Linear Operators Strongly Preserving r-Potent Matrices Over Semirings

LeRoy B. Beasley and Sang-Gu Lee
Department of Mathematics and Statistics
Utah State University
Logan, Utah 84322-3900

Submitted by Daivd H. Carlson

Abstract

A matrix X is said to be r-potent if $X^{r}=X$. We investigate the structure of linear operators on matrices over antinegative semirings that map the set of r-potent matrices into itself and the set of matrices which are not r-potent into itself.

0. INTRODUCTION

Let $\mathscr{M}_{n}(F)$ be the algebra of $n \times n$ matrices over an algebraic structure F. Problems of the following type have been of interest to several authors: let \mathscr{V} be an algebraic subset of $\mathscr{M}_{n}(F)$; characterize the semigroup of all linear operators $\mathbf{T}: \mathscr{M}_{n}(F) \rightarrow \mathscr{M}_{n}(F)$ that map \mathscr{V} into \mathscr{V}. Beasley and Pullman characterized the linear operators that strongly preserve idempotence over an antinegative semiring with no zero divisors [3].

The purpose of this paper is to extend these previous results. A matrix X is said to be r-potent if $X^{r}=X$. In this paper we will characterize the semigroup of linear operators that strongly preserve the set of r-potent matrices, i.e. that map r-potents to r-potents and non- r-potents to non- r potents. We find that it is generated by transposition, the similarity operators, and some scaling operators when 『 is an antinegative semiring with no zero divisors (in particular a chain semiring).

Preliminary results and definitions are presented in Section 1.

1. PRELIMINARIES

A semiring is a binary system $(\mathbb{S},+, \times)$ such that $(\mathbb{S},+)$ is an abelian monoid (identity 0), (\mathcal{S}, \times) is a monoid (identity 1), \times distributes over + , $0 \times s=s \times 0=0$ for all s in \mathbb{S}, and $1 \neq 0$. Usually \mathbb{S} denotes the system and X is denoted by a juxtaposition. If $(\mathbb{S}, \times$) is abelian, then \mathbb{S} is commutative. If 0 is the only element to have an additive inverse, then S is antinegative. All rings with unity are semirings, but no such ring is antinegative. The twoelement Boolean algebra © , the nonnegative integers \mathbb{Z}^{+}, the nonnegative rationals \mathbb{Q}^{+}, and the nonnegative reals 冨 $^{+}$all serve as examples of antinegative semirings which occur in combinatorics.

Algebraic terms such as unit, zero divisor, linearity, and invertibility are defined for semirings as for rings.

We let $\mathscr{M}_{n}(\mathbb{S})$ denote the set of $n \times n$ matrices over \mathbb{S}. The matrix all of whose entries are 1 is denoted J_{n}. We will suppress the subscripts on these matrices when the order is evident from the context,

If A and B are in \mathscr{M}, we say B dominates A (written $A \leqslant B$) if $b_{i j}=0$ implies $a_{i j}=0$ for all i, j.

The number of nonzero entries in a matrix A is denoted $|A|$. The number of elements in a set \mathscr{S} is also denoted $|\mathscr{S}|$.

A matrix S having at least one nonzero off-diagonal entry is a star matrix if all its nonzero entries lie on a line (a row or a column). An s-star matrix is a star matrix having $|S|=s$ and all diagonal entries 0 . A zero-one $n \times n$ matrix with only one entry equal to 1 , say the (i, j) th entry, is called a cell, $E_{i j}$. A set of cells is collinear if their nonzero entries lie in one line.

When X and Y are in $\mathscr{M}_{n}(B)$, we define $X \backslash Y$ to be the matrix Z such that $z_{i j}=1$ if and only if $x_{i j}=1$ and $y_{i j}=0$. We let $K=J \backslash I$.

We denote the Hadamard product of A and B in \mathscr{M} by $A \circ B$. That is, $C=A{ }^{\circ} B$ if and only if $c_{i j}=a_{i j} b_{i j}$ for all i and j.

An operator L is nonsingular if $L(X)=O$ only when $X=O$; such operators need not be invertible. For example, when $\mathcal{S}=$ 国 if $\mathbf{L}(X)=J$ for all $X \neq O$ in $\mathscr{M}_{n}(\mathbb{S})$ and $\mathbf{L}(O)=O$, then L is linear and nonsingular, but not invertible unless $m=n=1$. However, we have Theorem 2.1 below for operators which strongly preserve r-potence.

Henceforth, we will assume that \mathbf{T} is a linear operator on $\mathscr{M}_{n}(\mathbb{S})$ which strongly preserves the set of r-potent matrices, and $n \geqslant r \geqslant 2$.

2. THE BOOLEAN $(0,1)$ CASE

Throughout this section $\mathbb{S}=\mathbb{B}$, the Boolean algebra of two elements.

Theorem 2.1. \mathbf{T} is nonsingular.

Proof. The case $r=2$ was proved in [3, Lemma 1.3]. So we only need to prove the theorem for $n \geqslant r \geqslant 3$. Suppose $T(X)=O$ and $X \neq O$; then $\mathbf{T}(C)=O$ for some cell C, because B is antinegative and \mathbf{T} is linear. Now $[\mathbf{T}(J)]^{r}=\mathbf{T}(J)$, since $J^{r}=J$ and \mathbf{T} strongly preserves r-potence. But $[\mathbf{T}(J \backslash C)]^{r}=[\mathbf{T}(J)]^{r}=\mathbf{T}(J)=\mathbf{T}(J \backslash C)$, a contradiction, since $(J \backslash C)^{r}=$ $J \neq J \backslash C$.

Note. If $r=1$, then \mathbf{T} may be singular; in fact, all operators preserve 1-potence strongly, since all matrices are 1-potent.

Lemma 2.1. If $n \geqslant 3$ and E is a cell, then $\mathbf{T}(E)$ is a cell.

Proof. Suppose there is a cell C with $|\mathbf{T}(C)| \geqslant 2$. Let $X_{1}=C$, and index the cells by $C_{1}=C$ and the rest $C_{2}, C_{3}, \ldots, C_{n^{2}}$ arbitrarily. For $2 \leqslant j \leqslant$ n^{2}, let $X_{j}=X_{j-1}$ or $X_{j-1}+C_{j+1}$ according as $\mathbf{T}\left(C_{j}\right) \leqslant \mathbf{T}\left(X_{j-1}\right)$ or not. Then $\left|X_{j}\right| \leqslant\left|X_{j-1}\right|+1$ for all $j \geqslant 2$. If equality held for every $2 \leqslant j \leqslant n^{2}$, then $\left|\mathbf{T}\left(X_{j}\right)\right| \geqslant j+1$, in particular for $j=n^{2}$, which is impossible. Therefore $\left|X_{n^{2}}\right| \leqslant n^{2}-1$ and $\mathbf{T}(H) \leqslant \mathbf{T}\left(X_{m-1}\right)$ for some cell $H=C_{m}$ not dominated by X_{m-1}. Therefore $\mathbf{T}(J)=\mathbf{T}(J \backslash H)$. But $[\mathbf{T}(J)]^{r}=\mathbf{T}(J)$ because \mathbf{T} preserves r-potence, and so $[\mathbf{T}(J \backslash H)]^{r}=\mathbf{T}(J \backslash H)$. Therefore $(J \backslash H)^{r}=J \backslash H$, because T preserves r-potence strongly. But in fact $(J \backslash H)^{r}=J$, a contradiction.

Lemma 2.2. If $n \geqslant 3$, then \mathbf{T} is bijective on the set of cells.

Proof. Let E and F be different cells. Suppose $\mathbf{T}(E)=\mathbf{T}(F)$; then $\mathbf{T}(J)=\mathbf{T}\{[J \backslash(E+F)]+(E+F)\}=\mathbf{T}[J \backslash(E+F)]+\mathbf{T}(E+F)=\mathbf{T}[J \backslash$ $(E+F)]+\mathbf{T}(E)+\mathbf{T}(F)=\mathbf{T}[J \backslash(E+F)]+\mathbf{T}(E)=\mathbf{T}(J \backslash F)$. But J is r potent and $J \backslash F$ is not-a contradiction, since \mathbf{T} strongly preserves r-potence. Thus $\mathbf{T}(E) \neq \mathbf{T}(F)$.

Lemma 2.3. If $n \geqslant 3$ then $\mathbf{T}(I)=I$ and $\mathbf{T}(K)=K$.

Proof. If E is a diagonal cell, then $\mathbf{T}(E)$ is a cell by Lemma 2.1. Since \mathbf{T} strongly preserves r-potence and $E^{r}=E$, we have $T(E)^{r}=\mathbf{T}(E)$. Since the only r-potent cells are diagonal cells, $\mathbf{T}(E)$ is a diagonal cell. Therefore $\mathbf{T}(I)=I$, since \mathbf{T} is bijective on the set of cells from Lemma 2.2. Also, since \mathbf{T} is bijective, $\mathbf{T}(K)=K$.

Lemma 2.4. Let F, G be distinct off-diagonal cells, and E be a diagonal cell. Then $(E+F+G)^{r}=E+F+G$ and $F \neq G^{t}$ if and only if E, F, and G are collinear.

Proof. The necessity is trivial. Now, without loss of generality, we assume $E=E_{11}$. Let $F=E_{j k}$ and $G=E_{i s}$. We have $j \neq k, i \neq s,(j, k) \neq(i, s)$, and $(j, k) \neq(s, i)$, since F and G are distinct off-diagonal cells and $F \neq G^{t}$. First we will show that E is collinear with F or G. Suppose not; then $j, k, i, s \neq 1$. Let $X=E+F+G$. Then $X^{2}=\left(E_{11}+E_{j k}+E_{i s}\right)^{2}=E_{11}+E_{j k} E_{i s}+E_{i s} E_{j k}$. If $k=i$ and $j \neq s$, then $X^{2}=E_{11}+E_{j s}$. If $j=s$ and $k \neq i$, then $X^{2}=E_{11}+$ $E_{i k}$. Therefore $X^{r} \neq X$ for all $r \geqslant 2$, a contradiction. Since $F \neq G^{t}$, the remaining case is $k \neq i$ and $j \neq s$. We now have $X^{2}=E_{11}$, so that $X^{r}=E_{11}$ $\neq X$ for all $r \geqslant 2$, a contradiction. Therefore E is collinear with F or G.

Assume E and F are collinear and $j=1$, i.e. $F=E_{1 k}$. We will show $i=1$. Suppose $i \neq 1$. Then $X^{2}=E_{11}+E_{1 k}+E_{1 k} E_{i s}+E_{i s} E_{11}+E_{i s} E_{1 k}$. If $s \neq 1$, then $X^{2}=E_{11}+E_{1 k}+E_{1 k} E_{i s}$. Furthermore, if $k \neq i$, then $X^{2}=E_{11}$ $+E_{1 k}$, so that $X^{3}=E_{11}+E_{1 k}=X^{2}$. It follows that $X^{r}=X^{2} \neq X$ for all $r \geqslant 2$, a contradiction. If $k=i$, then $X^{2}=E_{11}+E_{1 k}+E_{1 s}$, so that $X^{3}=E_{11}$ $+E_{1 k}+E_{1 s}=X^{2} \neq X$, since $k \neq 1$. Hence $X^{r} \neq X$ for all $r \geqslant 2$, a contradiction. We thus must have $s=1$. Now $X^{2}=E_{11}+E_{1 k}+E_{i 1}+E_{i k}$, since $(1, k) \neq(1, i)$, so that $X^{3}=E_{11}+E_{i k}+E_{i 1}+E_{i k}=X^{2} \neq X$. Therefore $X^{r} \neq$ X for all $r \geqslant 2$, a contradiction.

This contradicts the assumption $i \neq 1$, since each choice of s and k yields a contradiction. Therefore E, F, and G are collinear. The proof that G is also collinear with E and F when $k=1$ and $j \neq 1$ is parallel.

Corollary 2.1. If F, G are distinct off-diagonal cells and E is a diagonal cell such that $(E+F+G)^{r}=E+F+G$ and $F=G^{t}$, then r is odd.

Proof. Without loss of generality, assume $E=E_{11}, F=E_{i j}$, and $G=E_{j i}$. Let $X=E+F+G$. Suppose $i=1$ then $X^{2}=E_{11}+E_{1 j}+E_{j 1}+E_{j j}$ and $X^{r}=X^{2} \neq X$ for all $r \geqslant 2$, a contradiction. Therefore, $i \neq 1$, and similarly, $j \neq 1$. Thus $X^{2 k+1}=X$ for all k, since $X^{2 k}=E_{11}+E_{i i}+E_{j j}$. Obviously $X^{r}=X$ only if r is odd.

Corollary 2.2. If F, G are distinct off-diagonal cells, E is a diagonal cell, and r is even, then $(E+F+G)^{r}=E+F+G$ if and only if E, F, and G are collinear.

Proof. This is immediate from Lemma 2.4 and Corollary 2.1.

A star matrix is maximal if it has exactly $n-1$ nonzero off-diagonal entries.

Lemma 2.5. If $|F|=n-1$ and $X=J \backslash F$ is r-potent, then all of the diagonal entries of X are nonzero, F is a maximal star matrix, and X is idempotent.

Proof. If X were irreducible, then since one of its diagonal entries is not zero, it would have to be primitive. Being r-potent, X would then have to be J. So X is reducible. Therefore it has a $k \times(n-k)$ submatrix of zeros, and hence $k(n-k)=n-1$. That quadratic in k has only two roots: 1 and $n-1$. The line containing the $n-1$ zeros must have a nonzero diagonal entry, because X is reducible. Therefore F is a maximal star matrix, and hence the diagonal entries of X are all nonzero and $X^{2}=X$.

Remark. Since T is bijective on the set of cells, $T(X \backslash Y)=T(X) \backslash$ $T(Y)$ for each fixed X and Y.

Corollary 2.3. If $n \geqslant 3$, then \mathbf{T} preserves s-stars for all $1 \leqslant s \leqslant n-1$.
Proof. Let S be a s-star matrix, H be a maximal star matrix such that $S \leqslant H$, and A be $T(H)$. Then $|A|=n-1$, since T is bijective and $|H|=n$ -1 . Thus $(J \backslash H)^{r}=J \backslash H$, and so $\mathbf{T}(J \backslash H)=\mathbf{T}(J) \backslash \mathbf{T}(H)=J \backslash \mathbf{T}(H)=$ $J \backslash A$ is r-potent. By Lemma 2.5, A is a maximal star matrix. Therefore, $\mathbf{T}(S)$ is an s-star matrix, because T is bijective on the set of cells and $T(S) \leqslant T(H)$.

Lemma 2.6. If $n=2$, then \mathbf{T} is bijective on the set of cells, $\mathbf{T}(I)=I$, and $\mathrm{T}(K)=K$.

Proof. Let $E=E_{12}, E^{\prime}=E_{21}, D=E_{11}, D^{\prime}=E_{22}, S=K+D$, and S^{\prime} $=K+D^{\prime}$. We know $\mathbf{T}(E) \neq O$ by Theorem 2.1 , and every 2×2 Boolean matrix with two or more cells is either idempotent, S, S^{\prime}, or K; the last is r-potent when r is odd. Suppose $T(E) \geqslant F+G$, where F and G are distinct cells. Then $\mathbf{T}(E) \geqslant K$, since E and $\mathbf{T}(E)$ is non- r-potent. Also we know $\mathbf{T}(E) \neq K$ and hence $|\mathbf{T}(D+E)| \geqslant 3$ when r is odd. Therefore $\mathbf{T}(D+E) \geqslant$ K. But $T(D+E)$ is idempotent, so that $T(D+E)=J_{2}$, since J_{2} is the only idempotent 2×2 matrix with more than two cells dominating K. Thus $\mathbf{T}(S)-\mathbf{T}(D+E)+\mathbf{T}\left(E^{\prime}\right)=J$. But S is non- r-potent and J is r-potent, a contradiction. So $|\mathbf{T}(E)|=1$. Furthermore, $\mathbf{T}(E)$ is not a diagonal cell, since E is non- r-potent. Therefore $\mathbf{T}(E)=E$ or E^{\prime}. Similarly $\mathbf{T}\left(E^{\prime}\right)=E$ or E^{\prime}.

Suppose $\mathbf{T}(E)=\mathbf{T}\left(E^{\prime}\right)$. Then $\mathbf{T}\left(D+E+E^{\prime}\right)=\mathbf{T}(D+E)$. But $D+E+E^{\prime}$ is not r-potent, while $D+E$ is r-potent, a contradiction. Therefore (i) $\mathbf{T}(E)=E$ and $\mathbf{T}\left(E^{\prime}\right)=E^{\prime}$ or (ii) $\mathbf{T}\left(E^{\prime}\right)=E$ and $\mathbf{T}(E)=E^{\prime}$. Therefore we have shown $\mathbf{T}(K)=K$. We now suppose $\mathbf{T}(D)$ is not a cell. That is, $\mathbf{T}(D) \geqslant F+G$ for some cells F, G. If F and G are distinct off-diagonal cells, then $\mathbf{T}(D) \geqslant \mathbf{T}(E+$ E^{\prime}), so that $\mathbf{T}\left(D+E+E^{\prime}\right)=\mathbf{T}(D)$ is idempotent. It follows that $D+E+E^{\prime}$ must be r-potent, a contradiction. Thus we may assume that F is a diagonal cell. If $\mathbf{T}(D) \geqslant I$ then $\mathbf{T}(S) \geqslant I$. But $\mathbf{T}(S)$ is not r-potent, and every 2×2 matrix which dominates I is r-potent, a contradiction. Therefore $\mathrm{T}(D)$ does not dominate l. It follows that $T(D)=F+G$, where F is a diagonal cell and G is E or E^{\prime}. Then $T(D+A)=F+E+E^{\prime}$, where $A=E$ or E^{\prime}. But $D+A$ is r-potent while $F+E+E^{\prime}$ is not, a contradiction. Thus $\mathbf{T}(D)$ is a diagonal cell. Similarly $\mathbf{T}\left(D^{\prime}\right)$ is a diagonal cell. Suppose $\mathbf{T}(D)=\mathbf{T}\left(D^{\prime}\right)=F$, where F is a diagonal cell; then $\mathbf{T}(J)=\mathbf{T}\left(D+D^{\prime}\right)+\mathbf{T}(K)=F+K$, which is not r potent, a contradiction. Therefore $\mathbf{T}(I)=I, \mathbf{T}(K)=K$, and \mathbf{T} is bijective on the set of cells.

Lemma 2.7 [2, Lemma 3.7]. If a nonsingular linear operator \mathbf{T} on $\mathscr{M}_{n}(\mathbb{B})$ is bijective on the off-diagonal cells, $\mathbf{T}(I) \leqslant I$, and \mathbf{T} preserves 2 -star matrices, then \mathbf{T} is one of, or a composition of two or more of, the following operators:
(a) transposition (i.e., $X \rightarrow X^{t}$),
(b) similarity operators (i.e., $X \rightarrow P X P^{t}$ for some fixed permutation matrix P in \mathscr{M}),
(c) nonsingular diagonal replacement (i.e., for some fixed nonsingular linear operator \mathbf{s} on the diagonal matrices of $\mathscr{M}, X \rightarrow X \circ K+s(X \circ I))$.

Theorem 2.2. If $n \geqslant 2$, the semigroup \mathscr{S} of linear operators strongly preserving r-potent matrices over the two-element Boolean semiring is generated by transposition and the similarity operators.

Proof. Since transposition and all operators $X \rightarrow P X P^{t}$ are in $\mathscr{S}\left(P^{t}=\right.$ P^{-1} when P is a permutation matrix), we need only show that \mathscr{S} is contained in the group they generate. Let $\mathbf{T} \in \mathscr{S}$. If $n \geqslant 3$, let S be an $(n-1)$-star and E be a diagonal cell such that they are in a line. Then $S+E$ is r-potent, so $(S+E)^{r}=S+E$, and hence $[\mathbf{T}(S+E)]^{r}=\mathbf{T}(S+E)$. Since \mathbf{T} is linear, $[\mathbf{T}(S)$ $+\mathbf{T}(E)]^{r}=\mathbf{T}(S)+\mathbf{T}(E)$. By Lemma 2.5, \mathbf{T} preserves 2 -stars and $\mathbf{T}(S)$ must be a star matrix. Therefore $\mathbf{T}(E), \mathbf{T}(S)$ are collinear. That is, $\mathbf{T}(S)$ is an ($n-1$)-star and $T(E)$ is a diagonal cell lying in the same line as $T(S)$. Thus the operator s in (c) of Lemma 2.7 must be the identity.

In case $n=2$, by Lemma 2.6, \mathbf{T} either fixes the diagonal cells or switches them. Also, \mathbf{T} either fixes the off-diagonal cells or switches them. The only four possible operators are those given, establishing the theorem.

3. THE ANTINEGATIVE-SEMIRING CASE

In this section, A is an antinegative semiring with no zero divisors, $n \geqslant r \geqslant 2$, and $\mathscr{S}=\mathscr{S}_{n}(A)$ denotes the semigroup of all linear operators on $\mathscr{M}_{n}(A)$ strongly preserving r-potence.

The mapping accomplished by associating each matrix A in $\mathscr{M}_{n}(\mathcal{S})$ with its pattern \bar{A} in $\mathscr{M}_{n}(B)$ is a semiring homomorphism when S is antinegative and zero-divisor-free.

If \mathbf{T} is a linear operator on $\mathscr{M}_{n}(\mathbb{S})$, let $\overline{\mathbf{T}}$, its pattern, be the operator on $\mathscr{M}_{n}(B)$ defined by $\overline{\mathbf{T}}\left(\bar{E}_{i j}\right)=\overline{\mathbf{T}\left(E_{i j}\right)}$ for all (i, j). Then $\overline{\mathbf{T}(A)} \leqslant \overline{\mathbf{T}}(\bar{A})$ for all A in $\mathscr{M}_{n}(\mathbb{S})$. Equality holds if \mathbb{S} is an antinegative semiring having no zero divisors.

Let $A \in \mathscr{M}_{n}(\mathbb{S})$. The scaling operator L_{A} induced by A is defined by $\mathbf{L}_{A}: X \rightarrow A \circ X$.

Lemma 3.1. The semigroup \mathscr{S} is generated by the scaling operators in \mathscr{S}, transposition, and the similarity operators.

Proof. Suppose $\mathbf{T} \in \mathscr{S}$. Then $\overline{\mathbf{T}} \in \mathscr{I}_{n}(\mathrm{~B})$, since $\overline{\mathbf{T}(X)}=\overline{\mathbf{T}}(\bar{X})$ whenever A is an antinegative semiring having no zero divisors. Therefore $\overline{\mathbf{T}}$ is in the semigroup of operators generated by the similarity operators and transposition, by Theorem 2.1.2. Thus $\mathbf{T}(X)=M \circ \overline{\mathbf{T}}(\bar{A})$ for some $M \in \mathscr{M}$, and the lemma follows.

Lemma 3.2. If $n \geqslant 3$ and every element of A is idempotent, then the identity operator is the only scaling operator that strongly preserves r-potence.

Proof. Clearly, the identity operator is \mathbf{L}_{J}. Suppose $\mathbf{L}=\mathbf{L}_{A}$ strongly preserves r-potence for some A. Let i, j, and k be distinct positive integers, $i, j, k \leqslant n$. Put $X_{i j k}=a_{i j} E_{i j}+E_{i k}+E_{j j}+E_{j k}, J_{i j k}=E_{i j}+E_{i k}+E_{j j}+E_{j k}$, $X_{j k}=a_{j j} E_{j j}+E_{j k}$, and $J_{j k}=E_{j j}+E_{j k}$. It is easily seen that $J_{i j k}$ and $J_{j k}$ are r-potent. Since $\mathbf{L}\left(X_{i j k}\right)=\mathbf{L}\left(J_{i j k}\right)$ and $\mathbf{L}\left(X_{j k}\right)=\mathbf{L}\left(J_{j k}\right)$, we have that $X_{i j k}$ and $X_{j k}$ are r-potent. Then the (i, k) entry of $\left(X_{i j k}\right)^{r}$ is $a_{i j}$, while the (i, k) entry of $X_{i j k}$ is 1 . Thus, $a_{i j}=1$. Also, the (j, k) entry of $\left(X_{j k}\right)^{r}$ is $a_{j j}$, while the (j, k) entry of $X_{j k}$ is 1 . Thus, $a_{j j}=1$. Since i, j, and k were arbitrary, we have $A=J$.

Note. In Lemma 3.2, A need not be antinegative.

Theorem 3.1. If $n \geqslant 3$ and every member of A is idempotent, then \mathscr{S} is generated by transposition and the similarity operators; \mathscr{S} is therefore a group.

Proof. This is immediate with Lemmas 3.1 and 3.2.
The permutation matrices are the only invertible matrices over those antinegative semirings that have only one unit 1 such as: the nonnegative integers, any chain semiring (such as the fuzzy scalars), or the two-element Boolean algebra. For any antinegative semiring A, Q is invertible in $\mathscr{H}_{n}(A)$ if and only if $Q=P D$ for some permutation matrix P and some diagonal matrix D whose diagonal entries are all units in A.

Corollary 3.1. If $n \geqslant 3$, the semigroup of linear operators on the $n \times n$ matrices over chain semiring that strongly preserves r-potence is generated by transposition and the operators $X \rightarrow P X P^{t}, P$ a permutation matrix.

Lemma 3.3. If \mathbf{L}_{A} preserves r-potence on $\mathscr{M}_{n}(A)$, then each diagonal entry in A is r-potent.

Proof. Since $I^{r}=I$, we must have that $\mathbf{L}_{A}(I)$ is r-potent. Thus $(A \circ I)^{r}=$ $\left[\mathbf{L}_{A}(I)\right]^{r}=\mathbf{L}_{A}(I)=A^{\circ} I$, and thus $a_{i i}^{r}=a_{i i}$ for all $i, l \leqslant i \leqslant n$.

Lemma 3.4. Suppose A is an antinegative, commutative semiring with only one $(r-1)$ th root of unity, 1 , having the multiplicative cancellation property.
(i) If \mathbf{L}_{A} strongly preserves r-potence, then
(a) each diagonal entry in A is 1 , and
(b) when $n \geqslant 3$, there exist units a_{i} in A such that for all i, j,

$$
a_{i j}=a_{i} a_{j}^{-1}
$$

(ii) If $a_{i j}=a_{i} a_{j}^{-1}$ for all i, j, then \mathbf{L}_{A} strongly preserves r-potence.

Proof. Since each diagonal entry in A is r-potent (Lemma 3.3) and none are 0 by Theorem 2.1, it follows by the cancellation property that $a_{i i}^{r-1}=1$. This implies $a_{i i}=1$ for all i, since A has only one $(r-1)$ th root of unity, 1 . This establishes (i)(a).

Next we fix i and choose $j \neq i$. Let $R=\sum_{k \neq i}\left(E_{i k}+E_{j k}\right)$; then by direct computation we have $(A \circ R)^{2}=(A \circ R)^{3}$ and hence $(A \circ R)^{m}=(A \circ R)^{2}$ for all $m>1$. In particular, $(A \circ R)^{r}=(A \circ R)^{2}$. But R is r-potent, so its image, $A \circ R=\mathbf{L}_{A}(R)$, is r-potent too. Consequently $A \circ R=(A \circ R)^{r}=(A \circ R)^{2}$, i.e., $A \circ R$ is idempotent. Therefore

$$
\sum_{k \neq i}\left(a_{i k} E_{i k}+a_{j k} E_{j k}\right)=\sum_{k \neq i}\left(a_{i j} a_{j k} E_{i k}+a_{j k} E_{j k}\right)
$$

Therefore

$$
\begin{equation*}
a_{i k}=a_{i j} a_{j k} \quad \text { for all } \quad k \neq i \tag{3.1}
\end{equation*}
$$

and by interchanging the roles of i and j in (3.1), we obtain

$$
\begin{equation*}
a_{j k}=a_{j i} a_{i k} \quad \text { for all } \quad k \neq j \tag{3.2}
\end{equation*}
$$

Since $n \geqslant 3$, we can choose $g \neq 1, j$, obtaining $a_{i g}=a_{i j} a_{j i} a_{i g}$ from (3.1) and (3.2), and hence no entry in A is 0 by Theorem 2.1. Thus if $k \neq i$, then $a_{i j}=a_{i g} a_{k g}^{-1}$ for all k. Let $a_{i}=a_{i 1}$. This completes the proof of part (i).

The verification of part (ii) is a straight forward computation.
Let P^{+}be the nonnegative members of a nontrivial subring P of the reals. That is, if $P=R$ (reals) then $P^{+}=\mathbb{R}^{+}$; if $P=Z$ (integers) then $P^{+}=Z^{+}$.

Note. If $A=\mathbb{P}^{+}$, then Lemma 3.4(i) implies that all $a_{i j}=1$.
Theorem 3.2. The semigroup $\mathscr{S}=\mathscr{S}_{n}\left(\mathrm{P}^{+}\right)$is generated by transposition and the similarity operators, unless $n=2$ and $\mathscr{M}_{2}\left(\mathbb{P}^{+}\right)$'s r-potent matrices are triangular and hence are on a single line. In that case, an additional family of generators is required, namely, the set of scaling operators

$$
X \rightarrow\left[\begin{array}{ll}
1 & x \\
y & 1
\end{array}\right] \circ X \quad \text { with } \quad x y>0
$$

Proof. Because a scaling operator induced by a matrix A satisfying Lemma $3.4(\mathrm{i})$ is the similarity operator $X \rightarrow D X D^{-1}$, where $D=$ $\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$, the theorem is immediate from Lemmas 3.1 and 3.4 unless $n=2$ and $\mathscr{M}_{2}\left(\mathrm{P}^{+}\right)$'s r-potent matrices are triangular. In that case,
suppose \mathbf{T} is in \mathscr{S}. Lemma 2.6 implies that we may assume \mathbf{T} is a scaling operator, say $\mathbf{T}=\mathbf{L}_{A}$. According to Lemma 3.4,

$$
A=\left[\begin{array}{ll}
1 & x \\
y & 1
\end{array}\right] \quad \text { for some } \quad x, y \text { in } P^{+}
$$

Then $x y>0$: otherwise

$$
A \circ\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad \text { and } \quad A \circ\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

are not r-potent because

$$
\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

are not, a contradiction. Conversely, the scaling operators

$$
X \rightarrow\left[\begin{array}{ll}
1 & x \\
y & 1
\end{array}\right] \circ X
$$

are in \mathscr{S} whenever $x y>0$.

Corollary 3.2. The semigroup $\mathscr{S}=\mathscr{S}_{n}\left(\mathbb{R}^{+}\right)$is generated by transposition, permutation similarity, and $X \rightarrow D X D^{-1}$, where D is a diagonal matrix and all $d_{i i}>0$.

Corollary 3.3. The semigroup $\mathscr{S}=\mathscr{S}_{n}\left(\mathbb{Z}^{+}\right)$is generated by transposition and permutation similarity, unless $n=2$. If $n=2$, an additional family of generators is needed, namely, all the scaling operators

$$
X \rightarrow\left[\begin{array}{ll}
1 & x \\
y & 1
\end{array}\right] \circ X \quad \text { with } \quad x y \geqslant 1 .
$$

The authors wish to thank the referee for his helpful comments and for the improved proofs of Lemma 2.1 and 2.5.

REFERENCES

1 L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean rank-1 spaces, Linear Algebra Appl. 59:55-77 (1984).

2 L. B. Beasley and N. J. Pullman, Linear operators that strongly preserve primitivity, Linear and Multilinear Algebra 25:205-213 (1989).
3 L. B. Beasley and N. J. Pullman, Linear operators strongly preserving idempotent matrices over semirings, Linear Algebra Appl., 28:111-117 (1990).

4 L. B. Beasley and N. J. Pullman, Linear operators that strongly preserving digraphs whose maximum cycle length is small, Linear and Multilinear Algebra, 28:111-117 (1990).
5 R. Howard, Linear maps that preserve matrices annihilated by a polynomial, Linear Algebra Appl. 30:167-176 (1980).

Received 24 July 1990; final manuscript accepted 26 June 1991

