %,(®B), since T(X)= T(X) whenever A
is an antinegative semiring having no zero divisors. Therefore T is in the
semigroup of operators generated by the similarity operators and transposition,
by Theorem 2.1.2. Thus T(X) = M°T(A) for some Me .#, and the lemma
follows. [ ]

Lemma 3.2. If n 2 3 and every element of A is idempotent, then the
identity operator is the only scaling operator that strongly preserves r-potence.

Proof. Clearly, the identity operator is L,. Suppose L = L, strongly
preserves r-potence for some A. Let i, j, and k be distinct positive integers,

ij k<n Put Xig=ayE;+Ey + Ej+ Egy Jip = By + Eg + B + B,
Xy = a,E; + Eg, and Jy = E;; + Ej. It is easily seen that J; and J; are
r-potent. Since L(X;;) = L(J;) and L(Xj) = L(Jz), we have that X,; and
X are r-potent. Then the (i, k) entry of (X, )" is a,;, while the (i, k) entry of
X, is 1. Thus, a;; = 1. Also, the (j, k) entry of (X;)" is a;;, while the (j, k)

entry of Xy is 1. Thus, a;; = 1. Since i, j, and k were arbitrary, we have
A=]. |
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Note. In Lemma 3.2, A need not be antinegative.

THEOREM 3.1. If n 2> 3 and every member of A is idempotent, then ¥ is
generated by transposition and the similarity operators; & is therefore a group.

Proof. This is immediate with Lemmas 3.1 and 3.2. u

The permutation matrices are the only invertible matrices over those
antinegative semirings that have only one unit 1 such as: the nonnegative
integers, any chain semiring (such as the fuzzy scalars), or the two-element
Boolean algebra. For any antinegative semiring &, Q is invertible in # (&) if
and only if Q = PD for some permutation matrix P and some diagonal matrix
D whose diagonal entries are all units in A.

CoroLLARY 3.1.  If n > 3, the semigroup of linear operators on the n X n
matrices over chain semiring that strongly preserves r-potence is generated by
transposition and the operators X = PXP‘, P a permutation matrix.

LemMa 3.3. If L, preserves r-potence on 4 (R), then each diagonal
entry in A is r-potent.

Proof. Since I" = I, we must have that L 4(I) is r-potent. Thus (A°I)" =
LAD) =L,(I) = A°I, and thus a; = a;; forall i, 1 i< n. ]

LemMa 3.4.  Suppose A is an antinegative, commutative semiring with only
one (r — 1)th root of unity, 1, having the multiplicative cancellation property.

(i) If L, strongly preserves r-potence, then

(a) each diagonal entry in A is 1, and
(b) when n > 3, there exist units a; in A such that for all i, j,

(i) If a;;= a,a; ' for all i, j, then L, strongly preserves r-potence.

Proof. Since each diagonal entry in A is r-potent (Lemma 3.3) and none
are 0 by Theorem 2.1, it follows by the cancellation property that a}; ' = 1.
This implies a;; = 1 for all i, since A has only one (r — 1)th root of unity, 1.
This establishes (i)(a).
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Next we fix i and choose j # i. Let R = ;. (E; + Ej); then by direct
computation we have (A° R)? = (A° R)> and hence (A° R)™ = (A° R)? for all
m > 1. In particular, (A°R)" = (A°R)%. But R is r-potent, so its image,
A° R = L4(R), is r-potent too. Consequently A°R = (A°R)" = (A- R)? ie.,
A° R is idempotent. Therefore

gi(aikEik + ajkEjk) = ’gi(aijajkEik + ajkEjk).

Therefore
ay = ag ay  forall k#i, (3.1)
and by interchanging the roles of i and j in (3.1), we obtain

oy = agay  forall k#j. (32)

Since n > 3, we can choose g # 1, j, obtaining a;, = a;;a;4,, from (3.1)
and (3.2), and hence no entry in A is 0 by Theorem 2.1. Thus if k # i, then
a;; = a;,a;, for all k. Let a; = a;;. This completes the proof of part (i).

The verification of part (ii) is a straight forward computation. n

Let P* be the nonnegative members of a nontrivial subring P of the reals.
That is, if P = R (reals) then P*= R*; if P = Z (integers) then P+= Z*.

Nore. If A = P*, then Lemma 3.4(i) implies that all ¢;; = 1.

THEOREM 3.2. The semigroup = ,(P*) is generated by transposition
and the similarity operators, unless n = 2 and M ,(P*)’s r-potent matrices are
triangular and hence are on a single line. In that case, an additional family of
generators is required, namely, the set of scaling operators

X—'[:‘/ ;]"X with zy > 0.

Proof. Because a scaling operator induced by a matrix A satisfying
Lemma 3.4(i) is the similarity operator X — DXD™!, where D =
diag(a,, g5, . .., a,), the theorem is immediate from Lemmas 3.1 and 3.4
unless n =2 and #,(P*)’s r-potent matrices are triangular. In that case,
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suppose T is in . Lemma 2.6 implies that we may assume T is a scaling
operator, say T = L ,. According to Lemma 3.4,

_ 1 X syt
A—[y 1] for some =x,yin@P".

Then xy > 0: otherwise

Jr o1 J1 oo
Al 1] wa &t O]

are not r-potent because
1 1 1 0
[0 1] and [1 1]
are not, a contradiction. Conversely, the scaling operators
X~ [1 "] X
y
are in ¥ whenever xy > 0. ]

CoRroLLARY 3.2. The semigroup ¥= Y (R*) is generated by transposi-
tion, permutation similarity, and X = DXD™", where D is a diagonal matrix
and all d;; > 0.

CoroLLARY 3.3. The semigroup &= (Z*) is generated by transposition
and permutation similarity, unless n = 2. If n = 2, an additional family of
generators is needed, namely, all the scaling operators

X-—*[!l/ T]°X with xy > 1.

The authors wish to thank the referee for his helpful comments and for the
improved proofs of Lemma 2.1 and 2.5.
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