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ABSTRACT 

A matrix X is said to be r-potent if X’ = X. We investigate the structure of linear 

operators on matrices over antinegative semirings that map the set of r-potent matrices 

into itself and the set of matrices which are not r-potent into itself. 

0. INTRODUCTION 

Let An’,(F) be the algebra of n x n matrices over an algebraic structure F. 
Problems of the following type have been of interest to several authors: let V’ 
be an algebraic subset of J,,(F); characterize the semigroup of all linear 
operators T: A#) + A,@:) that map 9” into 9’. Beasley and Pullman 
characterized the linear operators that strongly preserve idempotence over an 
antinegative semiring with no zero divisors [S]. 

The purpose of this paper is to extend these previous results. A matrix X 
is said to be r-potent if X r = X. In this paper we will characterize the 
semigroup of linear operators that strongly preserve the set of r-potent 

matrices, i.e. that map r-potents to r-potents and non-r-potents to non-r- 
potents. We find that it is generated by transposition, the similarity operators, 

and some scaling operators when F is an antinegative semiring with no zero 
divisors (in particular a chain semiring). 

Preliminary results and definitions are presented in Section 1. 
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1. PRELIMINARIES 

A semiring is a binary system (8, +, x ) such that ($3, +) is an abelian 
monoid (identity 0), (8, x ) is a monoid (identity l), x distributes over +, 
0 x s = s x 0 = 0 for all s in 8, and 1 + 0. Usually $3 denotes the system and 
x is denoted by a juxtaposition. If (8, x ) is abelian, then 8 is commututioe. If 
0 is the only element to have an additive inverse, then 8 is antinegatioe. All 
rings with unity are semirings, but no such ring is antinegative. The two- 
element Boolean algebra B, the nonnegative integers z+, the nonnegative 
rationals Q +, and the nonnegative reals W+ all serve as examples of antinega- 
tive semirings which occur in combinatorics. 

Algebraic terms such as unit, zero divisor, linearity, and invertibility are 
defined for semirings as for rings. 

We let J,,(s) d enote the set of n x n matrices over Q. The matrix all of 
whose entries are 1 is denoted J,,. We will suppress the subscripts on these 
matrices when the order is evident from the context,. 

If A and B are in A’, we say B dominates A (written A < B) if b,, = 0 
implies aij = 0 for all i, j. 

The number of nonzero entries in a matrix A is denoted ( A). The 
number of elements in a set Y is also denoted 1 Y 1. 

A matrix S having at least one nonzero off-diagonal entry is a star matrix if 
all its nonzero entries lie on a line (a row or a column). An s-star matrix is a 
star matrix having 1 S 1 = s and all diagonal entries 0. A zero-one n x n matrix 
with only one entry equal to 1, say the (i, j)th entry, is called a cell, Eij. A set 
of cells is collinear if their nonzero entries lie in one line. 

When X and Y are in d’,(EI), we define X \ Y to be the matrix Z such 
that zij = 1 if and only if xij = 1 and yij = 0. We let K = J \ I. 

We denote the Hadamard product of A and B in J by A0 B. That is, 
C = A0 B if and only if cij = aijbij for all i and j. 

An operator L is nonsingular if L( X ) = 0 only when X = 0; such 
operators need not be invertible. For example, when 8 = E3 if L( X ) = J for all 
X + 0 in J,@) and L(0) = 0, then L is linear and nonsingular, hut not 
invertible unless m = n = 1. However, we have Theorem 2.1 below for 
operators which strongly preserve r-potence. 

Henceforth, we will assume that T is a linear operator on J&3) which 
strongly preserves the set of r-potent matrices, and n > r 2 2. 

2. THE BOOLEAN (0,l) CASE 

Throughout this section 8 = @I, the Boolean algebra of two elements 
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THEOREM 2.1. T is nonsingular. 

Proof. The case r = 2 was proved in [3, Lemma 1.31. SO we only need to 
prove the theorem for n 2 r > 3. Suppose T(X) = 0 and X # 0; then 
T(C) = 0 for some cell C, because B is antinegative and T is linear. 
Now [T(J)]’ = T(J), since J’ = J and T strongly preserves r-potence. But 

[T(J ’ W = iW)l’ = T(J) = W ’ 0 a contradiction, since (J \ C)r = 

J#JJC. n 

NOTE. If r = 1, then T may be singular; in fact, all operators preserve 
1-potence strongly, since all matrices are l-potent. 

LEMMA 2.1. Zj n 2 3 and E is a cell, then T(E) is a cell. 

Proof. Suppose there is a cell C with IT(C) ] 2 2. Let X, = C, and 
index the cells by C1 = C and the rest Cs, C,, . . . , C,,2 arbitrarily. For 2 Q j < 
n2, let Xj = Xj_l or Xj_l + Cj+i according as T(Cj) < T( Xj_ 1) or not. Then 
] Xj ] Q ] Xj_ r ( + 1 for all j > 2. If equality held for every 2 < j Q n2, then 

]T(Xj)( aj + I, in particular for j = n2, which is impossible. Therefore 
] Xn2 I < n2 - 1 and T(H) < T( X,_,) f or some cell H = Cm not dominated 
by X,-r. Therefore T(J) = T( J \ H). But p(J)]’ = T(J) because T preserves 
r-potence, and so [T( J \ H)]’ = T( J \ H). Therefore (J \ H)’ = J \ H, be- 
cause T preserves r-potence strongly. But in fact (J 1 H)’ = J, a contradic- 
tion. n 

LEMMA 2.2. Zf n > 3, then T is bijective on the set of cells. 

Proof. Let E and F be different cells. Suppose T(E) = T(F); then 
T(J) = T{[J \ (E + F)] + (E + F)} = T[J \ (E + F)] + T(E + F) = T[J \ 
(E + F)] + T(E) + T(F) = T[J \ (E + F)] + T(E) = T(J \ F). But J is r- 
potent and J \ F is not-a contradiction, since T strongly preserves r-potence. 
Thus T(E) # T(F). 

LEMMA 2.3. Zfn 2 3 then T(Z) = Z and T(K) = K. 

Proof. If E is a diagonal cell, then T(E) is a cell by Lemma 2.1. Since T 
strongly preserves r-potence and E’ = E, we have T(E)’ = T(E). Since the 
only r-potent cells are diagonal cells, T(E) is a diagonal cell. Therefore 
T(Z) = I, since T is bijective on the set of cells from Lemma 2.2. Also, since T 
is bijective, T(K) = K. 4 
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LEMMA 2.4. Let F, G be distinct off-diagonal cells, and E be a diagonal 

cell. Then (E + F + G)’ = E + F + G and F + Gt if and only if E, F, and G 
are collinear. 

Proof The necessity is trivial. Now, without loss of generality, we assume 
E = E,,. Let F = Ejk and G = Ej,. We have j # k, i # s, (j, k) + (i, s), and 

(j, k) f (s, i), since F and G are distinct off-diagonal cells and F # Gt. First 
we will show that E is collinear with F or G. Suppose not; then j, k, i, s f 1. 
Let X = E + F + G. Then X2 = (E,, + Ejk + EiJ2 = E,, + EjkEi, + Ei,Ejk. 

If k = i and j # s, then X 2=Ell+Ej,.Ifj=sandk+i,thenX2=Ell+ 
Eik. Therefore X’ # X for all r 2 2, a contradiction. Since F + Gt, the 
remaining case is k # i and j # s. We now have X2 = E,,, so that X’ = El1 

# X for all r > 2, a contradiction. Therefore E is collinear with F or G. 

Assume E and F are collinear and j = 1, i.e. F = Elk. We will show 
i = 1. Suppose i # 1. Then X 2 = E,, + Elk + ElkEis + EisEll + Ei,Elk. If 
s # 1, then X2 = E,, + Elk + ElkEi,. Furthermore, if k # i, then X2 = E,, 

+ Elk, so that X3 = E,, + Elk = X2. It follows that X’ = X2 # X for all 

r > 2, a contradiction. If k = i, then X2 = E,, + Elk + Els, so that X3 = E,, 

+ Elk + E,, = X2 # X, since k # 1. Hence X’ # X for all r 2 2, a contra- 

diction. We thus must have s = 1. Now X2 = E,, + Elk + Ej, + Eik, since 

(1,k) # (1, i), so that X3 = E,, + Eik + Eil + Eik = X2 # X. Therefore X’ # 
X for all r 2 2, a contradiction. 

This contradicts the assumption i + 1, since each choice of s and k yields 

a contradiction. Therefore E, F, and G are collinear. The proof that G is also 
collinear with E and F when k = 1 and j # 1 is parallel. n 

COROLLARY 2.1. If F, G are distinct off-diagonal cells and E is a diagonal 
cell such that (E + F + G)r = E + F + G and F = Gt, then r is odd. 

Proof. Without loss of generality, assume E = E,,, F = E,,, and G = Eji. 

Let X=E+F+G. Suppose i=l then X2=E11+Elj+Ejl+Ejj and 
X’ = X2 + X for all r > 2, a contradiction. Therefore, i # 1, and similarly, 

j # 1. Thus X2k+’ = X for all k, since X2k = E,, + Eji + Ejj. Obviously 

X’=Xonlyifrisodd. n 

COROLLARY 2.2. If F, G are distinct off-diagonal cells, E is a diagonal cell, 

andriseuen,then(E+F+G)‘=E+F+GifandonlyifE, F,andGare 

collinear. 

Proof. This is immediate from Lemma 2.4 and Corollary 2.1. n 
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A star matrix is maximal if it has exactly n - 1 nonzero off-diagonal 

entries. 

LEMMA 2.5. If IFI =n-1 andX=J\Fisr-potent, thenallofthe 

diugonul entries of X are nonzero, F is a maximal star matrix, and X is 
idempotent . 

Proof. If X were irreducible, then since one of its diagonal entries is not 
zero, it would have to be primitive. Being r-potent, X would then have to be 

J. So X is reducible. Therefore it has a k x (n - k) submatrix of zeros, and 
hence k( n - k) = n - 1. That quadratic in k has only two roots: 1 and n - 1. 

The line containing the n - 1 zeros must have a nonzero diagonal entry, 
because X is reducible. Therefore F is a maximal star matrix, and hence the 

diagonal entries of X are all nonzero and X 2 = X. H 

REMARK. Since T is bijective on the set of cells, T( X 1 Y) = T(X) 1 

T(Y) for each fixed X and Y. 

COROLLARY 2.3. lf n > 3, then T preserves s-stars for all 1 < s 6 n - 1. 

Proof. Let S be a s-star matrix, H be a maximal star matrix such that 

S < H, and A be T(H). Th en 1 A 1 = n - 1, since T is bijective and 1 H I = n 
- 1. Thus (J 1 H)’ F J 1 H, and so T(j 1 H) = T(J) 1 T(H) = J 1 T(H) = 

/ \ A is r-potent. By Lemma 2.5, A is a maximal star matrix. Therefore, T(S) 
is an s-star matrix, because T is bijective on the set of cells and T(S) Q T(H). 

n 

LEMMA 2.6. lf n = 2, then T is bijectioe on the set of cells, T(Z) = 1, and 
T(K) = K. 

Proof. Let E = E,,, E’ = E,,, D = E,,, D’ = E,,, S = K + D, and S’ 

= K + D’. We know T(E) # 0 by Theorem 2.1, and every 2 x 2 Boolean 
matrix with two or more cells is either idempotent, S, S’, or K; the last is 
r-potent when r is odd. Suppose T(E) 2 F + G, where F and G are distinct 

cells. Then T(E) > K, since E and T(E) is non-r-potent. Also we know 

T(E) # K and hence JT( D + E) I 2 3 when r is odd. Therefore T( D + E) 2 
K. But T( D + E) is idempotent, so that T( D + E) = J2, since J2 is the only 

idempotent 2 x 2 matrix with more than two cells dominating K. Thus 
T(S) = T(D + E) + T(E’) = J. But S is non-r-potent and ] is r-potent, a 
contradiction. So IT(E) 1 = 1. Furthermore, T(E) is not a diagonal cell, since 
E is non-r-potent. Therefore T(E) = E or E’. Similarly T(E’) = E or E’. 
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Suppose T(E) = T(E’). Th en T( D + E + E’) = T( D + E). But D + E + E’ is 
not r-potent, while D + E is r-potent, a contradiction. Therefore (i) T(E) = E 
and T(E’) = E’ or (ii) T(E’) = E and T(E) = E’. Therefore we have shown 
T(K) = K. We now suppose T(D) is not a cell. That is, T(D) > F + G for 
some cells F, G. If F and G are distinct off-diagonal cells, then T(D) > T( E + 

E’), so that T( D + E + E’) = T(D) is idempotent.‘It follows that D + E + E’ 
must be r-potent, a contradiction. Thus we may assume that F is a diagonal 
cell. If T(D) > I then T(S) > I. But T(S) is not r-potent, and every 2 x 2 

matrix which dominates I is r-potent, a contradiction. Therefore T(D) does 

not dominate I. It follows that T(D) = F + G, where F is a diagonal cell and 
GisEorE’.ThenT(D+A)=F+E+E’,where A=EorE’.But D+A 

is r-potent while F + E + E’ is not, a contradiction. Thus T(D) is a diagonal 
cell. Similarly T( 0’) is a diagonal cell. Suppose T(D) = T( D’) = F, where F is 
a diagonal cell; then T(J) = T( D + 0’) + T(K) = F + K, which is not r- 

potent, a contradiction. Therefore T(I) = I, T(K) = K, and T is bijective on 
the set of cells. H 

LEMMA 2.7 [2, Lemma 3.71. If a nonsingular linear operator T on A,( K3) 

is bijective on the off-diagonal cells, T(I) < I, and T preserves 2-star matrices, 

then T is one of, or a composition of two or more of, the following operators: 

(a) transposition (i.e., X + X “J, 
(b) similarity operators (i . e., X + PXP t for some fixed permutation matrix 

P in 4)) 

(c) nonsingular diagonal replacement (i.e., for some fixed nonsingular lin- 
ear operator s on the diagonal matrices of A’, X + X Q K + s( X 0 I)). 

THEOREM 2.2. lf n 2 2, the semigroup 9’ of linear operators strongly 

preserving r-potent matrices over the two-element Boolean semiring is generated 

by transposition and the similarity operators. 

Proof. Since transposition and all operators X -+ PXP’ are in 9’ ( Pf = 

P-’ when P is a permutation matrix), we need only show that Y is contained 
in the group they generate. Let T E Y. If n > 3, let S be an (n - 1)-star and 
E be a diagonal cell such that they are in a line. Then S + E is r-potent, so 
(S + E)’ = S + E, and hence p( S + E)]’ = T( S + E). Since T is linear, [T(S) 
+ T(E)]’ = T(S) + T(E). By Lemma 2.5, T preserves e-stars and T(S) must 
be a star matrix. Therefore T(E), T(S) are collinear. That is, T(S) is an 
(n - 1)-star and T(E) is a diagonal cell lying in the same line as T(S). Thus the 
operator s in (c) of Lemma 2.7 must be the identity. 
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In case n = 2, by Lemma 2.6, T either fixes the diagonal cells or switches 

them. Also, T either fixes the off-diagonal cells or switches them. The only 

four possible operators are those given, establishing the theorem. n 

3. THE ANTINEGATIVE-SEMIRING CASE 

In this section, A is an antinegative semiring with no zero divisors, 

n 2 r 2 2, and Y= Y”(A) d enotes the semigroup of all linear operators on 

JZJk!) strongly p reserving r-potence. 

The mapping accomplished by associating each matrix A in A#$) with its 

pattern Ain J,,(B) is a semiring homomorphism when s is antinegative and 

zero-divisor-free. 

If T is a linear operator on A$$), let T, its pattern, be the operator on 
-- 

A,@) defined by T( Eij) = T( Eij) for all (i, j). Then T(A)< T(x) for all A in 

d,,(s). Equality holds ifs is an antinegative semiring having no zero divisors. 

Let A E J?,,(S). The scaling operator L, induced by A is defined by 

L,: X+AoX. 

LEMMA 3.1. The semigroup Y is generated by the scaling operators in Y, 
transposition, and the similarity operators. 

Proof. Suppose T E 9. Then T E Y”(B), since T(X)= T(x) whenever A 

is an antinegative semiring having no zero divisors. Therefore T is in the 

semigroup of operators generated by the similarity operators and transposition, - - 
by Theorem 2.1.2. Thus T(X) = MOT(A) f or some ME A, and the lemma 

follows. n 

LEMMA 3.2. lf n 2 3 and every element of A is idempotent, then the 

identity operator is the only scaling operator that strongly preserves r-potence. 

Proof. Clearly, the identity operator is L,. Suppose L = L, strongly 

preserves r-potence for some A. Let i, j, and k be distinct positive integers, 

i,j, k < n. Put Xijk = 

Xjk = ajjEjj + Ejk, and 

aijEij + Eik + Ejj + Ejk, Jijk = Eij + Eik + Ejj +-Ejk, 
Jjk = Ejj + Ejk. It is easily seen that Jijk and Jjk are 

r-potent. Since L( Xijk) = L(Jijk) and L( Xjk) = L(Jjk), we have that Xijk and 

Xjk are r-potent. Then the (i, k) entry of ( Xijk)r is aij, while the (i, k) entry of 
Xijk is 1. Thus, aij = 1. Also, the (j, k) entry of ( Xjk)r is ujj, while the (j, k) 
entry of Xjk is 1. Thus, ajj = 1. Since i, j, and k were arbitrary, we have 

A=]. H 
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NOTE. In Lemma 3.2, A need not be antinegative. 

THEOREM 3.1. lf n 2 3 and every member of A is idempotent, then Y is 
generated by transposition and the similarity operators; Y is therefore a group. 

Proof This is immediate with Lemmas 3.1 and 3.2. m 

The permutation matrices are the only invertible matrices over those 
antinegative semirings that have only one unit 1 such as: the nonnegative 
integers, any chain semiring (such as the fuzzy scalars), or the two-element 
Boolean algebra. For any antinegative semiring & Q is invertible in 4”(A) if 
and only if Q = PD for some permutation matrix P and some diagonal matrix 
D whose diagonal entries are all units in & 

COROLLARY 3.1. Zf n > 3, the semigroup of linear operators on the n x n 
matrices over chain semiring that strongly preserves r-potence is generated by 
transposition and the operators X -+ PXPt, P a permutation matrix. 

LEMMA 3.3. Zf L, preserves r-potence on A,(A), then each diagonal 
entry in A is r-potent. 

Proof. Since I’ = I, we must have that LA(Z) is r-potent. Thus ( A0 I)’ = 
[LA(Z)]’ = LA(Z) = A0 I, and thus aii = aii for all i, 1 < i < n. n 

LEMMA~.~. Suppose A is an antinegative, commutative semiring with only 
one (r - 1)th root of unity, 1, having the multiplicative cancellation property. 

(i) If L, strongly preserves r-potence, then 

(a) each diagonal entry in A is 1, and 
(b) when n > 3, there exist units ai in A such that for all i, j, 

aij = aiaJy’. 

(ii) Ifaij = a,a,r’ for all i, j, then L, strongly preserves r-potence. 

Proof. Since each diagonal entry in A is r-potent (Lemma 3.3) and none 
are 0 by Theorem 2.1, it follows by the cancellation property that aC_’ = 1. 
This implies aii = 1 for all i, since A has only one (r - 1)th root of unity, 1. 
This establishes (i)(a). 
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Next we fix i and choose j # i. Let R = Ck+i(Eik + Ejk); then by direct 

computation we have ( A0 R)2 = (A0 R)3 and hence ( A0 R)m = ( A0 R)2 for all 
m > 1. In particular, (A0 R)’ = (A0 R)2. But R is r-potent, so its image, 
AoR = LA(R), is r-potent too. Consequently A0 R = (A0 R)’ = (Aa R)2, i.e., 
A0 R is idempotent. Therefore 

Therefore 

aik = aijujk forall k#i, (3.1) 

and by interchanging the roles of i and j in (3.1), we obtain 

ujk = ujiaik forall k #j. (3.2) 

Since n 2 3, we can choose g # 1, j, obtaining uig = uijujiuig from (3.1) 
and (3.2), and hence no entry in A is 0 by Theorem 2.1. Thus if k # i, then 

uij = uigu$ for all k. Let ui = ail. This completes the proof of part (i). 

The verification of part (ii) is a straight forward computation. n 

Let p’+ be the nonnegative members of a nontrivial subring p of the reals. 

That is, if p = R (reals) then p+= W+; if p = B (integers) then p+= Z+. 

NOTE. If A = p+, then Lemma 3.4(i) implies that all aij = 1. 

THEOREM 3.2. The semigroup Y= Yn(p,‘) is generated by transposition 

and the similarity operators, unless n = 2 and J2(~+)‘s r-potent matrices are 

triungulur and hence are on a single line. In that case, an additional family of 

generators is required, namely, the set of scaling operators 

x--B l x ox 
[ 1 Y 1 

with xy > 0. 

Proof. Because a scaling operator induced by a matrix A satisfying 
Lemma 3.4(i) is the similarity operator X + DXD-‘, where D = 

&a&al, a2, . . . , a,), the theorem is immediate from Lemmas 3.1 and 3.4 
unless n = 2 and J2(p,‘)’ s r-potent matrices are triangular. In that case, 
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suppose T is in Y. Lemma 2.6 implies that we may assume T is a scaling 
operator, say T = LA. According to Lemma 3.4, 

A= ’ ’ 
[ 1 Y 1 

for some x, y in p+. 

Then xy > 0: otherwise 

*ol 1 
[ 1 0 1 

and Aa 1 0 

I 1 1 1 

are not r-potent because 

[: :] and [: :] 

are not, a contradiction. Conversely, the scaling operators 

x* l x ox 
[ 1 Y 1 

are in Y whenever xy > 0. H 

COROLLARY 3.2. The semigroup Y= Y”(R+) is generated by transposi- 

tion, permutation similarity, and X + DXD-‘, where D is a diagonal matrix 

and all dii > 0. 

COROLLARY 3.3. The semigroup Y= Yn(Z+) is generated by transposition 

and permutation similarity, unless n = 2. of n = 2, an additional family of 

generators is needed, namely, all the scaling operators 

with xy > 1. 

The authors wish to thank the referee for his helpful comments and for the 

improved proofs of Lemma 2.1 and 2.5. 
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