

Linear Operators Strongly Preserving r-Potent Matrices Over Semirings

LeRoy B. Beasley and Sang-Gu Lee Department of Mathematics and Statistics Utah State University Logan, Utah 84322-3900

Submitted by Daivd H. Carlson

ABSTRACT

A matrix X is said to be r-potent if $X^r = X$. We investigate the structure of linear operators on matrices over antinegative semirings that map the set of r-potent matrices into itself and the set of matrices which are not r-potent into itself.

0. INTRODUCTION

Let $\mathcal{M}_n(\mathbb{F})$ be the algebra of $n \times n$ matrices over an algebraic structure \mathbb{F} . Problems of the following type have been of interest to several authors: let \mathscr{V} be an algebraic subset of $\mathcal{M}_n(\mathbb{F})$; characterize the semigroup of all linear operators $T: \mathcal{M}_n(\mathbb{F}) \to \mathcal{M}_n(\mathbb{F})$ that map \mathscr{V} into \mathscr{V} . Beasley and Pullman characterized the linear operators that strongly preserve idempotence over an antinegative semiring with no zero divisors [3].

The purpose of this paper is to extend these previous results. A matrix X is said to be r-potent if $X^r = X$. In this paper we will characterize the semigroup of linear operators that strongly preserve the set of r-potent matrices, i.e. that map r-potents to r-potents and non-r-potents to non-r-potents. We find that it is generated by transposition, the similarity operators, and some scaling operators when $\mathbb F$ is an antinegative semiring with no zero divisors (in particular a chain semiring).

Preliminary results and definitions are presented in Section 1.

LINEAR ALGEBRA AND ITS APPLICATIONS 162-164:589-599 (1992)

589

1. PRELIMINARIES

A semiring is a binary system $(\$, +, \times)$ such that (\$, +) is an abelian monoid (identity 0), $(\$, \times)$ is a monoid (identity 1), \times distributes over +, $0 \times s = s \times 0 = 0$ for all s in \$, and $1 \neq 0$. Usually \$ denotes the system and \times is denoted by a juxtaposition. If $(\$, \times)$ is abelian, then \$ is commutative. If 0 is the only element to have an additive inverse, then \$ is antinegative. All rings with unity are semirings, but no such ring is antinegative. The two-element Boolean algebra \$, the nonnegative integers \Z^+ , the nonnegative rationals \mathbb{Q}^+ , and the nonnegative reals \mathbb{R}^+ all serve as examples of antinegative semirings which occur in combinatorics.

Algebraic terms such as unit, zero divisor, linearity, and invertibility are defined for semirings as for rings.

We let $\mathcal{M}_n(\mathbb{S})$ denote the set of $n \times n$ matrices over \mathbb{S} . The matrix all of whose entries are 1 is denoted J_n . We will suppress the subscripts on these matrices when the order is evident from the context,.

If A and B are in \mathcal{M} , we say B dominates A (written $A \leq B$) if $b_{ij} = 0$ implies $a_{ij} = 0$ for all i, j.

The number of nonzero entries in a matrix A is denoted |A|. The number of elements in a set \mathcal{S} is also denoted $|\mathcal{S}|$.

A matrix S having at least one nonzero off-diagonal entry is a star matrix if all its nonzero entries lie on a line (a row or a column). An s-star matrix is a star matrix having |S| = s and all diagonal entries 0. A zero-one $n \times n$ matrix with only one entry equal to 1, say the (i, j)th entry, is called a cell, E_{ij} . A set of cells is collinear if their nonzero entries lie in one line.

When X and Y are in $\mathcal{M}_n(\mathbb{B})$, we define $X \setminus Y$ to be the matrix Z such that $z_{ij} = 1$ if and only if $x_{ij} = 1$ and $y_{ij} = 0$. We let $K = J \setminus I$.

We denote the *Hadamard product* of A and B in \mathcal{M} by $A \circ B$. That is, $C = A \circ B$ if and only if $c_{ij} = a_{ij}b_{ij}$ for all i and j.

An operator **L** is *nonsingular* if L(X) = O only when X = O; such operators need not be invertible. For example, when S = B if L(X) = J for all $X \neq O$ in $\mathcal{M}_n(S)$ and L(O) = O, then **L** is linear and nonsingular, but not invertible unless m = n = 1. However, we have Theorem 2.1 below for operators which strongly preserve r-potence.

Henceforth, we will assume that **T** is a linear operator on $\mathcal{M}_n(\mathbb{S})$ which strongly preserves the set of r-potent matrices, and $n \ge r \ge 2$.

2. THE BOOLEAN (0, 1) CASE

Throughout this section S = B, the Boolean algebra of two elements.

THEOREM 2.1. T is nonsingular.

Proof. The case r=2 was proved in [3, Lemma 1.3]. So we only need to prove the theorem for $n \ge r \ge 3$. Suppose $\mathbf{T}(X) = O$ and $X \ne O$; then $\mathbf{T}(C) = O$ for some cell C, because $\mathbb B$ is antinegative and $\mathbf T$ is linear. Now $[\mathbf{T}(J)]^r = \mathbf{T}(J)$, since $J^r = J$ and $\mathbf T$ strongly preserves r-potence. But $[\mathbf{T}(J \setminus C)]^r = [\mathbf{T}(J)]^r = \mathbf{T}(J) = \mathbf{T}(J \setminus C)$, a contradiction, since $(J \setminus C)^r = J \ne J \setminus C$.

Note. If r = 1, then **T** may be singular; in fact, all operators preserve 1-potence strongly, since all matrices are 1-potent.

LEMMA 2.1. If $n \ge 3$ and E is a cell, then T(E) is a cell.

Proof. Suppose there is a cell C with $|\mathbf{T}(C)| \geqslant 2$. Let $X_1 = C$, and index the cells by $C_1 = C$ and the rest $C_2, C_3, \ldots, C_{n^2}$ arbitrarily. For $2 \leqslant j \leqslant n^2$, let $X_j = X_{j-1}$ or $X_{j-1} + C_{j+1}$ according as $\mathbf{T}(C_j) \leqslant \mathbf{T}(X_{j-1})$ or not. Then $|X_j| \leqslant |X_{j-1}| + 1$ for all $j \geqslant 2$. If equality held for every $2 \leqslant j \leqslant n^2$, then $|\mathbf{T}(X_j)| \geqslant j+1$, in particular for $j=n^2$, which is impossible. Therefore $|X_{n^2}| \leqslant n^2 - 1$ and $\mathbf{T}(H) \leqslant \mathbf{T}(X_{m-1})$ for some cell $H = C_m$ not dominated by X_{m-1} . Therefore $\mathbf{T}(J) = \mathbf{T}(J \setminus H)$. But $[\mathbf{T}(J)]^r = \mathbf{T}(J)$ because T preserves r-potence, and so $[\mathbf{T}(J \setminus H)]^r = \mathbf{T}(J \setminus H)$. Therefore $(J \setminus H)^r = J \setminus H$, because T preserves T-potence strongly. But in fact $(J \setminus H)^r = J$, a contradiction. ▮

LEMMA 2.2. If $n \ge 3$, then T is bijective on the set of cells.

Proof. Let E and F be different cells. Suppose $\mathbf{T}(E) = \mathbf{T}(F)$; then $\mathbf{T}(J) = \mathbf{T}\{[J \setminus (E+F)] + (E+F)\} = \mathbf{T}[J \setminus (E+F)] + \mathbf{T}(E+F) = \mathbf{T}[J \setminus (E+F)] + \mathbf{T}(E) + \mathbf{T}(F) = \mathbf{T}[J \setminus (E+F)] + \mathbf{T}(E) = \mathbf{T}(J \setminus F)$. But J is r-potent and $J \setminus F$ is not—a contradiction, since \mathbf{T} strongly preserves r-potence. Thus $\mathbf{T}(E) \neq \mathbf{T}(F)$.

LEMMA 2.3. If $n \ge 3$ then T(I) = I and T(K) = K.

Proof. If E is a diagonal cell, then T(E) is a cell by Lemma 2.1. Since T strongly preserves r-potence and $E^r = E$, we have $T(E)^r = T(E)$. Since the only r-potent cells are diagonal cells, T(E) is a diagonal cell. Therefore T(I) = I, since T is bijective on the set of cells from Lemma 2.2. Also, since T is bijective, T(K) = K.

LEMMA 2.4. Let F, G be distinct off-diagonal cells, and E be a diagonal cell. Then $(E + F + G)^r = E + F + G$ and $F \neq G^t$ if and only if E, F, and G are collinear.

Proof. The necessity is trivial. Now, without loss of generality, we assume $E=E_{11}$. Let $F=E_{jk}$ and $G=E_{is}$. We have $j\neq k,\ i\neq s,\ (j,k)\neq (i,s),$ and $(j,k)\neq (s,i),$ since F and G are distinct off-diagonal cells and $F\neq G^t.$ First we will show that E is collinear with F or G. Suppose not; then $j,k,i,s\neq 1$. Let X=E+F+G. Then $X^2=(E_{11}+E_{jk}+E_{is})^2=E_{11}+E_{jk}E_{is}+E_{is}E_{jk}.$ If k=i and $j\neq s$, then $X^2=E_{11}+E_{js}.$ If j=s and $k\neq i$, then $X^2=E_{11}+E_{ik}.$ Therefore $X^r\neq X$ for all $r\geqslant 2$, a contradiction. Since $F\neq G^t$, the remaining case is $k\neq i$ and $j\neq s$. We now have $X^2=E_{11}$, so that $X^r=E_{11}\neq X$ for all $r\geqslant 2$, a contradiction. Therefore E is collinear with F or G.

Assume E and F are collinear and j=1, i.e. $F=E_{1k}$. We will show i=1. Suppose $i\neq 1$. Then $X^2=E_{11}+E_{1k}+E_{1k}E_{is}+E_{is}E_{11}+E_{is}E_{1k}$. If $s\neq 1$, then $X^2=E_{11}+E_{1k}+E_{1k}E_{is}$. Furthermore, if $k\neq i$, then $X^2=E_{11}+E_{1k}+E_{1k}E_{is}$. Furthermore, if $k\neq i$, then $X^2=E_{11}+E_{1k}$, so that $X^3=E_{11}+E_{1k}=X^2$. It follows that $X^r=X^2\neq X$ for all $r\geqslant 2$, a contradiction. If k=i, then $X^2=E_{11}+E_{1k}+E_{1s}$, so that $X^3=E_{11}+E_{1k}+E_{1s}=X^2\neq X$, since $k\neq 1$. Hence $X^r\neq X$ for all $r\geqslant 2$, a contradiction. We thus must have s=1. Now $X^2=E_{11}+E_{1k}+E_{i1}+E_{ik}$, since $(1,k)\neq (1,i)$, so that $X^3=E_{11}+E_{ik}+E_{i1}+E_{ik}=X^2\neq X$. Therefore $X^r\neq X$ for all $r\geqslant 2$, a contradiction.

This contradicts the assumption $i \neq 1$, since each choice of s and k yields a contradiction. Therefore E, F, and G are collinear. The proof that G is also collinear with E and F when k = 1 and $j \neq 1$ is parallel.

COROLLARY 2.1. If F, G are distinct off-diagonal cells and E is a diagonal cell such that $(E + F + G)^r = E + F + G$ and $F = G^t$, then r is odd.

Proof. Without loss of generality, assume $E = E_{11}$, $F = E_{ij}$, and $G = E_{ji}$. Let X = E + F + G. Suppose i = 1 then $X^2 = E_{11} + E_{1j} + E_{j1} + E_{jj}$ and $X^r = X^2 \neq X$ for all $r \geqslant 2$, a contradiction. Therefore, $i \neq 1$, and similarly, $j \neq 1$. Thus $X^{2k+1} = X$ for all k, since $X^{2k} = E_{11} + E_{ii} + E_{jj}$. Obviously $X^r = X$ only if r is odd.

COROLLARY 2.2. If F, G are distinct off-diagonal cells, E is a diagonal cell, and r is even, then $(E + F + G)^r = E + F + G$ if and only if E, F, and G are collinear.

Proof. This is immediate from Lemma 2.4 and Corollary 2.1.

A star matrix is *maximal* if it has exactly n-1 nonzero off-diagonal entries.

LEMMA 2.5. If |F| = n - 1 and $X = J \setminus F$ is r-potent, then all of the diagonal entries of X are nonzero, F is a maximal star matrix, and X is idempotent.

Proof. If X were irreducible, then since one of its diagonal entries is not zero, it would have to be primitive. Being r-potent, X would then have to be J. So X is reducible. Therefore it has a $k \times (n-k)$ submatrix of zeros, and hence k(n-k) = n-1. That quadratic in k has only two roots: 1 and n-1. The line containing the n-1 zeros must have a nonzero diagonal entry, because X is reducible. Therefore F is a maximal star matrix, and hence the diagonal entries of X are all nonzero and $X^2 = X$.

REMARK. Since T is bijective on the set of cells, $T(X \setminus Y) = T(X) \setminus T(Y)$ for each fixed X and Y.

COROLLARY 2.3. If $n \ge 3$, then **T** preserves s-stars for all $1 \le s \le n-1$.

Proof. Let S be a s-star matrix, H be a maximal star matrix such that $S \leq H$, and A be T(H). Then |A| = n - 1, since T is bijective and |H| = n - 1. Thus $(J \setminus H)^r = J \setminus H$, and so $T(J \setminus H) = T(J) \setminus T(H) = J \setminus T(H) = J \setminus A$ is r-potent. By Lemma 2.5, A is a maximal star matrix. Therefore, T(S) is an s-star matrix, because T is bijective on the set of cells and $T(S) \leq T(H)$.

LEMMA 2.6. If n = 2, then **T** is bijective on the set of cells, $\mathbf{T}(1) = I$, and $\mathbf{T}(K) = K$.

Proof. Let $E = E_{12}$, $E' = E_{21}$, $D = E_{11}$, $D' = E_{22}$, S = K + D, and S' = K + D'. We know $T(E) \neq O$ by Theorem 2.1, and every 2×2 Boolean matrix with two or more cells is either idempotent, S, S', or K; the last is r-potent when r is odd. Suppose $T(E) \geqslant F + G$, where F and G are distinct cells. Then $T(E) \geqslant K$, since E and T(E) is non-r-potent. Also we know $T(E) \neq K$ and hence $|T(D+E)| \geqslant 3$ when r is odd. Therefore $T(D+E) \geqslant K$. But T(D+E) is idempotent, so that $T(D+E) = J_2$, since J_2 is the only idempotent 2×2 matrix with more than two cells dominating K. Thus T(S) = T(D+E) + T(E') = J. But S is non-r-potent and S is S-potent, a contradiction. So |T(E)| = 1. Furthermore, T(E) is not a diagonal cell, since S is non-S-potent. Therefore T(E) = E or S. Similarly T(E') = E or S.

Suppose T(E) = T(E'). Then T(D + E + E') = T(D + E). But D + E + E' is not r-potent, while D + E is r-potent, a contradiction. Therefore (i) T(E) = Eand T(E') = E' or (ii) T(E') = E and T(E) = E'. Therefore we have shown T(K) = K. We now suppose T(D) is not a cell. That is, $T(D) \ge F + G$ for some cells F, G. If F and G are distinct off-diagonal cells, then $T(D) \ge T(E +$ E'), so that T(D + E + E') = T(D) is idempotent. It follows that D + E + E'must be r-potent, a contradiction. Thus we may assume that F is a diagonal cell. If $T(D) \ge I$ then $T(S) \ge I$. But T(S) is not r-potent, and every 2×2 matrix which dominates I is r-potent, a contradiction. Therefore T(D) does not dominate I. It follows that T(D) = F + G, where F is a diagonal cell and G is E or E'. Then T(D + A) = F + E + E', where A = E or E'. But D + Ais r-potent while F + E + E' is not, a contradiction. Thus T(D) is a diagonal cell. Similarly T(D') is a diagonal cell. Suppose T(D) = T(D') = F, where F is a diagonal cell; then T(J) = T(D + D') + T(K) = F + K, which is not rpotent, a contradiction. Therefore T(I) = I, T(K) = K, and T is bijective on the set of cells.

Lemma 2.7 [2, Lemma 3.7]. If a nonsingular linear operator T on $\mathcal{M}_n(\mathbb{B})$ is bijective on the off-diagonal cells, $T(I) \leq I$, and T preserves 2-star matrices, then T is one of, or a composition of two or more of, the following operators:

- (a) transposition (i.e., $X \to X^t$),
- (b) similarity operators (i.e., $X \to PXP^t$ for some fixed permutation matrix P in \mathcal{M}),
- (c) nonsingular diagonal replacement (i.e., for some fixed nonsingular linear operator s on the diagonal matrices of \mathcal{M} , $X \to X \circ K + s(X \circ I)$).

Theorem 2.2. If $n \ge 2$, the semigroup \mathcal{S} of linear operators strongly preserving r-potent matrices over the two-element Boolean semiring is generated by transposition and the similarity operators.

Proof. Since transposition and all operators $X \to PXP^t$ are in \mathscr{S} ($P^t = P^{-1}$ when P is a permutation matrix), we need only show that \mathscr{S} is contained in the group they generate. Let $\mathbf{T} \in \mathscr{S}$. If $n \geq 3$, let S be an (n-1)-star and E be a diagonal cell such that they are in a line. Then S + E is r-potent, so $(S + E)^r = S + E$, and hence $[\mathbf{T}(S + E)]^r = \mathbf{T}(S + E)$. Since \mathbf{T} is linear, $[\mathbf{T}(S) + \mathbf{T}(E)]^r = \mathbf{T}(S) + \mathbf{T}(E)$. By Lemma 2.5, \mathbf{T} preserves 2-stars and $\mathbf{T}(S)$ must be a star matrix. Therefore $\mathbf{T}(E)$, $\mathbf{T}(S)$ are collinear. That is, $\mathbf{T}(S)$ is an (n-1)-star and $\mathbf{T}(E)$ is a diagonal cell lying in the same line as $\mathbf{T}(S)$. Thus the operator \mathbf{S} in (\mathbf{C}) of Lemma 2.7 must be the identity.

In case n = 2, by Lemma 2.6, T either fixes the diagonal cells or switches them. Also, T either fixes the off-diagonal cells or switches them. The only four possible operators are those given, establishing the theorem.

3. THE ANTINEGATIVE-SEMIRING CASE

In this section, \mathbb{A} is an antinegative semiring with no zero divisors, $n \ge r \ge 2$, and $\mathcal{S} = \mathcal{S}_n(\mathbb{A})$ denotes the semigroup of all linear operators on $\mathcal{M}_n(\mathbb{A})$ strongly preserving *r*-potence.

The mapping accomplished by associating each matrix A in $\mathcal{M}_n(\mathbb{S})$ with its pattern \overline{A} in $\mathcal{M}_n(\mathbb{B})$ is a semiring homomorphism when \mathbb{S} is antinegative and zero-divisor-free.

If **T** is a linear operator on $\mathscr{M}_n(\mathbb{S})$, let $\overline{\mathbf{T}}$, its pattern, be the operator on $\mathscr{M}_n(\mathbb{B})$ defined by $\overline{\mathbf{T}}(\overline{E}_{ij}) = \overline{\mathbf{T}(E_{ij})}$ for all (i,j). Then $\overline{\mathbf{T}(A)} \leqslant \overline{\mathbf{T}}(\overline{A})$ for all A in $\mathscr{M}_n(\mathbb{S})$. Equality holds if \mathbb{S} is an antinegative semiring having no zero divisors. Let $A \in \mathscr{M}_n(\mathbb{S})$. The scaling operator \mathbf{L}_A induced by A is defined by $\mathbf{L}_A: X \to A \circ X$.

Lemma 3.1. The semigroup \mathcal{S} is generated by the scaling operators in \mathcal{S} , transposition, and the similarity operators.

Proof. Suppose $T \in \mathcal{S}$. Then $\overline{T} \in \mathcal{S}_n(\mathbb{B})$, since $\overline{T(X)} = \overline{T(X)}$ whenever \mathbb{A} is an antinegative semiring having no zero divisors. Therefore \overline{T} is in the semigroup of operators generated by the similarity operators and transposition, by Theorem 2.1.2. Thus $T(X) = M \circ \overline{T}(\overline{A})$ for some $M \in \mathcal{M}$, and the lemma follows.

LEMMA 3.2. If $n \ge 3$ and every element of $\mathbb A$ is idempotent, then the identity operator is the only scaling operator that strongly preserves r-potence.

Proof. Clearly, the identity operator is L_J . Suppose $L = L_A$ strongly preserves r-potence for some A. Let i, j, and k be distinct positive integers, i, j, $k \leq n$. Put $X_{ijk} = a_{ij}E_{ij} + E_{ik} + E_{jj} + E_{jk}$, $J_{ijk} = E_{ij} + E_{ik} + E_{jj} + E_{jk}$, $X_{jk} = a_{jj}E_{jj} + E_{jk}$, and $J_{jk} = E_{jj} + E_{jk}$. It is easily seen that J_{ijk} and J_{jk} are r-potent. Since $L(X_{ijk}) = L(J_{ijk})$ and $L(X_{jk}) = L(J_{jk})$, we have that X_{ijk} and X_{jk} are r-potent. Then the (i, k) entry of $(X_{ijk})^r$ is a_{ij} , while the (i, k) entry of X_{ijk} is 1. Thus, $a_{ij} = 1$. Also, the (j, k) entry of $(X_{jk})^r$ is a_{jj} , while the (j, k) entry of X_{jk} is 1. Thus, $a_{jj} = 1$. Since i, j, and k were arbitrary, we have A = J.

Note. In Lemma 3.2, A need not be antinegative.

THEOREM 3.1. If $n \ge 3$ and every member of $\mathbb A$ is idempotent, then $\mathcal S$ is generated by transposition and the similarity operators; $\mathcal S$ is therefore a group.

Proof. This is immediate with Lemmas 3.1 and 3.2.

The permutation matrices are the only invertible matrices over those antinegative semirings that have only one unit 1 such as: the nonnegative integers, any chain semiring (such as the fuzzy scalars), or the two-element Boolean algebra. For any antinegative semiring \mathbb{A} , Q is invertible in $\mathscr{M}_n(\mathbb{A})$ if and only if Q = PD for some permutation matrix P and some diagonal matrix D whose diagonal entries are all units in \mathbb{A} .

COROLLARY 3.1. If $n \ge 3$, the semigroup of linear operators on the $n \times n$ matrices over chain semiring that strongly preserves r-potence is generated by transposition and the operators $X \to PXP^t$, P a permutation matrix.

Lemma 3.3. If L_A preserves r-potence on $\mathcal{M}_n(A)$, then each diagonal entry in A is r-potent.

Proof. Since $I^r = I$, we must have that $L_A(I)$ is r-potent. Thus $(A \circ I)^r = [L_A(I)]^r = L_A(I) = A \circ I$, and thus $a_{ii}^r = a_{ii}$ for all $i, 1 \le i \le n$.

Lemma 3.4. Suppose $\mathbb A$ is an antinegative, commutative semiring with only one (r-1)th root of unity, 1, having the multiplicative cancellation property.

- (i) If LA strongly preserves r-potence, then
 - (a) each diagonal entry in A is 1, and
 - (b) when $n \ge 3$, there exist units a_i in A such that for all i, j,

$$a_{ij} = a_i a_i^{-1}.$$

(ii) If $a_{ij} = a_i a_j^{-1}$ for all i, j, then L_A strongly preserves r-potence.

Proof. Since each diagonal entry in A is r-potent (Lemma 3.3) and none are 0 by Theorem 2.1, it follows by the cancellation property that $a_{ii}^{r-1} = 1$. This implies $a_{ii} = 1$ for all i, since A has only one (r-1)th root of unity, 1. This establishes (i)(a).

Next we fix i and choose $j \neq i$. Let $R = \sum_{k \neq i} (E_{ik} + E_{ik})$; then by direct computation we have $(A \circ R)^2 = (A \circ R)^3$ and hence $(A \circ R)^m = (A \circ R)^2$ for all m > 1. In particular, $(A \circ R)^r = (A \circ R)^2$. But R is r-potent, so its image, $A \circ R = \mathbf{L}_A(R)$, is r-potent too. Consequently $A \circ R = (A \circ R)^r = (A \circ R)^2$, i.e., $A \circ R$ is idempotent. Therefore

$$\sum_{k \neq i} \left(a_{ik} E_{ik} + a_{jk} E_{jk} \right) = \sum_{k \neq i} \left(a_{ij} a_{jk} E_{ik} + a_{jk} E_{jk} \right).$$

Therefore

$$a_{ik} = a_{ij}a_{jk}$$
 for all $k \neq i$, (3.1)

and by interchanging the roles of i and j in (3.1), we obtain

$$a_{ik} = a_{ii}a_{ik} \quad \text{for all} \quad k \neq j. \tag{3.2}$$

Since $n \ge 3$, we can choose $g \ne 1$, j, obtaining $a_{ig} = a_{ij}a_{ji}a_{ig}$ from (3.1) and (3.2), and hence no entry in A is 0 by Theorem 2.1. Thus if $k \neq i$, then $a_{ij} = a_{ig} a_{kg}^{-1}$ for all k. Let $a_i = a_{il}$. This completes the proof of part (i).

The verification of part (ii) is a straight forward computation.

Let \mathbb{P}^+ be the nonnegative members of a nontrivial subring \mathbb{P} of the reals. That is, if $\mathbb{P} = \mathbb{R}$ (reals) then $\mathbb{P}^+ = \mathbb{R}^+$; if $\mathbb{P} = \mathbb{Z}$ (integers) then $\mathbb{P}^+ = \mathbb{Z}^+$.

If $A = \mathbb{P}^+$, then Lemma 3.4(i) implies that all $a_{ij} = 1$.

Theorem 3.2. The semigroup $\mathcal{S} = \mathcal{S}_n(\mathbb{P}^+)$ is generated by transposition and the similarity operators, unless n=2 and $\mathcal{M}_{2}(\mathbb{P}^{+})$'s r-potent matrices are triangular and hence are on a single line. In that case, an additional family of generators is required, namely, the set of scaling operators

$$X \to \begin{bmatrix} 1 & x \\ y & 1 \end{bmatrix} \circ X$$
 with $xy > 0$.

Proof. Because a scaling operator induced by a matrix A satisfying Lemma 3.4(i) is the similarity operator $X \to DXD^{-1}$, where D = $diag(a_1, a_2, \ldots, a_n)$, the theorem is immediate from Lemmas 3.1 and 3.4 unless n=2 and $\mathcal{M}_2(\mathbb{P}^+)$'s r-potent matrices are triangular. In that case,

suppose **T** is in \mathcal{S} . Lemma 2.6 implies that we may assume **T** is a scaling operator, say $\mathbf{T} = \mathbf{L}_A$. According to Lemma 3.4,

$$A = \begin{bmatrix} 1 & x \\ y & 1 \end{bmatrix} \quad \text{for some} \quad x, y \text{ in } \mathbb{P}^+.$$

Then xy > 0: otherwise

$$A \circ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 and $A \circ \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

are not r-potent because

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

are not, a contradiction. Conversely, the scaling operators

$$X \to \begin{bmatrix} 1 & x \\ y & 1 \end{bmatrix} \circ X$$

are in \mathcal{S} whenever xy > 0.

COROLLARY 3.2. The semigroup $\mathcal{S} = \mathcal{S}_n(\mathbb{R}^+)$ is generated by transposition, permutation similarity, and $X \to DXD^{-1}$, where D is a diagonal matrix and all $d_{ii} > 0$.

COROLLARY 3.3. The semigroup $\mathcal{S} = \mathcal{S}_n(\mathbb{Z}^+)$ is generated by transposition and permutation similarity, unless n = 2. If n = 2, an additional family of generators is needed, namely, all the scaling operators

$$X \to \begin{bmatrix} 1 & x \\ y & 1 \end{bmatrix} \circ X$$
 with $xy \ge 1$.

The authors wish to thank the referee for his helpful comments and for the improved proofs of Lemma 2.1 and 2.5.

REFERENCES

1 L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean rank-1 spaces, *Linear Algebra Appl.* 59:55-77 (1984).

- 2 L. B. Beasley and N. J. Pullman, Linear operators that strongly preserve primitivity, *Linear and Multilinear Algebra* 25:205-213 (1989).
- 3 L. B. Beasley and N. J. Pullman, Linear operators strongly preserving idempotent matrices over semirings, *Linear Algebra Appl.*, 28:111-117 (1990).
- 4 L. B. Beasley and N. J. Pullman, Linear operators that strongly preserving digraphs whose maximum cycle length is small, *Linear and Multilinear Algebra*, 28:111-117 (1990).
- 5 R. Howard, Linear maps that preserve matrices annihilated by a polynomial, *Linear Algebra Appl.* 30:167-176 (1980).

Received 24 July 1990; final manuscript accepted 26 June 1991